Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Nutr ESPEN ; 54: 12-22, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963852

RESUMO

BACKGROUND: Asian Indians show rapid conversion from prediabetes to type 2 diabetes (T2D). Novel dietary strategies are needed to arrest this progression, by targeting postprandial hyperglycaemia (PPHG). DESIGN: We conducted a free-living randomized controlled open-label parallel arm study to evaluate the effect of a premeal load of almonds (20 g) 30 min before major meals on anthropometric, glycaemic, and metabolic parameters over 3 months. Sixty-six participants with prediabetes in the age range of 18-60 yrs were recruited. The study was registered at clinicaltrials.gov (registration no. NCT04769726). RESULTS: Thirty participants in each arm completed the study. As per 'intention-to-treat' analysis, overall additional mean reductions were statistically significant for body weight, BMI, waist circumference (WC), subscapular and suprailiac skinfolds, and improved handgrip strength (Kg) (p < 0·001 for all) in the treatment arm vs. the control arm (after multiple adjustments). In the blood parameters, the additional mean reduction in the treatment arm vs. control arm was statistically significant for fasting and post-75 g oral glucose-load blood glucose, postprandial insulin, HOMA-IR, HbA1c, proinsulin, total cholesterol, and very low-density lipoprotein cholesterol (p < 0·001 for all). Most importantly, we observed a reversal to normoglycemic state (fasting blood glucose and 2 h post-OGTT glucose levels) in 23.3% (7 out of 30) of participants in the treatment arm which is comparable to that seen with Acarbose treatment (25%). CONCLUSION: Incorporation of 20 g of almonds, 30 min before each major meal leads to significant improvement in body weight, WC, glycemia (particularly PPHG), and insulin resistance and shows potential for reversal of prediabetes to normal glucose regulation over 3 months.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Estado Pré-Diabético , Prunus dulcis , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Glicemia/metabolismo , Prunus dulcis/metabolismo , Adiposidade , Força da Mão , Obesidade , Peso Corporal , Colesterol
2.
Eur J Clin Nutr ; 77(5): 586-595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732571

RESUMO

BACKGROUND: Rapid conversion from prediabetes to diabetes and frequent postprandial hyperglycemia (PPHG) is seen in Asian Indians. These should be the target of dietary strategies. OBJECTIVES: We hypothesized that dietary intervention of preloading major meals with almonds in participants with prediabetes will decrease overall glycemia and PPHG. DESIGN: The study included two phases: (1) an oral glucose tolerance test (OGTT)-based crossover randomized control study, the effect of a single premeal almond load (20 g) given before OGTT was evaluated (n = 60, 30 each period). (2) The continuous glucose monitoring system (CGMS)-based study for 3 days including premeal almond load before three major meals was a free-living, open-labeled, crossover randomized control trial, where control and premeal almond load diets were compared for glycaemic control (n = 60, 30 in each period). The study was registered at clinicaltrials.gov (registration no. NCT04769726). RESULTS: In the OGTT-based study phase, the overall AUC for blood glucose, serum insulin, C-peptide, and plasma glucagon post-75 g oral glucose load was significantly lower for treatment vs. control diet (p < 0.001). Specifically, with the former diet, PPHG was significantly lower (18.05% in AUC on OGTT, 24.8% at 1-h, 28.9% at 2-h post OGTT, and 10.07% during CGMS). The CGMS data showed that premeal almond load significantly improved 24-glucose variability; SD of mean glucose concentration and mean of daily differences. Daily glycaemic control improved significantly as per the following: mean 24-h blood glucose concentration (M), time spent above 7.8 mmol/L of blood glucose, together with the corresponding AUC values. Premeal almond load significantly decreased following: overall hyperglycemia (glucose AUC), PPHG, peak 24-h glycaemia, and minimum glucose level during night. CONCLUSION: Incorporation of 20 g of almonds, 30 min before each major meal led to a significant decrease in PPHG (as revealed in OGTT-based study phase) and also improved insulin, C-peptide, glucagon levels, and improved glucose variability and glycemic parameters on CGMS in participants with prediabetes. CLINICAL TRIAL REGISTRY: The study was registered at clinicaltrials.gov (registration no. NCT04769726).


