Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(6): e0155638, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27348423

RESUMO

In flowering plants, self-incompatibility is an effective genetic mechanism that prevents self-fertilization. Most Prunus tree species exhibit a homomorphic gametophytic self-incompatibility (GSI) system, in which the pollen phenotype is encoded by its own haploid genome. To date, no identification of S-alleles had been done in Prunus africana, the only member of the genus in Africa. To identify S-RNase alleles and hence determine S-genotypes in African cherry (Prunus africana) from Mabira Forest Reserve, Uganda, primers flanking the first and second intron were designed and these amplified two bands in most individuals. PCR bands on agarose indicated 26 and 8 different S-alleles for second and first intron respectively. Partial or full sequences were obtained for all these fragments. Comparison with published S-RNase data indicated that the amplified products were S-RNase alleles with very high interspecies homology despite the high intraspecific variation. Against expectations for a locus under balancing selection, frequency and spatial distribution of the alleles in a study plot was not random. Implications of the results to breeding efforts in the species are discussed, and mating experiments are strongly suggested to finally prove the functionality of SI in P. africana.


Assuntos
Evolução Molecular , Genótipo , Prunus africana/genética , Autoincompatibilidade em Angiospermas , Genes de Plantas , Variação Genética , Íntrons , Prunus africana/fisiologia
2.
Heredity (Edinb) ; 113(5): 401-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24849171

RESUMO

Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations.


Assuntos
Fluxo Gênico , Genética Populacional , Prunus africana/genética , DNA de Plantas/genética , Florestas , Variação Genética , Quênia , Repetições de Microssatélites , Dispersão de Sementes , Plântula/genética , Sementes/genética , Análise Espacial , Árvores/genética
3.
PLoS One ; 8(3): e59987, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544118

RESUMO

Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set of georeferenced molecular marker data (chloroplast and nuclear microsatellites) from 32 populations in 9 African countries. Two approaches for the selection of priority populations for conservation were used, differing in the way they optimize representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (S1) was aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions, the second method (S2) at optimizing representativeness of the genetic diversity found throughout the species' range. Populations in East African countries (especially Kenya and Tanzania) were found to be of great conservation value, as suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate change, and whether they are located within the boundaries of protected areas. The range of the species has been affected by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the regional and national scale is recommended, in order to strengthen P. africana conservation efforts.


Assuntos
Clima , Conservação dos Recursos Naturais , Prunus africana/genética , Análise Espacial , Estatística como Assunto , África , Alelos , Análise por Conglomerados , Variação Genética , Geografia , Haplótipos/genética , Modelos Genéticos
4.
Ann Bot ; 111(1): 47-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23250908

RESUMO

BACKGROUND AND AIMS: Afromontane forest ecosystems share a high similarity of plant and animal biodiversity, although they occur mainly on isolated mountain massifs throughout the continent. This resemblance has long provoked questions on former wider distribution of Afromontane forests. In this study Prunus africana (one of the character trees of Afromontane forests) is used as a model for understanding the biogeography of this vegetation zone. METHODS: Thirty natural populations from nine African countries covering a large part of Afromontane regions were analysed using six nuclear microsatellites. Standard population genetic analysis as well as Bayesian and maximum likelihood models were used to infer genetic diversity, population differentiation, barriers to gene flow, and recent and all migration among populations. KEY RESULTS: Prunus africana exhibits strong divergence among five main Afromontane regions: West Africa, East Africa west of the Eastern Rift Valley (ERV), East Africa east of the ERV, southern Africa and Madagascar. The strongest divergence was evident between Madagascar and continental Africa. Populations from West Africa showed high similarity with East African populations west of the ERV, whereas populations east of the ERV are closely related to populations of southern Africa, respectively. CONCLUSIONS: The observed patterns indicate divergent population history across the continent most likely associated to Pleistocene changes in climatic conditions. The high genetic similarity between populations of West Africa with population of East Africa west of the ERV is in agreement with faunistic and floristic patterns and provides further evidence for a historical migration route. Contrasting estimates of recent and historical gene flow indicate a shift of the main barrier to gene flow from the Lake Victoria basin to the ERV, highlighting the dynamic environmental and evolutionary history of the region.


Assuntos
Núcleo Celular/genética , Clima , Ecossistema , Variação Genética , Prunus africana/genética , África , Alelos , Fluxo Gênico/genética , Genética Populacional , Geografia , Análise de Componente Principal
5.
Mol Ecol ; 20(1): 165-78, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21087325

RESUMO

Scattered populations of the same tree species in montane forests through Africa have led to speculations on the origins of distributions. Here, we inferred the colonization history of the Afromontane tree Prunus africana using seven chloroplast DNA loci to study 582 individuals from 32 populations sampled in a range-wide survey from across Africa, revealing 22 haplotypes. The predominant haplotype, HT1a, occurred in 13 populations of eastern and southern Africa, while a second common haplotype, HT1m, occurred in populations of western Uganda and western Africa. The high differentiation observed between populations in East Africa was unexpected, with stands in western Uganda belonging with the western African lineage. High genetic differentiation among populations revealed using ordered alleles (N(ST) = 0.840) compared with unordered alleles (G(ST) = 0.735), indicated a clear phylogeographic pattern. Bayesian coalescence modelling suggested that 'east' and 'west' African types likely split early during southward migration of the species, while further more recent splitting events occurred among populations in the East of the continent. The high genetic similarity found between western Uganda and west African populations indicates that a former Afromontane migration corridor may have existed through Equatorial Africa.


Assuntos
Filogeografia , Prunus africana/classificação , Prunus africana/genética , África Oriental , África Ocidental , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA