Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
1.
Sci Rep ; 14(1): 8563, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609487

RESUMO

Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.


Assuntos
Cólera , Infecções Urinárias , Vibrio , Humanos , Proteus mirabilis/genética , Cádmio/toxicidade , Sistemas CRISPR-Cas/genética , RNA Ribossômico 16S , Águas Residuárias , RNA Guia de Sistemas CRISPR-Cas , Vibrio/genética
2.
Acta Vet Hung ; 72(1): 11-20, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38578700

RESUMO

Proteus mirabilis is a common enteric bacterium in livestock and humans. The increase and spread of the antimicrobial resistant P. mirabilis is considered alarming worldwide. Transmission mainly occurs through consumption of contaminated poultry products. We investigated antimicrobial resistance (AMR) and virulence markers in broiler chicken-originated P. mirabilis isolates from 380 fecal samples. Phenotypic AMR test was performed against seventeen different antimicrobials. Genotypic AMR test was performed to detect sixteen different AMR genes. The samples were also tested for the presence of eight different virulence genes and biofilm formation. P. mirabilis was isolated in 11% of the samples, with significantly high multidrug-resistant (MDR) prevalence (63%). All isolates were resistant to tetracycline (100%). The combined disc method indicated that all isolates were of extended-spectrum beta-lactamase (ESBL) producers, which was compatible with the high blaTEM prevalence (95%). This was associated with blaTEM being responsible for more than 80% of ampicillin resistance in enteric pathogens. The absence of phenotypically carbapenem-resistant isolates was compatible with the very low prevalences of blaOXA (2%) and blaNDM (0%). All isolates were positive for pmfA, atfA, hpmA, and zapA (100%) virulence genes, while biofilm formation rate (85%) indicated high adherence abilities of the isolates.


Assuntos
Antibacterianos , Proteus mirabilis , Humanos , Animais , Antibacterianos/farmacologia , Virulência , Proteus mirabilis/genética , Galinhas , beta-Lactamases/genética , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária
3.
Vet Res ; 55(1): 50, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594755

RESUMO

Proteus mirabilis is a commensal bacterium dwelling in the gastrointestinal (GI) tract of humans and animals. Although New Delhi metallo-ß-lactamase 1 (NDM-1) producing P. mirabilis is emerging as a threat, its epidemiology in our society remains largely unknown. LHPm1, the first P. mirabilis isolate harboring NDM-1, was detected from a companion dog that resides with a human owner. The whole-genome study revealed 20 different antimicrobial resistance (AMR) genes against various classes of antimicrobial agents, which corresponded to the MIC results. Genomic regions, including MDR genes, were identified with multiple variations and visualized in a comparative manner. In the whole-genome epidemiological analysis, multiple phylogroups were identified, revealing the genetic relationship of LHPm1 with other P. mirabilis strains carrying various AMR genes. These genetic findings offer comprehensive insights into NDM-1-producing P. mirabilis, underscoring the need for urgent control measures and surveillance programs using a "one health approach".


Assuntos
Doenças do Cão , Infecções por Proteus , Cães , Humanos , Animais , Antibacterianos/farmacologia , Proteus mirabilis/genética , Animais de Estimação/genética , Infecções por Proteus/veterinária , Infecções por Proteus/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Genômica , República da Coreia , Testes de Sensibilidade Microbiana/veterinária , Plasmídeos , Doenças do Cão/genética
4.
Mol Biol Rep ; 51(1): 446, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532199

RESUMO

BACKGROUND: Bacterial pathogens are the causative agents of some of the most serious disease problems in cultured fish causing mortalities and severe economic losses. This study was conducted to determine the occurrence and characterization of Proteus mirabilis from infected farmed African catfish in Ogun State, Nigeria. METHODOLOGY: The bacteria were isolated from diseased farmed African catfish (Clarias gariepinus, n=128) with clinical signs of skin haemorrhages, ulceration, and ascites purposively sampled from farms within three senatorial districts namely Ogun East (OE; n=76), Ogun Central (OC; n=30) and Ogun West (OW; n=22) in Ogun State. The isolates were identified based on morphological characteristics, biochemical tests, and 16S rRNA gene characterisation. The 16S rRNA gene sequences were analysed using BLAST, submitted to the NCBI database, and an accession number was generated. RESULTS: The occurrence of Proteus mirabilis in infected Clarias gariepinus was 13.16%, 25%, and 31.25% in OE, OC, and OW, respectively. A significantly higher incidence was recorded in OW compared to other areas. All the Proteus mirabilis isolates were motile, gram-negative, short rod, non-lactose fermenter bacteria that showed positive catalase reactions, negative oxidase, and positive for methyl-red. The Proteus mirabilis isolates (OP 594726.1) were closely related to isolates from Pakistan, Italy, and India CONCLUSIONS: We conclude that Proteus mirabilis colonises farmed Clarias gariepinus in Ogun State, Nigeria and the identified strain showed an evolutionary relationship with known pathogenic NCBI reference strains from other countries.


Assuntos
Peixes-Gato , Proteus mirabilis , Animais , Proteus mirabilis/genética , Peixes-Gato/genética , Nigéria , RNA Ribossômico 16S/genética , Bactérias/genética
5.
J Bacteriol ; 206(4): e0003124, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534115

RESUMO

A hallmark of Proteus mirabilis infection of the urinary tract is the formation of stones. The ability to induce urinary stone formation requires urease, a nickel metalloenzyme that hydrolyzes urea. This reaction produces ammonia as a byproduct, which can serve as a nitrogen source and weak base that raises the local pH. The resulting alkalinity induces the precipitation of ions to form stones. Transcriptional regulator UreR activates expression of urease genes in a urea-dependent manner. Thus, urease genes are highly expressed in the urinary tract where urea is abundant. Production of mature urease also requires the import of nickel into the cytoplasm and its incorporation into the urease apoenzyme. Urease accessory proteins primarily acquire nickel from one of two nickel transporters and facilitate incorporation of nickel to form mature urease. In this study, we performed a comprehensive RNA-seq to define the P. mirabilis urea-induced transcriptome as well as the UreR regulon. We identified UreR as the first defined regulator of nickel transport in P. mirabilis. We also offer evidence for the direct regulation of the Ynt nickel transporter by UreR. Using bioinformatics, we identified UreR-regulated urease loci in 15 Morganellaceae family species across three genera. Additionally, we located two mobilized UreR-regulated urease loci that also encode the ynt transporter, implying that UreR regulation of nickel transport is a conserved regulatory relationship. Our study demonstrates that UreR specifically regulates genes required to produce mature urease, an essential virulence factor for P. mirabilis uropathogenesis. IMPORTANCE: Catheter-associated urinary tract infections (CAUTIs) account for over 40% of acute nosocomial infections in the USA and generate $340 million in healthcare costs annually. A major causative agent of CAUTIs is Proteus mirabilis, an understudied Gram-negative pathogen noted for its ability to form urinary stones via the activity of urease. Urease mutants cannot induce stones and are attenuated in a murine UTI model, indicating this enzyme is essential to P. mirabilis pathogenesis. Transcriptional regulation of urease genes by UreR is well established; here, we expand the UreR regulon to include regulation of nickel import, a function required to produce mature urease. Furthermore, we reflect on the role of urea catalysis in P. mirabilis metabolism and provide evidence for its importance.


Assuntos
Infecções por Proteus , Infecções Urinárias , Animais , Camundongos , Proteus mirabilis/genética , Urease/metabolismo , Níquel/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Ureia/metabolismo
6.
Vet Med Sci ; 10(2): e1371, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38357843

RESUMO

BACKGROUND: Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE: This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS: A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS: All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS: The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.