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Estado Pré-Diabético , Prunus dulcis , Humanos , Teste de Tolerância a Glucose , Glucose/metabolismo , Glicemia/metabolismo , Prunus dulcis/metabolismo , Glucagon , Estudos Cross-Over , Peptídeo C , Automonitorização da Glicemia , Insulina , Período Pós-Prandial
3.
Nutr Neurosci ; 26(9): 888-900, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965474

RESUMO

Background: Based on evidence there are accepted links among early nutrition, epigenetic processes, and cognitive performance. Almond as a nutritious food could exert neuroprotective effects and improve anxiety, learning, and memory.Methods: In the current study, female rats were fed with a diet containing 5% (w/w) almonds during the mating period (two days) and gestation period (21 consecutive days). Then, the effect of the almond diet on short-term memory (Y maze), anxiety (elevated plus maze), and stress adaptation (forced swimming test) were investigated in the adult male offspring. The hippocampus (HIP), prefrontal cortex (PFC), and amygdala (AMY) of offspring were collected, and the level of cyclic AMP response element-binding proteins (CREB), brain-derived neurotrophic factor (BDNF) was assessed by western blotting. Also, Monoamine oxidases (MAO)-A and B activity were evaluated via enzymatic assays.Results: Our results indicated that prenatal almond consumption improved memory, made a modest reduction in anxiety-like behavior, and increased stress adaptation in adult male offspring. Also, molecular assessments showed an increased level of CREB phosphorylation and BDNF in the HIP and PFC of the almond group, while the activity of MAO-A and MAO-B was inhibited by almond consumption in mentioned areas.Discussion: These findings introduce almonds as a beneficial diet during pregnancy, for improving short-term memory, stress adaptation, and cognitive performance in adult offspring.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Prunus dulcis , Gravidez , Ratos , Masculino , Feminino , Animais , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Prunus dulcis/metabolismo , Aprendizagem em Labirinto , Memória de Curto Prazo , Hipocampo/metabolismo , Cognição , Efeitos Tardios da Exposição Pré-Natal/psicologia
4.
Genes (Basel) ; 13(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36292648

RESUMO

The MADS-box gene family is an important family of transcription factors involved in multiple processes, such as plant growth and development, stress, and in particular, flowering time and floral organ development. Almonds are the best-selling nuts in the international fruit trade, accounting for more than 50% of the world's dried fruit trade, and one of the main economic fruit trees in Kashgar, Xinjiang. In addition, almonds contain a variety of nutrients, such as protein and dietary fiber, which can supplement nutrients for people. They also have the functions of nourishing the yin and kidneys, improving eyesight, and strengthening the brain, and they can be applied to various diseases. However, there is no report on the MADS-box gene family in almond (Prunus dulcis). In this study, a total of 67 PdMADS genes distributed across 8 chromosomes were identified from the genome of almond 'Wanfeng'. The PdMADS members were divided into five subgroups-Mα, Mß, Mγ, Mδ, and MIKC-and the members in each subgroup had conserved motif types and exon and intron numbers. The number of exons of PdMADS members ranged from 1 to 20, and the number of introns ranged from 0 to 19. The number of exons and introns of different subfamily members varied greatly. The results of gene duplication analysis showed that the PdMADS members had 16 pairs of segmental duplications and 9 pairs of tandem duplications, so we further explored the relationship between the MADS-box gene members in almond and those in Arabidopsis thaliana, Oryza sativa, Malus domestica, and Prunus persica based on colinear genes and evolutionary selection pressure. The results of the cis-acting elements showed that the PdMADS members were extensively involved in a variety of processes, such as almond growth and development, hormone regulation, and stress response. In addition, the expression patterns of PdMADS members across six floral transcriptome samples from two almond cultivars, 'Wanfeng' and 'Nonpareil', had significant expression differences. Subsequently, the fluorescence quantitative expression levels of the 15 PdMADS genes were highly similar to the transcriptome expression patterns, and the gene expression levels increased in the samples at different flowering stages, indicating that the two almond cultivars expressed different PdMADS genes during the flowering process. It is worth noting that the difference in flowering time between 'Wanfeng' and 'Nonpareil' may be caused by the different expression activities of PdMADS47 and PdMADS16 during the dormancy period, resulting in different processes of vernalization. We identified a total of 13,515 target genes in the genome based on the MIKC DNA-binding sites. The GO and KEGG enrichment results showed that these target genes play important roles in protein function and multiple pathways. In summary, we conducted bioinformatics and expression pattern studies on the PdMADS gene family and investigated six flowering samples from two almond cultivars, the early-flowering 'Wanfeng' and late-flowering 'Nonpareil', for quantitative expression level identification. These findings lay a foundation for future in-depth studies on the mechanism of PdMADS gene regulation during flowering in different almond cultivars.


Assuntos
Arabidopsis , Prunus dulcis , Humanos , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Prunus dulcis/genética , Prunus dulcis/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Arabidopsis/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fibras na Dieta , Hormônios
5.
Am J Clin Nutr ; 115(6): 1626-1636, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179193

RESUMO

BACKGROUND: Epidemiologic observations suggest increased potato consumption correlates with weight gain, adiposity, and diabetes risk, whereas nut consumption is associated with weight control and metabolic health. Randomized controlled trial (RCT) data indicate humans respond to changes in energy intake in single dietary components and compensate for extra energy consumed. OBJECTIVES: We completed an RCT testing whether increased daily potato consumption influences energy balance [specifically, fat mass (FM)] compared with calorie-matched almond consumption. METHODS: A 30-d RCT of 180 adults prescribed calorie-matched (300 kcal/d, n = 60 participants/group) than consumed 1 of the following: 1) almonds (almond group), 2) French fries (potato group), or 3) French fries with herb/spices mix (potato + herb/spices group). Baseline and 30-d FM were measured by DXA (primary outcome), with secondary outcomes including body weight and carbohydrate metabolism markers [glycated hemoglobin (HbA1c), fasting blood glucose and insulin, HOMA-IR)]. A subset of 5 participants/group participated in a postprandial meal-based tolerance test. RESULTS: A total of 180 participants were randomly assigned [gender: 67.8% female; mean ± SD age: 30.4 ± 8.7 y; BMI (in kg/m2): 26.1 ± 4.2; and weight: 75.6 ± 15.4 kg], with 12 dropouts and 3 terminations. No significantly different FM changes were observed between almond and potato consumption [combined ± herb/spices; mean ± SE almond: 230.87 ± 114.01 g; potato: 123.73 ± 86.09 g; P = 0.443], fasting glucose (P = 0.985), insulin (P = 0.082), HOMA-IR (P = 0.080), or HbA1c (P = 0.269). Body weight change was not significantly different in the potato groups combined compared with the almond group (P = 0.116), but was significantly different among the 3 groups (P = 0.014; almond: 0.49 ± 0.20 kg; potato: -0.24 ± 0.20 kg; potato + herb/spices: 0.47 ± 0.21 kg). In meal tests, significantly lower post-prandial glucose and insulin responses to almonds compared with potatoes were observed (P = 0.046, P = 0.006, respectively), with potato + herb/spices having intermediate effects. CONCLUSION: There were no significant differences in FM or in glucoregulatory biomarkers after 30 d of potato consumption compared with almonds. Results do not support a causal relation between increased French fried potato consumption and the negative health outcomes studied. This trial was registered at clinicaltrials.gov as NCT03518515.


Assuntos
Prunus dulcis , Solanum tuberosum , Adulto , Biomarcadores , Glicemia/metabolismo , Feminino , Glucose , Hemoglobinas Glicadas , Humanos , Insulina , Masculino , Obesidade , Prunus dulcis/metabolismo , Adulto Jovem
6.
J Proteomics ; 256: 104505, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35123051

RESUMO

The self-incompatibility recognition mechanism determines whether the gametophyte is successfully fertilized between pollen tube SCF (SKP1-CUL1-F-box-RBX1) protein and pistil S-RNase protein during fertilization is unclear. In this study, the pistils of two almond cultivars 'Wanfeng' and 'Nonpareil' were used as the experimental materials after self- and nonself/cross-pollination, and pistils from the stamen-removed flowers were used as controls. We used fluorescence microscopy to observe the development of pollen tubes after pollination and 4D-LFQ to detect the protein expression profiles of 'Wanfeng' and 'Nonpareil' pistils and in controls. The results showed that it took 24-36 h for the development of the pollen tube to 1/3 of the pistil, and a total of 7684 differentially accumulated proteins (DAPs) were identified in the pistil after pollinating for 36 h, of which 7022 were quantifiable. Bioinformatics analysis based on the function of DAPs, identified RNA polymerases (4 DAPs), autophagy (3 DAPs), oxidative phosphorylation (3 DAPs), and homologous recombination (2 DAPs) pathways associated with the self-incompatibility process. These results were confirmed by parallel reaction monitoring (PRM), protein interaction and bioinformatics analysis. Taken together, these results provide the involvement of serine/threonine kinase protein in the reaction of pollen tube recognition the nonself- and the self-S-RNase protein. SIGNIFICANCE: Gametophytic self-incompatibility (GSI) is controlled by the highly polymorphic S locus or S haplotype, with two linked self-incompatibility genes, one encoding the S-RNase protein of the pistil S-determinant and the other encoding the F-box/SLF/SFB (S haplotype-specific F-box protein) protein of the pollen S-determinant. The recognition mechanism between pollen tube SCF protein and pistil S-RNase protein is divided into nonself- and self-recognition hypothesis mechanisms. At present, two hypothetical mechanisms cannot explain the recognition between pollen and pistil well, so the mechanism of gametophytic self-incompatibility recognition is still not fully revealed. In this experiment, we investigated the molecular mechanism of pollen-pistil recognition in self-incompatibility using self- and nonself-pollinated pistils of almond cultivars 'Wanfeng' and 'Nonpareil'. Based on our results, we proposed a potential involvement of the MARK2 (serine/threonine kinase) protein in the reaction of pollen tube recognition of the nonself- and the self-S-RNase protein. It provides a new way to reveal how almond pollen tubes recognize the self and nonself S-RNase enzyme protein.


Assuntos
Petunia , Prunus dulcis , Autoincompatibilidade em Angiospermas , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases , Proteoma/metabolismo , Prunus dulcis/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Autoincompatibilidade em Angiospermas/genética , Serina/metabolismo
7.
Annu Rev Food Sci Technol ; 13: 145-166, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34936815

RESUMO

Almonds (Prunus dulcis) are one of the most consumed tree-nuts worldwide, with commercial production in arid environments such as California, Spain, and Australia. The high consumption of almonds is partly due to their versatile usage in products such as gluten-free flour and dairy alternatives as well as them being a source of protein in vegetarian diets. They contain high concentrations of health-promoting compounds such as Vitamin E and have demonstrated benefits for reducing the risk of cardiovascular disease and improving vascular health. In addition, almonds are the least allergenic tree nut and contain minute quantities of cyanogenic glycosides. Production has increased significantly in the past two decades with 3.12 billion pounds of kernel meat produced in California alone in 2020 (USDA 2021), leading to a new emphasis on the valorization of the coproducts (e.g., hulls, shells, skins, and blanch water). This article presents a review of the chemical composition of almond kernels (e.g., macro and micronutrients, phenolic compounds, cyanogenic glycosides, and allergens) and the current research exploring the valorization of almond coproducts.


Assuntos
Prunus dulcis , Nozes/química , Nozes/metabolismo , Fenóis , Prunus dulcis/química , Prunus dulcis/metabolismo , Água/análise
8.
Adv Nutr ; 13(5): 1462-1475, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34967837

RESUMO

Conflicting findings have been reported regarding the effects of almond consumption on inflammatory markers. This study aimed to summarize the current literature to determine whether almonds can affect inflammatory markers. A systematic search was carried out in PubMed, Scopus, and ISI Web of Science up to March 2021. Randomized clinical trials that compared almond with no almond consumption were included. The outcomes of interest were changes in circulating C-reactive protein (CRP), IL-6, TNF-α, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) concentrations. The random-effects model was used to find the mean differences. In total, 18 trials with 847 participants were eligible for the current analysis. Participants' ages ranged from 26.3 to 69.6 y. Combining 16 studies, almond consumption significantly reduced serum concentrations of CRP [weighted mean difference (WMD): -0.25 mg/L; 95% CI: -0.43, -0.06 mg/L; I2 = 0.0%; P-heterogeneity = 0.633]. However, the beneficial effect of almond intake only occurred at doses <60 g/d. Pooling 11 effect sizes, almond interventions significantly decreased circulating IL-6 concentrations (WMD: -0.11 pg/mL; 95% CI: -0.21, -0.01 pg/mL; I2 = 19.9%; P-heterogeneity = 0.254). In subgroup analyses, effects on CRP and IL-6 were nonsignificant in unhealthy participants or those with obesity. In addition, almond consumption had no significant effect on TNF-α (WMD: -0.05 pg/mL; 95% CI: -0.11, 0.01 pg/mL; I2 = 0.0%; P-heterogeneity = 0.893; n = 6), ICAM-1 (WMD: 6.39 ng/mL; 95% CI: -9.44, 22.22 ng/mL; I2 = 66.6%; P-heterogeneity = 0.006; n = 7), or VCAM-1 (WMD: -8.31 ng/mL; 95% CI: -35.32, 18.71 ng/mL; I2 = 58.8%; P-heterogeneity = 0.033; n = 6). In conclusion, almond consumption beneficially affects CRP and IL-6 concentrations in adults. However, it has no beneficial effect on TNF-α, ICAM-1, or VCAM-1. More trials are needed to determine the effects of almonds on inflammation.


Assuntos
Proteína C-Reativa , Prunus dulcis , Adulto , Biomarcadores , Proteína C-Reativa/análise , Suplementos Nutricionais , Humanos , Inflamação , Molécula 1 de Adesão Intercelular , Interleucina-6 , Prunus dulcis/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular
9.
Curr Drug Res Rev ; 14(1): 73-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856918

RESUMO

BACKGROUND: Anti-cancer effects of almond nuts or oil have been approved, but there are a few pieces of research that have evaluated, in detail, almond and other seeds' effects on cancer. Therefore, in the present project, the aim was to explore the regulatory effect of the bitter almond extract (Prunus amygdalus Batsch) on the apoptotic and anti-cancer potency of MCF-7 cells. OBJECTIVE: In the current experimental research, the almond effect on MCF7 cells was evaluated by investigating the expression and the balance between Bcl-2, Bax genes to unmark the potential molecular mechanism. METHODS: For 24 and 48h, the MCF7 cells were treated with the bitter almond extract (187.5-3000 µg/mL). MTT assay was used to assess the viability, and Real-time-PCR was applied to determine the expression of Bax and Bcl-2, facing ß-actin. RESULTS: Our results revealed a significant difference between different extract concentrations on the viability of MCF7 cell lines in 24 and 48 h; cell viability decreased time-dependently (P < 0.05). After 24 and 48h of extract facing MCF7 cells, the evaluated IC50 value was 3000 and 1500 µg/mL, respectively. Based on Real-Time-PCR analysis, after 24 and 48 h, the mRNA levels of BCL-2 decreased by the extract, whereas Bax was in the MCF-7 cell line. CONCLUSION: From the results, it can be concluded that bitter almond extract has anti-cancer properties that may influence the apoptotic pathways by regulating relative gene expression.


Assuntos
Neoplasias da Mama , Prunus dulcis , Apoptose , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Prunus dulcis/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
10.
Plant Cell Environ ; 44(6): 1728-1740, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33665817

RESUMO

Plants can absorb water through their leaf surfaces, a phenomenon commonly referred to as foliar water uptake (FWU). Despite the physiological importance of FWU, the pathways and mechanisms underlying the process are not well known. Using a novel experimental approach, we parsed out the contribution of the stomata and the cuticle to FWU in two species with Mediterranean (Prunus dulcis) and temperate (Pyrus communis) origin. The hydraulic parameters of FWU were derived by analysing mass and water potential changes of leaves placed in a fog chamber. Leaves were previously treated with abscisic acid to force stomata to remain closed, with fusicoccin to remain open, and with water (control). Leaves with open stomata rehydrated two times faster than leaves with closed stomata and attained approximately three times higher maximum fluxes and hydraulic conductance. Based on FWU rates, we propose that rehydration through stomata occurs primarily via diffusion of water vapour rather than in liquid form even when leaf surfaces are covered with a water film. We discuss the potential mechanisms of FWU and the significance of both stomatal and cuticular pathways for plant productivity and survival.


Assuntos
Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Prunus dulcis/metabolismo , Pyrus/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Glicosídeos/farmacologia , Cinética , Microscopia Eletrônica de Varredura , Folhas de Planta/ultraestrutura , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura
11.
Plant Cell Environ ; 44(6): 1858-1868, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33665861

RESUMO

The reproductive processes of several deciduous trees are highly sensitive to Zn deficiency. An understanding of the patterns of Zn storage and remobilization during bud development and bud break is critical for the development of fertilization strategies to prevent deficiencies and may be valuable in selection and breeding programs to develop more Zn-resilient cultivars. In this study, we provide insights into the in situ distribution of Zn in almond reproductive organs at tissue, cellular, and subcellular scales using synchrotron-based X-ray fluorescence. The concentrations of Zn in different parts of the vegetative and reproductive tissues were also analysed. Our results show that the small branches subtending the flower and fruit, pollen grain, transmitting tissues of styles, and seed embryo are all important storage sites for Zn. An increase in Zn concentrations in almond reproductive organs mostly occur during the expanding growth phase, such as bud-flush and the mid-fruit enlargement stage; however, Zn transport to floral parts and fruit tissues was restricted at the pedicel and seed coat, suggesting a bottleneck in the export of Zn from the mother plant to filial tissues. Our results provide direct visual evidence for in-situ Zn distribution within the reproductive tissues of a deciduous tree species.


Assuntos
Prunus dulcis/crescimento & desenvolvimento , Prunus dulcis/metabolismo , Zinco/metabolismo , Transporte Biológico , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Imagem Molecular , Espectrometria por Raios X/métodos , Zinco/análise
12.
Sci Rep ; 11(1): 3401, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564060

RESUMO

Almond is one of the most featured nut crops owing to its high nutritional value. However, due to three different waves of flower and fruitlet drop, fruit drop is a major concern for growers. In this study, we carried out a time-course transcriptome analysis to investigate gene expression differences between normal and abnormal fruitlet development. By de novo assembly analysis, we identified 33,577 unigenes and provided their functional annotations. In total, we identified 7,469 differentially expressed genes and observed the most apparent difference between normal and abnormal fruits at 12 and 17 days after flowering. Their biological functions were enriched in carbon metabolism, carbon fixation in photosynthetic organisms and plant hormone signal transduction. RT-qPCR validated the expression pattern of 14 representative genes, including glycosyltransferase like family 2, MYB39, IAA13, gibberellin-regulated protein 11-like and POD44, which confirmed the reliability of our transcriptome data. This study provides an insight into the association between abnormal fruit development and carbohydrate signaling from the early developmental stages and could be served as useful information for understanding the regulatory mechanisms related to almond fruit drop.


