Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Virol J ; 21(1): 107, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720392

RESUMO

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Assuntos
Autofagia , Herpesvirus Suídeo 1 , Interferon beta , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Humanos , Linhagem Celular , Células HEK293 , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Pseudorraiva/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Suínos , Mesocricetus
2.
J Virol ; 98(5): e0048324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639486

RESUMO

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Assuntos
DNA Viral , Herpesvirus Suídeo 1 , Imunidade Inata , Nucleotidiltransferases , Herpesvirus Suídeo 1/imunologia , Animais , Nucleotidiltransferases/metabolismo , DNA Viral/imunologia , Suínos , Humanos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Miosina não Muscular Tipo IIA/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Camundongos , Transdução de Sinais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Linhagem Celular , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/imunologia , Células HEK293
3.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669242

RESUMO

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Assuntos
Apoptose , Herpesvirus Suídeo 1 , Mitocôndrias , Pseudorraiva , Proteínas Virais , Animais , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/patogenicidade , Herpesviridae/genética , Replicação Viral/fisiologia , Humanos , Camundongos Endogâmicos BALB C , Virulência
4.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305153

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Assuntos
Antivirais , Herpesvirus Suídeo 1 , Polietilenoimina , Eletricidade Estática , Animais , Adsorção/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , Pseudorraiva/tratamento farmacológico , Pseudorraiva/virologia , Suínos/virologia , Doenças dos Suínos/virologia
5.
J Virol ; 98(1): e0166423, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054618

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.


Assuntos
Herpesvirus Suídeo 1 , Lipoproteínas LDL , Pseudorraiva , Doenças dos Suínos , Animais , Humanos , Camundongos , Herpesvirus Suídeo 1/fisiologia , Lipoproteínas LDL/metabolismo , Pró-Proteína Convertase 9 , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/virologia , Internalização do Vírus , Linhagem Celular
6.
J Biol Chem ; 299(4): 104605, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918100

RESUMO

Pseudorabies virus (PRV) has become a "new life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2020. To identify novel anti-PRV agents, we screened a total of 107 ß-carboline derivatives and found 20 compounds displaying antiviral activity against PRV. Among them, 14 compounds showed better antiviral activity than acyclovir. We found that compound 45 exhibited the strongest anti-PRV activity with an IC50 value of less than 40 nM. Our in vivo studies showed that treatment with 45 significantly reduced the viral loads and protected mice challenged with PRV. To clarify the mode of action of 45, we conducted a time of addition assay, an adsorption assay, and an entry assay. Our results indicated that 45 neither had a virucidal effect nor affected viral adsorption while significantly inhibiting PRV entry. Using the FITC-dextran uptake assay, we determined that 45 inhibits macropinocytosis. The actin-dependent plasma membrane protrusion, which is important for macropinocytosis, was also suppressed by 45. Furthermore, the kinase DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) was predicted to be a potential target for 45. The binding of 45 to DYRK1A was confirmed by drug affinity responsive target stability and cellular thermal shift assay. Further analysis revealed that knockdown of DYRK1A by siRNA suppressed PRV macropinocytosis and the tumor necrosis factor alpha-TNF-induced formation of protrusions. These results suggested that 45 could restrain PRV macropinocytosis by targeting DYRK1A. Together, these findings reveal a unique mechanism through which ß-carboline derivatives restrain PRV infection, pointing to their potential value in the development of anti-PRV agents.


Assuntos
Antivirais , Carbolinas , Herpesvirus Suídeo 1 , Animais , Humanos , Camundongos , Aciclovir/farmacologia , Aciclovir/toxicidade , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbolinas/química , Carbolinas/farmacologia , Carbolinas/uso terapêutico , Técnicas de Silenciamento de Genes , Herpesvirus Suídeo 1/efeitos dos fármacos , Concentração Inibidora 50 , Pinocitose/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Pseudorraiva/tratamento farmacológico , Pseudorraiva/prevenção & controle , Pseudorraiva/virologia , Internalização do Vírus/efeitos dos fármacos , Células HeLa , Modelos Químicos , Quinases Dyrk
7.
J Virol ; 97(3): e0154522, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36786600

RESUMO

Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases. IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.