Assuntos
Galinhas , Proteus mirabilis , Animais , Humanos , Proteus mirabilis/genética , Virulência/genética , Levofloxacino , Matadouros , África do Sul/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Ciprofloxacina
7.
Microbiol Res ; 282: 127633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364524

RESUMO

This study aims to deepen our understanding of the drug resistance and virulence characterization among gut bacteria in asymptomatic and diarrheal captive rhesus macaques (RMs). A total of 31 samples, including 8 asymptomatic RMs, 10 diarrheal RMs, and 1 dead RM, were collected from a breeding base in Sichuan, China, for bacterial isolation. As a result, Escherichia coli (n = 23), Klebsiella (n = 22), Proteus mirabilis (n = 10), Enterococcus (n = 10), Salmonella (n = 2), and Staphylococcus (n = 2) were isolated. All isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing, among which some E. coli, K. pneumoniae, and P. mirabilis were subjected to the Galleria mellonella and mice infection testing. The antimicrobial resistance rates of levofloxacin, enrofloxacin, and cefotaxime in diarrhea-associated isolates were higher than those of asymptomatic isolates. Consistent with the antimicrobial resistance phenotype, diarrheal isolates had a higher prevalence rate to qnrS1, blaTEM-1B and blaCTX-M-27 than asymptomatic isolates. Furthermore, compared with asymptomatic isolates, diarrheal isolates demonstrated a higher pathogenic potential against larvae and mice. Additionally, sequence types (STs) 14179-14181 in E. coli and ST 625 and ST 630-631 in Klebsiella aerogenes were firstly characterized. Our evidence underscores the considerable challenge posed by high rates of bacterial drug resistance in the effective treatment of diarrheal RMs.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Animais , Camundongos , Antibacterianos/farmacologia , Macaca mulatta , Proteus mirabilis/genética , Virulência , Farmacorresistência Bacteriana , Diarreia/veterinária , Testes de Sensibilidade Microbiana
8.
Microbiol Spectr ; 12(2): e0120923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38197656

RESUMO

Proteus mirabilis can transfer transposons, insertion sequences, and gene cassettes to the chromosomes of other hosts through SXT/R391 integrative and conjugative elements (ICEs), significantly increasing the possibility of antibiotic resistance gene (ARG) evolution and expanding the risk of ARGs transmission among bacteria. A total of 103 strains of P. mirabilis were isolated from 25 farms in China from 2018 to 2020. The positive detection rate of SXT/R391 ICEs was 25.2% (26/103). All SXT/R391 ICEs positive P. mirabilis exhibited a high level of overall drug resistance. Conjugation experiments showed that all 26 SXT/R391 ICEs could efficiently transfer to Escherichia coli EC600 with a frequency of 2.0 × 10-7 to 6.0 × 10-5. The acquired ARGs, genetic structures, homology relationships, and conservation sequences of 26 (19 different subtypes) SXT/R391 ICEs were investigated by high-throughput sequencing, whole-genome typing, and phylogenetic tree construction. ICEPmiChnHBRJC2 carries erm (42), which have never been found within an SXT/R391 ICE in P. mirabilis, and ICEPmiChnSC1111 carries 19 ARGs, including clinically important cfr, blaCTX-M-65, and aac(6')-Ib-cr, making it the ICE with the most ARGs reported to date. Through genetic stability, growth curve, and competition experiments, it was found that the transconjugant of ICEPmiChnSCNNC12 did not have a significant fitness cost on the recipient bacterium EC600 and may have a higher risk of transmission and dissemination. Although the transconjugant of ICEPmiChnSCSZC20 had a relatively obvious fitness cost on EC600, long-term resistance selection pressure may improve bacterial fitness through compensatory adaptation, providing scientific evidence for risk assessment of horizontal transfer and dissemination of SXT/R391 ICEs in P. mirabilis.IMPORTANCEThe spread of antibiotic resistance genes (ARGs) is a major public health concern. The study investigated the prevalence and genetic diversity of integrative and conjugative elements (ICEs) in Proteus mirabilis, which can transfer ARGs to other hosts. The study found that all of the P. mirabilis strains carrying ICEs exhibited a high level of drug resistance and a higher risk of transmission and dissemination of ARGs. The analysis of novel multidrug-resistant ICEs highlighted the potential for the evolution and spread of novel resistance mechanisms. These findings emphasize the importance of monitoring the spread of ICEs carrying ARGs and the urgent need for effective strategies to combat antibiotic resistance. Understanding the genetic diversity and potential for transmission of ARGs among bacteria is crucial for developing targeted interventions to mitigate the threat of antibiotic resistance.


Assuntos
Conjugação Genética , Proteus mirabilis , Proteus mirabilis/genética , Filogenia , Resistência a Múltiplos Medicamentos , Elementos de DNA Transponíveis , Antibacterianos/farmacologia , Escherichia coli/genética , Medição de Risco
9.
Int J Food Microbiol ; 412: 110570, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38219343

RESUMO

Proteus mirabilis is an opportunistic pathogen linked to human urinary tract infections, and is potentially present as a foodborne pathogen within poultry products, including broiler chickens. This report outlines the inhibitory impacts of protocatechuic acid (PCA) on P. mirabilis isolated from a broiler slaughterhouse in China as well as its biofilm. This investigation encompasses assays related to motility and adhesion, bacterial metabolic activity, extracellular polymer (EPS) production, and scavenging capacity. The findings demonstrated that PCA reduced biofilm formation by 61 %. Transcriptomics findings identified that PCA limited the expression of genes like PstS that promote adhesin formation, rbsA and RcsB that alter bacterial chemotaxis, lipopolysaccharide synthesis genes LpxA and EptB, and cell wall synthesis genes MurF and MrdA, and affects the Regulator of Capsule Synthesis (RCS) two-component modulation system. Weighted gene co-expression network analysis (WGCNA) was conducted to identify the core genes. Furthermore, the binding sites of PCA to cytochrome oxidases cydA and cydB, two subunits of ATP synthase atpI and atpH, and ftsZ, which regulate bacterial division, were predicted via molecular docking. Metabolome analysis determined that PCA critically influenced coenzyme A biosynthesis, nucleotide metabolism, alanine, aspartic acid, and glutamate metabolic pathways of P. mirabilis. Therefore, PCA impacts metabolism within bacteria via various pathways, limiting the levels of extracellular polymer and bacterial viability to hinder biofilm formation. Additionally, we prepared an antibacterial plastic film containing protocatechuic acid using PVA as the monomer and CNC as the reinforcing agent. We examined the mechanical and antibacterial properties of this film. When used to wrap chicken, it reduced the total number of colonies, slowed the deterioration of chicken, and maintained the freshness of chicken. In conclusion, the information outlined in this study complements our comprehension of P. mirabilis inhibition by PCA and provides clues for the reduction of foodborne infections associated with P. mirabilis.


Assuntos
Genes Essenciais , Hidroxibenzoatos , Proteus mirabilis , Animais , Humanos , Proteus mirabilis/genética , Simulação de Acoplamento Molecular , Galinhas/genética , Antibacterianos/farmacologia , Biofilmes , Polímeros
10.
Artigo em Inglês | MEDLINE | ID: mdl-38056223

RESUMO

Recently, populations of Chinese spiny frogs (Quasipaa spinosa), an important amphibian species in China, have decreased, mainly due to a disease caused by the gram-negative bacteria Proteus mirabilis. To elucidate the immune response of the frogs, this study aimed to identify novel candidate genes functionally associated with P. mirabilis infection-induced "rotting skin" disease. Chinese spiny frogs were infected with P. mirabilis, and the skin transcriptome was sequenced using the MGISEQ-2000 platform. A total of 233,965 unigenes were obtained by sequencing, of which 27.23 % were known genes. Screening of differentially expressed genes (DEGs) indicated 210 unigenes differentially expressed after P. mirabilis infection, of which 132 unigenes were up-regulated, and 78 unigenes were down-regulated. Using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, DEGs were identified as enriched in signal pathways, such as oxidative phosphorylation, apoptosis, and the Janus kinase-signal transducer and activator of transcription pathway. Of the DEGs, there was a significant upregulation of the colony stimulating factor 2 receptor beta common subunit, interleukin 2 receptor subunit gamma, cathelicidin antimicrobial peptide, interleukin-17 receptor E, receptor-interacting serine/threonine-protein kinase 3, and pulmonary surfactant-associated protein D immune genes following P. mirabilis infection. Conversely, scavenger receptor cysteine-rich domain-containing group B protein, tumor protein p53 inducible nuclear protein 2, suppressor of cytokine signaling 2, and metalloreductase STEAP3 were significantly downregulated. In conclusion, the first skin transcriptome database of Chinese spiny frogs was established, and several immune genes were identified to elucidate the pathogenic mechanism of "skin rot" in Chinese spiny frogs and other cultured frogs.