Assuntos
Carbono/metabolismo , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Prunus dulcis , Transdução de Sinais , Frutas/genética , Frutas/metabolismo , Prunus dulcis/genética , Prunus dulcis/metabolismo
13.
J Sci Food Agric ; 101(4): 1372-1381, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32833243

RESUMO

BACKGROUND: Water scarcity is a worldwide problem that leads to environmental and economic issues. Agriculture is one of the main consumers of water for irrigation and fertilization and almond is the major tree nut crop in the Mediterranean area. Furthermore, there is a continuous growing demand for healthy, vegan and sustainable products. Consequently, the present study aimed to chemically characterize almond milk powder enriched with probiotics manufactured from hydroSOStainable almonds (i.e. generated under water stress conditions). Almond milk powder enriched with probiotic bacteria was produced with almonds grown under optimal irrigation conditions (100% of the crop evapotranspiration) and was chemically compared to the samples made from hydroSOStainable almonds. Antioxidant activity, total phenolic content (TPC), minerals, organic acids and sugars, fatty acids, and descriptive sensory analysis were evaluated. RESULTS: The results showed that almond milk powder produced from hydroSOStainable almonds had a higher content of TPC, polyunsaturated fatty acids (PUFAs), PUFAs/saturated fatty acids (SFAs) ratio and PUFAs/monounsaturated fatty acids ratio, as well as almond and nutty flavors. Moderate and sustained deficit irrigation leads to powders with a higher content of PUFAs and PUFAs/SFAs ratio, which are parameters of utmost importance for health. CONCLUSION: Using these strategies, between 66% and 76% of the irrigation water can be saved, producing hydroSOStainable almond milk powder higher in TPC and PUFAs, as well as positive sensory attributes, compared to that from fully irrigated almonds. These findings may have a positive impact in both agriculture and food industry, allowing water savings and high quality and sustainable food products to be obtained. © 2020 Society of Chemical Industry.


Assuntos
Nozes/química , Preparações de Plantas/química , Preparações de Plantas/metabolismo , Prunus dulcis/metabolismo , Desidratação , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Manipulação de Alimentos , Humanos , Nozes/crescimento & desenvolvimento , Nozes/metabolismo , Fenóis/análise , Fenóis/metabolismo , Prunus dulcis/química , Prunus dulcis/crescimento & desenvolvimento , Paladar , Água/metabolismo
14.
J Sci Food Agric ; 101(7): 3065-3070, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33135800

RESUMO

BACKGROUND: Water scarcity is currently affecting many areas of the world, reaching worrying levels in drought areas such as southern Spain. To cope with this issue, researchers in the agricultural sector have implemented deficit irrigation strategies intended to reduce water consumption by increasing fruit quality. Almond is among the most popular tree nuts worldwide and also the most nut cultivated in Spain. Almond consumption, together with other nuts, has been widely associated with improvements in cardiovascular health, metabolic syndrome and diabetes owing to their bioactive compounds such as polyphenols. Water deficit strategies generate hydroSOStainable almonds, raised under water stress conditions, with high content of bioactive compounds. The aim of this work was to study the relationship between water stress, color and polyphenols in hydroSOStainable almonds. For this, instrumental color, total phenolic content and phenolic compounds were measured and correlated using Pearson's correlation. RESULTS: The results showed a strong relationship between water stress, color and polyphenols of almonds, showing that increasing water stress in plants up to ~100 MPa × day values of stress integral increase the polyphenols in almonds, leading to a reddish color. CONCLUSION: Finally, this research demonstrated that implementing water-saving strategies help to improve the phenolic content and color of hydroSOStainable almonds and also that isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside and kaempferol-3-O-glucoside could be important markers of hydroSOStainable almonds (cv. Vairo). Besides, hydroSOStainable almonds could be an important source of phenols, providing 25% of the estimated total polyphenolic daily intake. © 2020 Society of Chemical Industry.


Assuntos
Nozes/química , Fenóis/análise , Prunus dulcis/metabolismo , Água/metabolismo , Cor , Nozes/crescimento & desenvolvimento , Nozes/metabolismo , Fenóis/metabolismo , Prunus dulcis/química , Prunus dulcis/crescimento & desenvolvimento , Espanha , Água/análise
15.
Sci Rep ; 10(1): 21087, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273661

RESUMO

Fourteen commercial almond rootstocks were tested under five types of irrigation waters to understand the genetic, physiological, and biochemical bases of salt-tolerance mechanisms. Treatments included control (T1) and four saline water treatments dominant in sodium-sulfate (T2), sodium-chloride (T3), sodium-chloride/sulfate (T4), and calcium/magnesium-chloride/sulfate (T5). T3 caused the highest reduction in survival rate and trunk diameter, followed by T4 and T2, indicating that Na and, to a lesser extent, Cl were the most toxic ions to almond rootstocks. Peach hybrid (Empyrean 1) and peach-almond hybrids (Cornerstone, Bright's Hybrid 5, and BB 106) were the most tolerant to salinity. Rootstock's performance under salinity correlated highly with its leaf Na and Cl concentrations, indicating that Na+ and Cl- exclusion is crucial for salinity tolerance in Prunus. Photosynthetic rate correlated with trunk diameter and proline leaf ratio (T3/T1) significantly correlated with the exclusion of Na+ and Cl-, which directly affected the survival rate. Expression analyses of 23 genes involved in salinity stress revealed that the expression differences among genotypes were closely associated with their performance under salinity. Our genetic, molecular, and biochemical analyses allowed us to characterize rootstocks based on component traits of the salt-tolerance mechanisms, which may facilitate the development of highly salt-tolerant rootstocks.