Assuntos
Anexina A2 , Herpesvirus Suídeo 1 , Pseudorraiva , Replicação Viral , Animais , Humanos , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Herpesvirus Suídeo 1/metabolismo , Herpesvirus Suídeo 1/patogenicidade , Fosforilação , Pseudorraiva/virologia , Transporte Proteico
8.
J Virol ; 96(13): e0217121, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35708311

RESUMO

The alphaherpesvirus pseudorabies virus (PRV) is the etiologic agent of swine Aujeszky's disease, which can cause huge economic losses to the pig industry. PRV can overcome a type I interferon (IFN)-induced antiviral state in host cells through its encoded EP0 protein. However, the exact role of EP0 in this process is poorly defined. Here, we report that EP0 transcriptionally represses IFN regulatory factor 9 (IRF9), a critical component in the IFN signaling pathway, thereby reducing the cellular levels of IRF9 and inhibiting IFN-induced gene transcription. This activity of EP0 is mediated by its C-terminal region independently of the RING domain. Moreover, compared with EP0 wild-type PRV, EP0-deficient PRV loses the ability to efficiently decrease cellular IRF9, while reintroducing the C-terminal region of EP0 back into the EP0-deficient virus restores the activity. Together, these results suggest that EP0 can transcriptionally modulate IRF9-mediated antiviral pathways through its C-terminal region, contributing to PRV innate immune evasion. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals. Pseudorabies virus (PRV) is a swine alphaherpesvirus that threatens pig production. Using PRV as a model, we found that alphaherpesvirus can utilize its encoded early protein EP0 to inhibit the IFN-induced upregulation of antiviral proteins by reducing the basal expression levels of IRF9 through repressing its transcription. Our findings reveal a mechanism employed by alphaherpesvirus to evade the immune response and indicate that EP0 is an important viral protein in pathogenesis and a potential target for antiviral drug development.


Assuntos
Herpesvirus Suídeo 1 , Interferon Tipo I , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Pseudorraiva , Doenças dos Suínos , Animais , Antivirais/farmacologia , Regulação da Expressão Gênica/imunologia , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Pseudorraiva/imunologia , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
9.
FASEB J ; 36(3): e22221, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199383

RESUMO

The DNA damage response (DDR) pathway is critical for maintaining genomic integrity and sustaining organismal development. Viruses can either utilize or circumvent the DDR to facilitate their replication. Pseudorabies virus (PRV) infection was shown to induce apoptosis via stimulating DDR. However, the underlying mechanisms have not been fully explored to date. This study showed that PRV infection robustly activates the ATM and DNA-PK signaling pathways shortly after infection. However, inhibition of ATM, but not DNA-PK, could dampen PRV replication in cells. Importantly, we found that PRV-encoded serine/threonine kinase UL13 interacts with and subsequently phosphorylates H2AX. Furthermore, we found that UL13 deletion largely attenuates PRV neuroinvasiveness and virulence in vivo. In addtion, we showed that UL13 contributes to H2AX phosphorylation upon PRV infection both in vitro and in vivo, but does not affect ATM phosphorylation. Finally, we showed that knockdown of H2AX reduces PRV replication, while this reduction can be further enhanced by deletion of UL13. Taken together, we conclude that PRV-encoded kinase UL13 regulates DNA damage marker γH2AX and UL13-mediated H2AX phosphorylation plays a pivotal role in efficient PRV replication and progeny production.


Assuntos
Herpesvirus Suídeo 1/metabolismo , Histonas/metabolismo , Proteínas Quinases/metabolismo , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Quinases/genética , Pseudorraiva/metabolismo , Suínos , Células Vero , Proteínas Virais/genética
10.
Oxid Med Cell Longev ; 2022: 3570475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096266

RESUMO

Pseudorabies (PR) is an acute infectious disease of various domestic animals and wild animals caused by pseudorabies virus (PRV). It is mainly characterized by fever, itching, encephalomyelitis, and respiratory and neurological disorders. Plantago asiatica polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., showed immunomodulatory and antioxidation effects, but the antiviral activity had not been reported. In this study, the inhibitory effect of PLP on PRV infection was studied. Our study first revealed that PLP could inhibit PRV infection in a dose-dependent manner. By adding PLP at different stages of the virus's life cycle, we revealed that PLP could reduce the attachment and penetration of PRV into PK15 cells. The inhibition of PRV attachment was better than inhibition of PRV penetration. However, PLP did not affect PRV replication and inactivation. In addition, PLP decreased the intracellular ROS levels in infected cells significantly, and ROS scavenger NAC decreased PRV infection. Therefore, our study provided preliminary data of anti-PRV activity of PLP, which was established to be a novel anti-PRV infection agent.