Assuntos
Proteus mirabilis , Dermatopatias , Animais , Proteus mirabilis/genética , Perfilação da Expressão Gênica , Transcriptoma , Anuros , Ranidae/genética
12.
Eur J Clin Microbiol Infect Dis ; 42(10): 1275-1280, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688673

RESUMO

To investigate the acquisition and relatedness of New Delhi Metallo-beta-lactamase among multiple separate species from one patient. Five isolates from three species (Pseudomonas aeruginosa; Pa, Acinetobacter baumannii; Ab and Proteus mirabilis; Pm) suspected of harbouring a carbapenemase were investigated by phenotype (antimicrobial susceptibilities) and whole genome sequencing. Epidemiological data was collected on this patient. Three different carbapenemase genes were detected; blaVIM-1 (Pa; ST773), blaOXA-23 (Ab, ST499) and blaNDM-1 identified in all isolates. NDM regions were found chromosomally integrated in all isolates. Data showed no evidence of NDM-1 transfer within this patient suggesting the enzyme was acquired in three separate events.


Assuntos
Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Pacientes , Fenótipo , Proteus mirabilis/genética
13.
Front Cell Infect Microbiol ; 13: 1229194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637463

RESUMO

Objective: Proteus mirabilis is the one of most important pathogens of catheter-associated urinary tract infections. The emergence of multidrug-resistant (MDR) P. mirabilis severely limits antibiotic treatments, which poses a public health risk. This study aims to investigate the resistance characteristics and virulence potential for a collection of P. mirabilis clinical isolates. Methods and results: Antibiotic susceptibility testing revealed fourteen MDR strains, which showed high resistance to most ß-lactams and trimethoprim/sulfamethoxazole, and a lesser extent to quinolones. All the MDR strains were sensitive to carbapenems (except imipenem), ceftazidime, and amikacin, and most of them were also sensitive to aminoglycosides. The obtained MDR isolates were sequenced using an Illumina HiSeq. The core genome-based phylogenetic tree reveals the high genetic diversity of these MDR P. mirabilis isolates and highlights the possibility of clonal spread of them across China. Mobile genetic elements SXT/R391 ICEs were commonly (10/14) detected in these MDR P. mirabilis strains, whereas the presence of resistance island PmGRI1 and plasmid was sporadic. All ICEs except for ICEPmiChn31006 carried abundant antimicrobial resistance genes (ARGs) in the HS4 region, including the extended-spectrum ß-lactamase (ESBL) gene blaCTX-M-65. ICEPmiChn31006 contained the sole ARG blaCMY-2 and was nearly identical to the global epidemic ICEPmiJpn1. The findings highlight the important roles of ICEs in mediating the spread of ARGs in P. mirabilis strains. Additionally, these MDR P. mirabilis strains have great virulence potential as they exhibited significant virulence-related phenotypes including strong crystalline biofilm, hemolysis, urease production, and robust swarming motility, and harbored abundant virulence genes. Conclusion: In conclusion, the prevalence of MDR P. mirabilis with high virulence potential poses an urgent threat to public health. Intensive monitoring is needed to reduce the incidence of infections by MDR P. mirabilis.


Assuntos
Antibacterianos , Proteus mirabilis , Filogenia , Proteus mirabilis/genética , Virulência/genética , Antibacterianos/farmacologia , Amicacina , Caspase 1
14.
PLoS One ; 18(8): e0289703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561682

RESUMO

Proteus mirabilis is an opportunistic pathogen associated with a variety of human infections, including urinary tract infections. The prevalence of P. mirabilis in foods of animal origin and in the manure by-products created in animal production is not well documented. Further, the prevalence and persistence of extended-spectrum cephalosporin (ESC) resistant P. mirabilis is largely unknown. In this study, we characterized ESC-resistant P. mirabilis recovered from various stages of dairy manure anaerobic digestion. Isolates were screened by PCR for blaCTX-M, blaCMY and blaSHV, and antimicrobial susceptibility testing was performed. Fifty-six P. mirabilis carrying CTX-M were sequenced with short and long read sequencing technologies, and the assembled chromosomes and plasmids were compared. ESC-resistant Proteus was found in four of the six manure digesters, an indication that not all digesters were colonized with resistant strains. Both CTX-M-1 and CTX-M-15 plasmids were found in P. mirabilis isolates. Transfer of plasmid DNA by conjugation was also explored, with ESC-resistance plasmids able to transfer to Escherichia coli at high frequency. We concluded that P. mirabilis can harbour and transfer ESC-resistance genes and plasmids, and may be an overlooked reservoir of antimicrobial resistance.


Assuntos
Anti-Infecciosos , Proteus mirabilis , Animais , Bovinos , Humanos , Proteus mirabilis/genética , Esterco , Anaerobiose , Cefalosporinas , Escherichia coli/genética , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos/farmacologia
15.
BMC Microbiol ; 23(1): 215, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553593

RESUMO

Proteus mirabilis, a naturally resistant zoonotic bacterium belonging to the Enterobacteriaceae family, has exhibited an alarming increase in drug resistance. Consequently, there is an urgent need to explore alternative antimicrobial agents. Bacteriophages, viruses that selectively target bacteria, are abundant in the natural environment and have demonstrated potential as a promising alternative to antibiotics. In this study, we successfully isolated four strains of Proteus mirabilis phages from sewage obtained from a chicken farm in Sichuan, China. Subsequently, we characterized one of the most potent lytic phages, Q29, by examining its biological and genomic features. Comparative genomic analysis revealed the functional genes and phylogenetic evolution of Q29 phages. Our findings revealed that Proteus mirabilis bacteriophage Q29 possesses an icosahedral symmetrical head with a diameter of 95 nm and a tail length of 240 nm. Moreover, phage Q29 exhibited stability within a temperature range of 37 ℃ to 55 ℃ and under pH conditions ranging from 4 to 9. The optimal multiplicity of infection (MOI) for this phage was determined to be 0.001. Furthermore, the one-step growth curve results indicated an incubation period of approximately 15 min, an outbreak period of approximately 35 min, and an average cleavage quantity of approximately 60 plaque-forming units (PFU) per cell. The genome of phage Q29 was found to have a total length of 58,664 base pairs and encoded 335 open reading frames (ORFs) without carrying any antibiotic resistance genes. Additionally, genetic evolutionary analysis classified phage Q29 within the family Caudalidae and the genus Myotail. This study provides valuable research material for further development of Proteus mirabilis bacteriophage biologics as promising alternatives to antibiotics, particularly in light of the growing challenge of antibiotic resistance posed by this bacterium.


Assuntos
Bacteriófagos , Proteus mirabilis/genética , Filogenia , Genômica , Antibacterianos/farmacologia , Genoma Viral
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(5): 859-867, 2023 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-37313829

RESUMO

OBJECTIVE: To construct a modABC gene knockout strain of Proteus mirabilis and explore the effect of modABC gene deletion on biological characteristics of Proteus mirabilis. METHODS: Fusion PCR was used to obtain the fusion gene of modABC and the kanamycin-resistant gene Kn, which was ligated with the suicide vector pCVD442 and transduced into Proteus mirabilis. The modABC gene knockout strain of Proteus mirabilis was obtained after homologous recombination with the suicide vector. PCR and Sanger sequencing were used to identify genomic deletion of modABC gene in the genetically modified strain. The concentration of molybdate in the wild-type and gene knockout strains was determined using inductively coupled plasma mass spectrometry (ICP-MS), and their survival ability in LB medium was compared under both aerobic and anaerobic conditions. RESULTS: PCR and sanger sequencing confirmed genomic deletion of modABC gene in the obtained Proteus mirabilis strain. The concentration of intracellular molybdenum in the modABC gene knockout strain was 1.22 mg/kg, significantly lower than that in the wild-type strain (1.46 mg/kg, P < 0.001). Under the aerobic condition, the modABC gene knockout strain grown in LB medium showed no significant changes in survival ability compared with the wild-type strain, but its proliferation rate decreased significantly under the anaerobic condition and also when cultured in nitrate-containing LB medium under anaerobic condition. CONCLUSION: Homologous recombination with the suicide vector can be used for modABC gene knockout in Proteus mirabilis. modABC gene participates in molybdate uptake and is associated with anaerobic growth of Proteus mirabilis in the presence of nitrate.