Assuntos
Genótipo , Prunus dulcis/crescimento & desenvolvimento , Estresse Salino , Irrigação Agrícola , Cloretos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Prunus dulcis/genética , Prunus dulcis/metabolismo , Sódio/metabolismo
16.
J Food Sci ; 85(10): 3450-3458, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32901954

RESUMO

A plain symbiotic almond yogurt-like product was formulated and developed using a plant-based starter YF-L02 (Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus supplemented with Lactobacillus acidophilus, Lactobacillus paracasei, and Bifidobacterium animalis) and inulin; 0.6% polymerized whey protein (PWP), 0.3% pectin, and 0.05% xanthan gum were optimized for the formula of the almond yogurt alternative. Two groups with/without calcium citrate and vitamin D2 were prepared and analyzed for chemical composition, changes in pH, viscosity, and probiotic survivability during storage at 4 °C for 10 weeks. The results showed that (1) over 10 weeks storage, the differences in the pH, viscosity, and probiotic survivability between the control and the fortified samples were not significant (P > 0.05); (2) the pH of both yogurt samples decreased 0.2 units while their viscosity slightly increased during storage; (3) the populations of L. paracasei and B. animalis remained above 106 cfu/g during the storage, whereas the population of L. acidophilus decreased dramatically during the first 4 weeks, especially the control group; (4) the microstructure was examined by scanning electron microscopy, revealing a compact and denser gel structure formed by 0.6% PWP with the presence of 0.3% pectin and 0.05% xanthan gum. In conclusion, PWP might be a proper gelation agent for the formulation of symbiotic almond yogurt alternative. PRACTICAL APPLICATION: In this study, polymerized whey protein was used as a gelation agent to formulate symbiotic almond yogurt alternatives with comparable physical texture and probiotic survivability to dairy yogurt during storage. This technology may be used for the development of plant-based fermented foods.


Assuntos
Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus delbrueckii/crescimento & desenvolvimento , Probióticos/química , Prunus dulcis/química , Streptococcus thermophilus/crescimento & desenvolvimento , Proteínas do Soro do Leite/química , Iogurte/análise , Fermentação , Géis/química , Géis/metabolismo , Inulina/química , Inulina/metabolismo , Lactobacillus acidophilus/metabolismo , Lactobacillus delbrueckii/metabolismo , Viabilidade Microbiana , Pectinas/química , Pectinas/metabolismo , Polimerização , Prunus dulcis/metabolismo , Prunus dulcis/microbiologia , Streptococcus thermophilus/metabolismo , Viscosidade , Proteínas do Soro do Leite/metabolismo , Iogurte/microbiologia
17.
Food Funct ; 11(9): 7340-7355, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32857083

RESUMO

This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to summarize the effect of almond intake on anthropometric indices in adult subjects. We searched PubMed, Scopus, ISI Web of Science, Cochrane Library, and Google Scholar databases until January 2020 to identify relevant RCTs. Data were reported as weighted mean differences (WMDs) and standard deviations (SDs) to show the magnitude of effects of almond on body weight (BW), body mass index (BMI), waist circumference (WC), fat mass (FM), and fat-free mass (FFM). Out of 2983 reports, 28 RCTs (37 arms) were eligible for including in our meta-analysis. The pooled results, obtained using a random-effects model, showed that almond intake significantly decreased BW (WMD: -0.38 kg, 95% CI: -0.65, -0.10, p = 0.007, I2 = 30.5%) and FM (WMD: -0.58 kg, 95% CI: -0.87, -0.28, p < 0.001, I2 = 4.9%). However, we found no significant effect of almond administration on BMI (WMD: -0.30 kg m-2, 95% CI: -0.67, 0.06, p = 0.101, I2 = 62.6%), WC (WMD: -0.60 cm, 95% CI: -1.28, 0.06, p = 0.078, I2 = 0.0%), and FFM (WMD: 0.23 kg, 95% CI: -0.04, 0.50, p = 0.097, I2 = 49.5%). Overall, the current meta-analysis demonstrated that resveratrol almond intake significantly reduced weight and FM, but did not affect BMI, WC, and FFM. Further studies are still required to confirm our results.