Assuntos
Antivirais/uso terapêutico , Plantago/química , Pseudorraiva/virologia , Animais , Antivirais/farmacologia
11.
BMC Vet Res ; 18(1): 27, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34996475

RESUMO

BACKGROUND: Aujeszky's disease is caused by Suid Herpes Virus-1 and species belonging to the genus Sus scrofa are the main reservoir hosts. This virus, however, is capable of infecting and causing severe disease, with an almost constant fatal outcome in other species, both domestic and wild (carnivores, monogastric herbivores and ruminants). Moreover, the possibility of transmission to humans has been demonstrated. This study reports and describes the clinical, diagnostic, pathological and phylogenetic aspects of two cases of Aujeszky's disease in two hunting dogs following the ingestion of infected wild boar raw meat. These cases are contextualized in the province of Messina (Sicily), where a high prevalence of Aujeszky's disease has been recorded (average of 12,20% in the period 2010-2019) in farmed pig, and with evidence of spread to other species. A severe outbreak in cattle has recently been reported in these areas. Nevertheless, cases of Aujeszky's disease in dogs are rarely reported and this study represents the first well-documented report in this species in Sicily. CASE PRESENTATION: After a wild boar hunt, two dogs showed neurological symptoms and intense itching unresponsive to therapy. Diagnosis of Aujeszky's disease was made based on clinical suspicion, anamnestic information and confirmed by the isolation of the virus from the brain of both dogs. In addition, molecular typing, sequencing and phylogenetic analysis of the Real-Time PCR products were performed. The sequences studied were placed in the Italian Clade 1 along with the sequences obtained from wild boars and hunting dogs from Italy and France. CONCLUSIONS: The finding of this disease in non-natural hosts in Sicilian multi-host epidemiological contexts suggests that the risk of inter-species transmission is concrete and that attention should be paid to developing disease control programs in these territories. The data obtained from genome sequencing of the two SuHV-1 isolates contribute to the enrichment of the GenBank with unknown sequences and the phylogenetic analysis implementation.


Assuntos
Doenças do Cão , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Cães Trabalhadores , Animais , Bovinos , Doenças do Cão/virologia , Cães , Caça , Carne , Pseudorraiva/transmissão , Pseudorraiva/virologia , Sicília , Sus scrofa , Suínos , Doenças dos Suínos/virologia
12.
Vet Microbiol ; 265: 109327, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34986434

RESUMO

Pseudorabies is caused by pseudorabies virus (PRV), a member of the Herpesvirus family, and has caused tremendous damage to the pig industry. Protein unique lone 16 (pUL16) is a conserved envelope protein in all herpesviruses, that is known to play an important role in several aspects, including virus diffusion in cells and virulence in mice. It has been shown that the pUL16 can interact with the virus proteins UL11, UL49, UL21, gD, and gE. However, the research to date on pUL16 has only focused on etiology, without discussing the possible cellular pathways involved in PRV infection. Leucine-rich PPR motif-containing protein (LRPPRC) is a multifunctional cellular protein that participates in various cellular processes, such as RNA processing, splicing, stabilization, editing, translation, and energy metabolism. This was the first caspase-independent apoptosis protein to be identified. In this study, immune precipitation and mass spectrometry was performed to define the function of the pUL16 in PRV infection to study the possible cellular pathways in which pUL16 may participate. It was found that LRPRRC could interact with PRV pUL16, which may indicate that UL16 is involved in a redox reaction or cellular apoptosis. This is the first study of the interaction between pUL16 and host proteins, which has positive significance to gain a further understanding of the pUL16.