Assuntos
Nitratos , Proteus mirabilis , Humanos , Deleção de Genes , Proteus mirabilis/genética , Técnicas de Inativação de Genes
17.
mSystems ; 8(4): e0015923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37341494

RESUMO

Proteus mirabilis is a Gram-negative bacterium recognized for its unique swarming motility and urease activity. A previous proteomic report on four strains hypothesized that, unlike other Gram-negative bacteria, P. mirabilis may not exhibit significant intraspecies variation in gene content. However, there has not been a comprehensive analysis of large numbers of P. mirabilis genomes from various sources to support or refute this hypothesis. We performed comparative genomic analysis on 2,060 Proteus genomes. We sequenced the genomes of 893 isolates recovered from clinical specimens from three large US academic medical centers, combined with 1,006 genomes from NCBI Assembly and 161 genomes assembled from Illumina reads in the public domain. We used average nucleotide identity (ANI) to delineate species and subspecies, core genome phylogenetic analysis to identify clusters of highly related P. mirabilis genomes, and pan-genome annotation to identify genes of interest not present in the model P. mirabilis strain HI4320. Within our cohort, Proteus is composed of 10 named species and 5 uncharacterized genomospecies. P. mirabilis can be subdivided into three subspecies; subspecies 1 represented 96.7% (1,822/1,883) of all genomes. The P. mirabilis pan-genome includes 15,399 genes outside of HI4320, and 34.3% (5,282/15,399) of these genes have no putative assigned function. Subspecies 1 is composed of several highly related clonal groups. Prophages and gene clusters encoding putatively extracellular-facing proteins are associated with clonal groups. Uncharacterized genes not present in the model strain P. mirabilis HI4320 but with homology to known virulence-associated operons can be identified within the pan-genome. IMPORTANCE Gram-negative bacteria use a variety of extracellular facing factors to interact with eukaryotic hosts. Due to intraspecies genetic variability, these factors may not be present in the model strain for a given organism, potentially providing incomplete understanding of host-microbial interactions. In contrast to previous reports on P. mirabilis, but similar to other Gram-negative bacteria, P. mirabilis has a mosaic genome with a linkage between phylogenetic position and accessory genome content. P. mirabilis encodes a variety of genes that may impact host-microbe dynamics beyond what is represented in the model strain HI4320. The diverse, whole-genome characterized strain bank from this work can be used in conjunction with reverse genetic and infection models to better understand the impact of accessory genome content on bacterial physiology and pathogenesis of infection.


Assuntos
Proteômica , Proteus mirabilis , Humanos , Proteus mirabilis/genética , Filogenia , Virulência/genética , Fatores de Virulência/genética
18.
J Infect Public Health ; 16(7): 1033-1036, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182289

RESUMO

BACKGROUND: Carbapenemase is the predominant enzyme in the mechanism leading to Enterobacterales resistance to carbapenems, and the rapid spread of the blaKPC gene is a major public health concern. Here, we describe a carbapenem-resistant Proteus mirabilis strain XH983, which harbored a blaKPC-2-producing IncN plasmid, isolated from a bloodstream infection. METHODS: Whole-genome sequencing and bioinformatics analysis were performed to assess the genetic environment of P. mirabilis XH983. Conjugation and transfer experiments were performed and the corresponding strains were confirmed by antimicrobial susceptibility testing. Phylogenetic and comparative genomic analysis were performed to explore the characteristics of carbapenem-resistant P. mirabilis isolates worldwide. RESULTS: P. mirabilis XH983 was isolated from the blood of a patient in Hangzhou, China. The genome of XH983 contained one 4128,916 bp circular chromosome and one 24,225 bp IncN plasmid harboring blaKPC-2. P. mirabilis XH983 had multiple resistance genes, conferring resistance to aminoglycosides [aph(3')-Ia, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, aadA5, aadA1], ß-lactams (blaKPC-2, blaTEM-1B), phenicol (cat, catA1), sulphonamide/trimethoprim (drfA1, drfA17, sul1, sul2) and tetracycline [tet(J)]. The phylogenetic tree showed that XH983 was present in a cluster of 30 isolates, all of which carried blaKPC-2 and most of them came from the same hospital as XH983, indicating the clonal spread of the cluster. CONCLUSION: We characterized carbapenem-resistant P. mirabilis clinical isolate XH983. The genome sequence of P. mirabilis XH983 provides information about resistance mechanisms of P. mirabilis carrying the blaKPC-2 plasmid and the potential spread of blaKPC-2.


