Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Sci Transl Med ; 16(746): eadk8198, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718132

RESUMO

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.


Assuntos
Modelos Animais de Doenças , Prurido , Receptores Acoplados a Proteínas G , Animais , Prurido/metabolismo , Prurido/induzido quimicamente , Prurido/patologia , Prurido/tratamento farmacológico , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Células HEK293 , Fosforilação/efeitos dos fármacos , Fosfatos/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Pró-Fármacos/farmacologia , Microscopia Crioeletrônica
2.
FASEB J ; 38(10): e23661, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38733310

RESUMO

Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.


Assuntos
Fatores de Crescimento de Fibroblastos , Camundongos Knockout , Microtúbulos , Prurido , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Prurido/metabolismo , Prurido/genética , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Humanos , Células HEK293 , Microtúbulos/metabolismo , Gânglios Espinais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética
3.
Mol Pain ; 20: 17448069241252384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631843

RESUMO

PD-1/PD-L1 inhibitors have been demonstrated to induce itch in both humans and experimental animals. However, whether the PD-1/PD-L1 pathway is involved in the regulation of chronic psoriatic itch remains unclear. This study aimed to investigate the role of the PD-1/PD-L1 pathway in imiquimod-induced chronic psoriatic itch. The intradermal injection of PD-L1 in the nape of neck significantly alleviated chronic psoriatic itch in imiquimod-treated skin. Additionally, we observed that spontaneous scratching behavior induced by imiquimod disappeared on day 21. Still, intradermal injection of PD-1/PD-L1 inhibitors could induce more spontaneous scratching for over a month, indicating that imiquimod-treated skin remained in an itch sensitization state after the spontaneous scratching behavior disappeared. During this period, there was a significant increase in PD-1 receptor expression in both the imiquimod-treated skin and the spinal dorsal horn in mice, accompanied by significant activation of microglia in the spinal dorsal horn. These findings suggest the potential involvement of the peripheral and central PD-1/PD-L1 pathways in regulating chronic itch and itch sensitization induced by imiquimod.


Assuntos
Antígeno B7-H1 , Imiquimode , Receptor de Morte Celular Programada 1 , Prurido , Psoríase , Animais , Imiquimode/farmacologia , Imiquimode/efeitos adversos , Prurido/induzido quimicamente , Prurido/metabolismo , Psoríase/induzido quimicamente , Psoríase/complicações , Psoríase/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Camundongos Endogâmicos C57BL , Doença Crônica
4.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38553047

RESUMO

Glycinergic neurons regulate nociceptive and pruriceptive signaling in the spinal cord, but the identity and role of the glycine-regulated neurons are not fully known. Herein, we have characterized spinal glycine receptor alpha 3 (Glra3) subunit-expressing neurons in Glra3-Cre female and male mice. Glra3-Cre(+) neurons express Glra3, are located mainly in laminae III-VI, and respond to glycine. Chemogenetic activation of spinal Glra3-Cre(+) neurons induced biting/licking, stomping, and guarding behaviors, indicative of both a nociceptive and pruriceptive role for this population. Chemogenetic inhibition did not affect mechanical or thermal responses but reduced behaviors evoked by compound 48/80 and chloroquine, revealing a pruriceptive role for these neurons. Spinal cells activated by compound 48/80 or chloroquine express Glra3, further supporting the phenotype. Retrograde tracing revealed that spinal Glra3-Cre(+) neurons receive input from afferents associated with pain and itch, and dorsal root stimulation validated the monosynaptic input. In conclusion, these results show that spinal Glra3(+) neurons contribute to acute communication of compound 48/80- and chloroquine-induced itch in hairy skin.


Assuntos
Prurido , Receptores de Glicina , Medula Espinal , Animais , Prurido/induzido quimicamente , Prurido/metabolismo , Camundongos , Receptores de Glicina/metabolismo , Masculino , Feminino , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Cloroquina/farmacologia , Camundongos Transgênicos , Pele/inervação , Camundongos Endogâmicos C57BL , p-Metoxi-N-metilfenetilamina/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
5.
Exp Mol Pathol ; 136: 104889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316203

RESUMO

Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.


Assuntos
Prurido , Pele , Humanos , Prurido/genética , Prurido/metabolismo , Queratinócitos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
6.
Sci Rep ; 14(1): 4698, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409467

RESUMO

Erigeron annuus (EA), traditionally used to treat disorders such as diabetes and enteritis, contains a variety of chemicals, including caffeic acid, flavonoids, and coumarins, providing antifungal and antioxidative benefits. However, the ingredients of each part of the EA vary widely, and there are few reports on the functionality of water extracts in skin inflammation and barrier protection. We assessed the therapeutic properties of the extract of EA without roots (EEA) and its primary ingredient, pyromeconic acid (PA), focusing on their antihistamine, anti-inflammatory, and antioxidative capabilities using HMC-1(human mast cells) and human keratinocytes (HaCaT cells). Our findings revealed that histamine secretion, which is closely related to itching, was notably reduced in HMC-1 cells following pretreatment with EEA (0.1% and 0.2%) and PA (corresponding concentration, 4.7 of 9.4 µg/mL). Similarly, they led to a marked decrease in the levels of pro-inflammatory cytokines, including IL-1ß, IL-8, IL-6, and IFN-γ. Furthermore, EA and PA enhanced antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), reduced malondialdehyde (MDA) production, and showed reactive oxygen species (ROS) scavenging activity in HaCaT cells. Moreover, at the molecular level, elevated levels of the pro-inflammatory cytokines IL-1ß, IL-6, TARC, and MDC induced by TNF-α/IFN-γ in HaCaT cells were mitigated by treatment with EEA and PA. We also revealed the protective effects of EEA and PA against SDS-induced skin barrier dysfunction in HaCaT cells by enhancing the expression of barrier-related proteins. Using NanoString technology, a comprehensive analysis of gene expression changes indicated significant modulation of autoimmune and inflammatory genes by EEA and PA. In summary, this study suggests that EEA and the corresponding concentration of PA as an active ingredient have functional cosmetic applications to alleviate itching and improve skin health.


Assuntos
Cromonas , Erigeron , Humanos , Interleucina-6/metabolismo , Linhagem Celular , Anti-Inflamatórios/química , Citocinas/metabolismo , Queratinócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Extratos Vegetais/química , Prurido/metabolismo
7.
BMC Immunol ; 25(1): 17, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347451

RESUMO

BACKGROUND: Itch sensitization has been reported in patients with chronic allergic skin diseases and observed in a mouse model of allergic contact dermatitis (ACD). There is evidence suggesting that neuroimmune interactions may contribute to itch sensitization, as an increase in dendritic cells (DCs) within ganglia has been observed during allergic conditions. However, how DCs interact with sensory neurons in ganglia during allergic conditions is still not known. This study aims to investigate the role of DCs in dorsal root ganglion (DRG) under ACD conditions, specifically focusing on itch sensitization within the DRG. The tolylene-2,4-diisocyanate (TDI) mouse model for ACD and the co-culture model of DCs and DRG neurons was employed in this study. RESULTS: We successfully induced ACD by TDI, as evidenced by the development of edema, elevated total serum IgE levels, and an observed itch reaction in TDI-sensitized mice. Calcium imaging and RT-qPCR analysis revealed that TDI-sensitized mice exhibited signs of peripheral sensitization, including a higher percentage of neurons responding to pruritogens and increased activation and expression of itch receptors in excised DRG of TDI-sensitized mice. Immunofluorescence and flow cytometric analysis displayed an increase of MHCII+ cells, which serves as a marker for DCs, within DRG during ACD. The co-culture study revealed that when DRG neurons were cultured with DCs, there was an increase in the number of neurons responsive to pruritogens and activation of itch receptors such as TRPA1, TRPV1, H1R, and TRPV4. In addition, the immunofluorescence and RT-qPCR study confirmed an upregulation of TRPV4. CONCLUSIONS: Our findings indicate that there is an increase of MHCII+ cells and itch peripheral sensitization in DRG under TDI-induced ACD condition. It has been found that MHCII+ cells in DRG might contribute to the itch peripheral sensitization by activating itch receptors, as shown through co-culture studies between DRG neurons and DCs. Further studies are required to identify the specific mediator(s) responsible for peripheral sensitization induced by activated DCs.


Assuntos
Hipersensibilidade , Canais de Cátion TRPV , Humanos , Animais , Camundongos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/efeitos adversos , Técnicas de Cocultura , Prurido/induzido quimicamente , Prurido/metabolismo , Neurônios/metabolismo , Células Dendríticas/metabolismo
8.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350720

RESUMO

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Assuntos
Canais de Potássio , Prurido , Animais , Camundongos , Antipruriginosos/uso terapêutico , Histamina/metabolismo , Loxapina/uso terapêutico , Canais de Potássio/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo
9.
Exp Dermatol ; 33(1): e14988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284184

RESUMO

Fluoxetine is a safe antidepressant with remarkable anti-inflammatory actions; therefore, we aimed to investigate its effects on immortalized (HaCaT) as well as primary human epidermal keratinocytes in a polyinosinic-polycytidylic acid (p(I:C))-induced inflammatory model. We found that a non-cytotoxic concentration (MTT-assay, CyQUANT-assay) of fluoxetine significantly suppressed p(I:C)-induced expression and release of several pro-inflammatory cytokines (Q-PCR, cytokine array, ELISA), and it decreased the release of the itch mediator endothelins (ELISA). These effects were not mediated by the inhibition of the NF-κB or p38 MAPK pathways (western blot), or by the suppression of the p(I:C)-induced elevation of mitochondrial ROS production (MitoSOX Red labeling). Instead, unbiased activity profiling revealed that they were most likely mediated via the inhibition of the phosphoinositide 3-kinase (PI3K) pathway. Importantly, the PI3K-inhibitor GDC0941 fully mimicked the effects of fluoxetine (Q-PCR, ELISA). Although fluoxetine was able to occupy the binding site of GDC0941 (in silico molecular docking), and exerted direct inhibitory effect on PI3K (cell-free PI3K activity assay), it exhibited much lower potency and efficacy as compared to GDC0941. Finally, RNA-Seq analysis revealed that fluoxetine deeply influenced the transcriptional alterations induced by p(I:C)-treatment, and exerted an overall anti-inflammatory activity. Collectively, our findings demonstrate that fluoxetine exerts potent anti-inflammatory effects, and suppresses the release of the endogenous itch mediator endothelins in human keratinocytes, most likely via interfering with the PI3K pathway. Thus, clinical studies are encouraged to explore whether the currently reported beneficial effects translate in vivo following its topical administration in inflammatory and pruritic dermatoses.


Assuntos
Fluoxetina , Indazóis , Fosfatidilinositol 3-Quinases , Sulfonamidas , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fluoxetina/farmacologia , Fluoxetina/metabolismo , Simulação de Acoplamento Molecular , Queratinócitos/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Prurido/metabolismo
10.
Theranostics ; 14(1): 363-378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164144

RESUMO

Rationale: In the physiological states, the act of scratching protects the person from harmful substances, while in certain pathological conditions, the patient suffers from chronic itch, both physically and mentally. Chronic itch sufferers are more sensitive to mechanical stimuli, and mechanical hyperknesis relief is essential for chronic itch treatment. While neuropeptide Y-Y1 receptor (NPY-Y1R) system is known to play a crucial role in modulating mechanical itch in physiological conditions, it is elusive how they are altered during chronic itch. We hypothesize that the negative regulatory effect of Y1Rs on Tac2 neurons, the key neurons that transmit mechanical itch, declines during chronic itch. Methods: We combined transgenic mice, chemogenetic manipulation, immunofluorescence, rabies virus circuit tracing, and electrophysiology to investigate the plasticity of Y1Rs on Tac2 neurons during chronic itch. Results: We found that Tac2 neurons receive direct input from Npy neurons and that inhibition of Npy neurons induces activation of Tac2 neurons. Moreover, the expression of Y1Rs on Tac2 neurons is reduced, and the regulatory effect is also reduced during chronic itch. Conclusion: Our study clarifies the plasticity of Y1Rs on Tac2 neurons during chronic itch and further elucidates the mechanism by which NPY-Y1R system is responsible for modulating mechanical itch. We highlight Y1Rs as a promising therapeutic target for mechanical hyperknesis during chronic itch.


Assuntos
Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Humanos , Camundongos , Animais , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Neurônios/metabolismo , Prurido/metabolismo
11.
J Allergy Clin Immunol ; 153(4): 1148-1154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262502

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by dry, pruritic skin. Several studies have described nocturnal increases in itching behavior, suggesting a role for the circadian rhythm in modulating symptom severity. However, the circadian rhythm of metabolites in the skin and serum of patients with AD is yet to be described. OBJECTIVE: We sought to assess circadian patterns of skin and serum metabolism in patients with AD. METHODS: Twelve patients with moderate to severe AD and 5 healthy volunteers were monitored for 28 hours in a controlled environment. Serum was collected every 2 hours and tape strips every 4 hours from both lesional and nonlesional skin in participants with AD and location-, sex-, and age-matched healthy skin of controls. We then performed an untargeted metabolomics analysis, examining the circadian peaks of metabolism in patients with AD. RESULTS: Distinct metabolic profiles were observed in AD versus control samples. When accounting for time of collection, the greatest differences in serum metabolic pathways were observed in arachidonic acid, steroid biosynthesis, and terpenoid backbone biosynthesis. We identified 42 circadian peaks in AD or control serum and 17 in the skin. Pathway enrichment and serum-skin metabolite correlation varied throughout the day. Differences were most evident in the late morning and immediately after sleep onset. CONCLUSIONS: Although limited by a small sample size and observational design, our findings suggest that accounting for sample collection time could improve biomarker detection studies in AD and highlight that metabolic changes may be associated with nocturnal differences in symptom severity.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/metabolismo , Pele/metabolismo , Prurido/metabolismo , Ritmo Circadiano , Metaboloma
12.
Allergy ; 79(5): 1271-1290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38164798

RESUMO

BACKGROUND: Itch is the most common symptom of atopic dermatitis (AD) and significantly decreases the quality of life. Skin microbiome is involved in AD pathogenesis, whereas its role in the regulation of itch remains elusive. In this study, we aimed to investigate the effects of skin microbial metabolite propionate on acute and chronic pruritus and to explore the mechanism. METHODS: Using various mouse models of itch, the roles of propionate were explored by behavioral tests and histopathology/immunofluorescent analysis. Primary-cultured dorsal root ganglion neurons and HEK293 cells expressing recombinant human TRP channels were utilized for in vitro calcium imaging/in vivo miniature two-photon imaging in combination with electrophysiology and molecular docking approaches for investigation of the mechanism. RESULTS: Propionate significantly alleviated itch and alloknesis in various mouse models of pruritus and AD and decreased the density of intraepidermal nerve fibers. Propionate reduced the responsiveness of dorsal root ganglion neurons to pruritogens in vitro, attenuated the hyper-excitability in sensory neurons in MC903-induced AD model, and inhibited capsaicin-evoked hTRPV1 currents (IC50 = 20.08 ± 1.11 µM) via interacting with the vanilloid binding site. Propionate also decreased the secretion of calcitonin gene-related peptide by nerves in MC903-induced AD mouse model, which further attenuated itch and skin inflammation. CONCLUSION: Our study revealed a protective effect of propionate against persistent itch through direct modulation of sensory TRP channels and neuropeptide production in neurons. Regulation of itch via the skin microbiome might be a novel strategy for the treatment of AD.


Assuntos
Dermatite Atópica , Modelos Animais de Doenças , Gânglios Espinais , Propionatos , Prurido , Canais de Potencial de Receptor Transitório , Animais , Gânglios Espinais/metabolismo , Dermatite Atópica/metabolismo , Dermatite Atópica/tratamento farmacológico , Prurido/etiologia , Prurido/metabolismo , Prurido/tratamento farmacológico , Camundongos , Humanos , Propionatos/farmacologia , Propionatos/uso terapêutico , Canais de Potencial de Receptor Transitório/metabolismo , Células Receptoras Sensoriais/metabolismo , Células HEK293 , Masculino , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Simulação de Acoplamento Molecular
13.
Int Arch Allergy Immunol ; 185(2): 170-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37963429

RESUMO

INTRODUCTION: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by relapsed eczema and serious pruritus. High-mobility group box 1 protein (HMGB1) is a nuclear-binding protein and serves as an alarmin to promote inflammatory responses. METHODS: In this study, we established an AD mouse model by topical use of MC903 on ears and then used a specific HMGB1-binding peptide cIY8 and a HMGB1 inhibitor of glycyrrhizin to investigate HMGB1 on fibroblast activation in the pathogenesis of AD-like symptoms. RESULTS: Topical use of cIY8 and oral use of glycyrrhizin significantly improved the MC903-induced AD-like symptoms and pathological changes of the ears and scratching behavior in an AD mouse model; cIY8 treatment inhibited the higher mRNAs of IL-1α, IL-4, IL-5, IL-13, and IL-31 in the ears. In human fibroblasts, HMGB1 caused nuclear translocation of NF-kB, and the nuclear translocation could be inhibited by pre-treatment of HMGB1 with cIY8, suggesting that NF-κB signaling pathway participates in the HMGB1-induced inflammation of AD in fibroblasts and that cIY8 effectively impedes the function of HMGB1. Glycyrrhizin inhibited the Ca2+ signaling induced by ionomycin in mouse primary fibroblasts. The fibroblast-related proteins of α-SMA, Hsp47, and vimentin and the pruritus-related proteins of IL-33 and periostin were increased in the ears of the AD mouse model, the ratio of EdU incorporation became higher in mouse fibroblasts treated with MC903, and the higher proliferation and inflammatory responses of the fibroblasts could be reversed by glycyrrhizin treatment. CONCLUSIONS: Fibroblast activation by HMGB1 is one of the critical processes in the development of inflammation and pruritus in the AD mouse model. The specific HMGB1-binding peptide cIY8 and the HMGB1 inhibitor glycyrrhizin inactivate skin fibroblasts to alleviate the inflammation and pruritus in the AD mouse model. Peptide cIY8 may be topically used to treat AD patients in the future.


Assuntos
Dermatite Atópica , Proteína HMGB1 , Animais , Humanos , Camundongos , Citocinas/metabolismo , Dermatite Atópica/etiologia , Ácido Glicirrízico/efeitos adversos , Proteína HMGB1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-13/metabolismo , NF-kappa B/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo , Pele/patologia
14.
CNS Neurosci Ther ; 30(2): e14367, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37452499

RESUMO

AIMS: Itch is an unpleasant sensation that severely impacts the patient's quality of life. Recent studies revealed that the G protein-coupled estrogen receptor (GPER) may play a crucial role in the regulation of pain and itch perception. However, the contribution of the GPER in primary sensory neurons to the regulation of itch perception remains elusive. This study aimed to investigate whether and how the GPER participates in the regulation of itch perception in the trigeminal ganglion (TG). METHODS AND RESULTS: Immunofluorescence staining results showed that GPER-positive (GPER+ ) neurons of the TG were activated in both acute and chronic itch. Behavioral data indicated that the chemogenetic activation of GPER+ neurons of the TG of Gper-Cre mice abrogated scratching behaviors evoked by acute and chronic itch. Conversely, the chemogenetic inhibition of GPER+ neurons resulted in increased itch responses. Furthermore, the GPER expression and function were both upregulated in the TG of the dry skin-induced chronic itch mouse model. Pharmacological inhibition of GPER (or Gper deficiency) markedly increased acute and chronic itch-related scratching behaviors in mouse. Calcium imaging assays further revealed that Gper deficiency in TG neurons led to a marked increase in the calcium responses evoked by agonists of the transient receptor potential ankyrin A1 (TRPA1) and transient receptor potential vanilloid V1 (TRPV1). CONCLUSION: Our findings demonstrated that the GPER of TG neurons is involved in the regulation of acute and chronic itch perception, by modulating the function of TRPA1 and TRPV1. This study provides new insights into peripheral itch sensory signal processing mechanisms and offers new targets for future clinical antipruritic therapy.


Assuntos
Cálcio , Gânglio Trigeminal , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Prurido/induzido quimicamente , Prurido/metabolismo , Qualidade de Vida , Receptores de Estrogênio/metabolismo , Gânglio Trigeminal/metabolismo , Canais de Cátion TRPV/metabolismo
15.
J Invest Dermatol ; 144(3): 612-620.e6, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863387

RESUMO

Voltage-gated calcium channels regulate neuronal excitability. The Cav3.2 isoform of the T-type voltage-activated calcium channel is expressed in sensory neurons and is implicated in pain transmission. However, its role in itch remains unclear. In this study, we demonstrated that Cav3.2 is expressed by mechanosensory and peptidergic subsets of mouse dorsal root ganglion neurons and colocalized with TRPV1 and receptors for type 2 cytokines. Cav3.2-positive neurons innervate human skin. A deficiency of Cav3.2 reduces histamine, IL-4/IL-13, and TSLP-induced itch in mice. Cav3.2 channels were upregulated in the dorsal root ganglia of an atopic dermatitis (AD)-like mouse model and mediated neuronal excitability. Genetic knockout of Cav3.2 or T-type calcium channel blocker mibefradil treatment reduced spontaneous and mechanically induced scratching behaviors and skin inflammation in an AD-like mouse model. Substance P and vasoactive intestinal polypeptide levels were increased in the trigeminal ganglia from AD-like mouse model, and genetic ablation or pharmacological inhibition of Cav3.2 reduced their gene expression. Cav3.2 knockout also attenuated the pathologic changes in ex vivo skin explants cocultured with trigeminal ganglia neurons from AD-induced mice. Our study identifies the role of Cav3.2 in both histaminergic and nonhistaminergic acute itch. Cav3.2 channel also contributes to AD-related chronic itch and neuroinflammation.


Assuntos
Canais de Cálcio Tipo T , Dermatite Atópica , Camundongos , Humanos , Animais , Dermatite Atópica/metabolismo , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Prurido/metabolismo , Inflamação/metabolismo , Células Receptoras Sensoriais/metabolismo , Interleucina-13/metabolismo , Gânglios Espinais/metabolismo
16.
Front Immunol ; 14: 1251031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035099