Assuntos
Obesidade/dietoterapia , Prunus dulcis/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antropometria , Índice de Massa Corporal , Peso Corporal , Gorduras/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Prunus dulcis/química , Ensaios Clínicos Controlados Aleatórios como Assunto , Resveratrol/análise , Resveratrol/metabolismo , Sementes/química , Sementes/metabolismo , Circunferência da Cintura , Adulto Jovem
18.
Sci Rep ; 10(1): 10873, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616827

RESUMO

The almond cake is a protein-rich residue generated by the mechanical expression of the almond oil. The effects of the aqueous (AEP) and enzyme-assisted aqueous extraction processes (EAEP) on the biological properties of the almond cake protein were evaluated. Total phenolic content (TPC), antioxidant capacity, inhibitory effects against crucial enzymes related to metabolic syndrome, antimicrobial potential, and in vitro protein digestibility profile were assessed. EAEP provided the best results for antioxidant capacity by both ORAC (397.2 µmol TE per g) and ABTS (650.5 µmol TE per g) methods and also showed a high (~ 98%) potential for α-glucosidase inhibition. The AEP resulted in protein extracts with the highest lipase inhibition (~ 70%) in a dose-dependent way. Enzymatic kinetic analyses revealed that EAEP generated uncompetitive inhibitors against α-glucosidase, while EAEP, AEP, and HEX-AEP (used as control) generated the same kind of inhibitors against lipase. No protein extract was effective against any of the bacteria strains tested at antimicrobial assays. An in silico theoretical hydrolysis of amandin subunits corroborated with the results found for antioxidant capacity, enzyme inhibitory experiments, and antimicrobial activity. Digestibility results indicated that the digestive proteases used were efficient in hydrolyzing almond proteins, regardless of the extraction applied and that HEX-AEP presented the highest digestibility (85%). In summary, EAEP and AEP skim proteins have the potential to be used as a nutraceutical ingredient. The biological properties observed in these extracts could help mitigate the development of metabolic syndrome where EAEP and AEP skim proteins could be potentially used as a prophylactic therapy for diabetes and obesity, respectively.


Assuntos
Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Plantas/farmacologia , Prunus dulcis/metabolismo , alfa-Glucosidases/química , Síndrome Metabólica/prevenção & controle , Prunus dulcis/química
19.
J Agric Food Chem ; 68(27): 7214-7225, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520540

RESUMO

Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.


Assuntos
Furanos/química , Prunus dulcis/metabolismo , Sementes/química , Água/metabolismo , Irrigação Agrícola , Biomarcadores/química , Biomarcadores/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Furanos/metabolismo , Estresse Oxidativo , Prunus dulcis/química , Prunus dulcis/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Água/análise
20.
Am J Clin Nutr ; 111(6): 1178-1189, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412597

RESUMO

BACKGROUND: There is convincing evidence that daily whole almond consumption lowers blood LDL cholesterol concentrations, but effects on other cardiometabolic risk factors such as endothelial function and liver fat are still to be determined. OBJECTIVES: We aimed to investigate whether isoenergetic substitution of whole almonds for control snacks with the macronutrient profile of average snack intakes, had any impact on markers of cardiometabolic health in adults aged 30-70 y at above-average risk of cardiovascular disease (CVD). METHODS: The study was a 6-wk randomized controlled, parallel-arm trial. Following a 2-wk run-in period consuming control snacks (mini-muffins), participants consumed either whole roasted almonds (n = 51) or control snacks (n = 56), providing 20% of daily estimated energy requirements. Endothelial function (flow-mediated dilation), liver fat (MRI/magnetic resonance spectroscopy), and secondary outcomes as markers of cardiometabolic disease risk were assessed at baseline and end point. RESULTS: Almonds, compared with control, increased endothelium-dependent vasodilation (mean difference 4.1%-units of measurement; 95% CI: 2.2, 5.9), but there were no differences in liver fat between groups. Plasma LDL cholesterol concentrations decreased in the almond group relative to control (mean difference -0.25 mmol/L; 95% CI: -0.45, -0.04), but there were no group differences in triglycerides, HDL cholesterol, glucose, insulin, insulin resistance, leptin, adiponectin, resistin, liver function enzymes, fetuin-A, body composition, pancreatic fat, intramyocellular lipids, fecal SCFAs, blood pressure, or 24-h heart rate variability. However, the long-phase heart rate variability parameter, very-low-frequency power, was increased during nighttime following the almond treatment compared with control (mean difference 337 ms2; 95% CI: 12, 661), indicating greater parasympathetic regulation. CONCLUSIONS: Whole almonds consumed as snacks markedly improve endothelial function, in addition to lowering LDL cholesterol, in adults with above-average risk of CVD.This trial was registered at clinicaltrials.gov as NCT02907684.


Assuntos
Doenças Cardiovasculares/metabolismo , LDL-Colesterol/sangue , Endotélio Vascular/fisiopatologia , Gorduras/metabolismo , Fígado/metabolismo , Prunus dulcis/metabolismo , Adulto , Idoso , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nozes/metabolismo , Fatores de Risco , Lanches , Triglicerídeos/sangue , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...