Assuntos
Proteus mirabilis , Sepse , Humanos , Proteus mirabilis/genética , Filogenia , Plasmídeos/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Carbapenêmicos , China , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
19.
Mol Biol Rep ; 50(7): 5817-5826, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37219671

RESUMO

BACKGROUND: Proteus mirabilis is a Gram-negative bacteria most noted for its involvement with catheter-associated urinary tract infections. It is also known for its multicellular migration over solid surfaces, referred to as 'swarming motility'. Here we analyzed the genomic sequences of two P. mirabilis isolates, designated K38 and K39, which exhibit varied swarming ability. METHODS AND RESULTS: The isolates genomes were sequenced using Illumina NextSeq sequencer, resulting in about 3.94 Mbp, with a GC content of 38.6%, genomes. Genomes were subjected for in silico comparative investigation. We revealed that, despite a difference in swarming motility, the isolates showed high genomic relatedness (up to 100% ANI similarity), suggesting that one of the isolates probably originated from the other. CONCLUSIONS: The genomic sequences will allow us to investigate the mechanism driving this intriguing phenotypic heterogeneity between closely related P. mirabilis isolates. Phenotypic heterogeneity is an adaptive strategy of bacterial cells to several environmental pressures. It is also an important factor related to their pathogenesis. Therefore, the availability of these genomic sequences will facilitate studies that focus on the host-pathogen interactions during catheter-associated urinary tract infections.


Assuntos
Infecções por Proteus , Infecções Urinárias , Humanos , Proteus mirabilis/genética , Infecções Urinárias/genética , Infecções Urinárias/microbiologia , Células Clonais , Infecções por Proteus/microbiologia
20.
Poult Sci ; 102(6): 102640, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068352

RESUMO

This study was designed to depict prevalence and antimicrobial resistance characteristics of Proteus mirabilis (P. mirabilis) strains in 4 chicken farms and to probe the transfer mechanism of resistance genes. A total of 187 P. mirabilis isolates were isolated from 4 chicken farms. The susceptibility testing of these isolates to 14 antimicrobials showed that the multidrug resistance (MDR) rate was as high as 100%. The ß-lactamase resistance genes blaOXA-1, blaCTX-M-1G, blaCTX-M-9G and colistin resistance gene mcr-1 were highly carried in the P. mirabilis isolates. An MDR strain W47 was selected for whole genome sequencing (WGS) and conjugation experiment. The results showed that W47 carried 23 resistance genes and 64 virulence genes, and an SXT/R391 integrated conjugative elements (ICEs) named ICEPmiChn5 carrying 17 genes was identified in chromosome. ICEPmiChn5 was able to be excised from the chromosome of W47 forming a circular intermediate, but repeated conjugation experiments were unsuccessful. Among 187 P. mirabilis isolates, 144 (77.01%, 144/187) isolates carried ICEPmiChn5-like ICEs, suggesting that ICEs may be the major vector for the transmission of resistance genes among MDR chicken P. mirabilis strains in this study. The findings were conducive to insight into the resistance mechanism of chicken P. mirabilis strains and provide a theoretical basis for the use of antibiotics for the treatment of MDR P. mirabilis infections in veterinary clinic.


Assuntos
Galinhas , Proteus mirabilis , Animais , Proteus mirabilis/genética , Fazendas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...