RESUMO

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by intermittent itchy rash. Type 2 inflammatory cytokines such as interleukin (IL)-4, IL-13, and IL-31 are strongly implicated in AD pathogenesis. Stimulation of IL-31 cognate receptors on C-fiber nerve endings is believed to activate neurons in the dorsal root ganglion (DRG), causing itch. The IL-31 receptor is a heterodimer of OSMRß and IL31RA subunits, and OSMRß can also bind oncostatin M (OSM), a pro-inflammatory cytokine released by monocytes/macrophages, dendritic cells, and T lymphocytes. Further, OSM expression is enhanced in the skin lesions of AD and psoriasis vulgaris patients. Objective: The current study aimed to examine the contributions of OSM to AD pathogenesis and symptom expression. Methods: The expression levels of the OSM gene (OSM) and various cytokine receptor genes were measured in human patient skin samples, isolated human monocytes, mouse skin samples, and mouse DRG by RT-qPCR. Itching responses to various pruritogens were measured in mice by counting scratching episodes. Results: We confirmed overexpression of OSM in skin lesions of patients with AD and psoriasis vulgaris. Monocytes isolated from the blood of healthy subjects overexpressed OSM upon stimulation with IL-4 or GM-CSF. Systemic administration of OSM suppressed IL31RA expression in the mouse DRG and IL-31-stimulated scratching behavior. In contrast, systemic administration of OSM increased the expression of IL-4- and IL-13-related receptors in the DRG. Conclusion: These results suggest that OSM is an important cytokine in the regulation of skin monocytes, promoting the actions of IL-4 and IL-13 in the DRG and suppressing the action of IL-31. It is speculated that OSM released from monocytes in skin modulates the sensitivity of DRG neurons to type 2 inflammatory cytokines and thereby the severity of AD-associated skin itch.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Oncostatina M/farmacologia , Oncostatina M/metabolismo , Interleucina-4/metabolismo , Gânglios Espinais/metabolismo , Interleucina-13/metabolismo , Prurido/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Dermatite Atópica/metabolismo , Receptores de Interleucina/metabolismo , Psoríase/metabolismo
17.
Front Immunol ; 14: 1197821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022672

RESUMO

Background: Mycosis fungoides (MF) is an indolent T-cell lymphoma that mainly affects the skin and presents with itch in more than half of the patients. Recently, the expression of Mas-related G protein-coupled receptor X2 (MRGPRX2), a receptor of mast cell (MC) responsible for the IgE-independent non-histaminergic itch, has been shown in lesional skin of patients with pruritic skin diseases, including chronic urticaria, prurigo, and mastocytosis. As of yet, limited knowledge exists regarding the MRGPRX2 expression in the skin of patients with MF. Objectives: To investigate the number of MRGPRX2-expressing (MRGPRX2+) cells in the skin of patients with MF and its correlation with clinical and laboratory characteristics of the disease. Methods: MRGPRX2 was analyzed in lesional and non-lesional skin of MF patients and healthy skin tissues by immunohistochemistry. Co-localization of MRGPRX2 with the MC marker tryptase was assessed by immunofluorescence. Public single-cell RNAseq data was reanalyzed to identify the MRGPRX2 expression on the distinct cell types. Results: In lesional skin of MF patients, MRGPRX2+ cell number was higher than in non-lesional skin and healthy control skin (mean:15.12 vs. 6.84 vs. 5.51 cells/mm2, p=0.04), and correlated with MC numbers (r=0.73, p=0.02). MC was the primary cell type expressing MRGPRX2 in MF patients. The ratio of MRGPRX2+ MCs to MRGPRX2+ cells in lesional and non-lesional skin correlated with the severity of disease (r=0.71, p=0.02 and r=0.67, p=0.03, respectively). Conclusions: Our findings point to the role of MRGPRX2 and MC in the pathogenesis of MF that should be investigated in further studies.


Assuntos
Micose Fungoide , Neoplasias Cutâneas , Humanos , Micose Fungoide/patologia , Pele/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Cutâneas/patologia , Prurido/metabolismo , Contagem de Células , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
18.
Cell Rep ; 42(12): 113433, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38029739

RESUMO

IL-31 receptor blockade suppresses pruritus of atopic dermatitis. However, cell-type-specific contributions of IL-31 receptor to itch, its expression mechanism, and the downstream signaling pathway to induce itch remain unknown. Here, using conditional knockout mice, we demonstrate that IL-31-induced itch requires sensory neuronal IL-31 receptor and STAT3. We find that IL-31 receptor expression is dependent on STAT3 in sensory neurons. In addition, pharmacological experiments suggest that STAT3 activation is important for the itch-inducing signaling downstream of the IL-31 receptor. A cutaneous IL-31 injection induces the nuclear accumulation of activated STAT3 first in sensory neurons that abundantly express IL-31 receptor and then in other itch-transmitting neurons. IL-31 enhances itch induced by various pruritogens including even chloroquine. Finally, pruritus associated with dermatitis is partially dependent on sensory neuronal IL-31 receptor and strongly on sensory neuronal STAT3. Thus, sensory neuronal STAT3 is essential for IL-31-induced itch and further contributes to IL-31-independent inflammatory itch.


Assuntos
Dermatite Atópica , Prurido , Animais , Camundongos , Dermatite Atópica/metabolismo , Expressão Gênica , Camundongos Knockout , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo
19.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834183

RESUMO

Pruritus is defined as an unpleasant sensation that elicits a desire to scratch. Nearly a third of the world's population may suffer from pruritus during their lifetime. This symptom is widely observed in numerous inflammatory skin diseases-e.g., approximately 70-90% of patients with psoriasis and almost every patient with atopic dermatitis suffer from pruritus. Although the pathogenesis of atopic dermatitis and psoriasis is different, the complex intricacies between several biochemical mediators, enzymes, and pathways seem to play a crucial role in both conditions. Despite the high prevalence of pruritus in the general population, the pathogenesis of this symptom in various conditions remains elusive. This review aims to summarize current knowledge about the pathogenesis of pruritus in psoriasis and atopic dermatitis. Each molecule involved in the pruritic pathway would merit a separate chapter or even an entire book, however, in the current review we have concentrated on some reports which we found crucial in the understanding of pruritus. However, the pathomechanism of pruritus is an extremely complex and intricate process. Moreover, many of these signaling pathways are currently undergoing detailed analysis or are still unexplained. As a result, it is currently difficult to take an objective view of how far we have come in elucidating the pathogenesis of pruritus in the described diseases. Nevertheless, considerable progress has been made in recent years.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Dermatite Atópica/metabolismo , Prurido/etiologia , Prurido/metabolismo , Psoríase/complicações , Psoríase/diagnóstico , Transdução de Sinais
20.
Eur J Pharmacol ; 960: 176128, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37866747

RESUMO

Programmed cell death receptor/ligand 1 (PD-1/PD-L1) blockade therapy for various cancers induces itch. However, few studies have evaluated the mechanism underlying PD-1/PD-L1 inhibitor-induced itch. This study aimed to establish and evaluate a mouse model of acute itch induced by PD-1/PD-L1 inhibitors and to explore the role of the PD-1/PD-L1 pathway in chronic itch. The intradermal injection of the PD-1/PD-L1 small molecule inhibitors, or anti-PD-1/PD-L1 antibodies in the nape of the neck in the mice elicited intense spontaneous scratches. The model was evaluated using pharmacological methods. The number of scratches was reduced by naloxone but not by antihistamines or the transient receptor potential (TRP) channel inhibitor. Moreover, the PD-1 receptor was detected in the spinal cord of the mouse models of chronic itch that exhibited acetone, diethyl ether, and water (AEW)-induced dry skin, imiquimod-induced psoriasis, and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced allergic contact dermatitis. Intrathecal PD-L1 (1 µg, 4 times a week for 1 week) suppressed the activation of the microglia in the spinal dorsal horn to relieve the chronic itch that was elicited by imiquimod-induced psoriasis and DNFB-induced allergic contact dermatitis. Although the activation of the microglia in the spinal dorsal horn was not detected in the AEW-treated mice, intrathecal PD-L1 still reduced the number of scratches that were elicited by AEW. Our findings suggest that histamine receptor inhibitors or TRP channel inhibitors have limited effects on PD-1/PD-L1 inhibitor-induced itch and that spinal PD-1 is important for the spinal activation of the microglia, which may underlie chronic itch.


Assuntos
Dermatite Alérgica de Contato , Psoríase , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Dinitrofluorbenzeno/efeitos adversos , Antígeno B7-H1 , Imiquimode/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Prurido/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Dermatite Alérgica de Contato/tratamento farmacológico , Modelos Animais de Doenças , Psoríase/tratamento farmacológico , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...