Assuntos
Herpesvirus Suídeo 1 , Proteínas de Neoplasias , Pseudorraiva , Proteínas Virais , Proteínas Virais Reguladoras e Acessórias , Animais , Proliferação de Células , Camundongos , Proteínas de Neoplasias/metabolismo , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Virulência
13.
Vet Microbiol ; 264: 109283, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34902738

RESUMO

Porcine circovirus-associated diseases (PCVADs) and pseudorabies (PR) are highly contagious and economically significant diseases of swine in China. Porcine circovirus type 3 (PCV3) is an emerging swine pathogen of PCVAD. Currently, no PCV3 vaccine is commercially available, and the epidemic caused by it is still spreading worldwide. In this study, we used the PRV variant strain HNX as the parental virus to construct recombinant PRV with TK/gE gene deletion and capsid (Cap) protein co-expression, named HNX-ΔTK/ΔgE-ORF2. The results revealed that PCV3 Cap protein can be detected in HNX-ΔTK/ΔgE-ORF2-infected PK-15 cells by both western blotting and immunofluorescence assays. Vaccination with HNX-ΔTK/ΔgE-ORF2 did not cause pruritus, ruffled fur, systemic infection, or inflammation (without high expression of interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) in plasma). Furthermore, HNX-ΔTK/ΔgE-ORF2 immunization induced an anti-Cap specific antibody, activated a PRV-specific cellular immune response, and provided 100 % protection to mice against the challenge of the virulent HNX strain. Thus, HNX-ΔTK/ΔgE-ORF2 appears to be a promising vaccine candidate against PRV and PCV3 for the control of the PRV variant and PCV3.


Assuntos
Proteínas do Capsídeo , Circovirus , Herpesvirus Suídeo 1 , Pseudorraiva , Vacinas Virais , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Circovirus/genética , Circovirus/imunologia , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Camundongos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas Virais/imunologia
14.
Vet Res ; 52(1): 148, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930429

RESUMO

Viruses have evolved multiple strategies to manipulate their host's translational machinery for the synthesis of viral proteins. A common viral target is the alpha subunit of eukaryotic initiation factor 2 (eIF2α). In this study, we show that global protein synthesis was increased but the eIF2α phosphorylation level was markedly decreased in porcine kidney 15 (PK15) cells infected with pseudorabies virus (PRV), a swine herpesvirus. An increase in the eIF2α phosphorylation level by salubrinal treatment or transfection of constructs expressing wild-type eIF2α or an eIF2α phosphomimetic [eIF2α(S51D)] attenuated global protein synthesis and suppressed PRV replication. To explore the mechanism involved in the inhibition of eIF2α phosphorylation during PRV infection, we examined the phosphorylation status of protein kinase R-like endoplasmic reticulum kinase (PERK) and double-stranded RNA-dependent protein kinase R (PKR), two kinases that regulate eIF2α phosphorylation during infection with numerous viruses. We found that the level of neither phosphorylated (p)-PERK nor p-PKR was altered in PRV-infected cells or the lungs of infected mice. However, the expression of growth arrest and DNA damage-inducible protein 34 (GADD34), which promotes eIF2α dephosphorylation by recruiting protein phosphatase 1 (PP1), was significantly induced both in vivo and in vitro. Knockdown of GADD34 and inhibition of PP1 activity by okadaic acid treatment led to increased eIF2α phosphorylation but significantly suppressed global protein synthesis and inhibited PRV replication. Collectively, these results demonstrated that PRV induces GADD34 expression to promote eIF2α dephosphorylation, thereby maintaining de novo protein synthesis and facilitating viral replication.


Assuntos
Fator de Iniciação 2 em Eucariotos , Herpesvirus Suídeo 1 , Proteína Fosfatase 1 , Pseudorraiva , Proteínas Virais , Replicação Viral , Animais , Fator de Iniciação 2 em Eucariotos/metabolismo , Herpesvirus Suídeo 1/fisiologia , Camundongos , Fosforilação , Proteína Fosfatase 1/metabolismo , Pseudorraiva/virologia , Suínos , Proteínas Virais/genética , Replicação Viral/fisiologia
15.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960791

RESUMO

Pseudorabies virus (PRV) infection of swine can produce Aujeszky's disease, which causes neurological, respiratory, and reproductive symptoms, leading to significant economic losses in the swine industry. Although humans are not the natural hosts of PRV, cases of human encephalitis and endophthalmitis caused by PRV infection have been reported between animals and workers. Currently, a lack of specific treatments and the emergence of new PRV strains against which existing vaccines do not protect makes the search for effective antiviral drugs essential. As an alternative to traditional nucleoside analogues such as acyclovir (ACV), we studied the antiviral effect of valpromide (VPD), a compound derived from valproic acid, against PRV infection in the PK15 swine cell line and the neuroblastoma cell line Neuro-2a. First, the cytotoxicity of ACV and VPD in cells was compared, demonstrating that neither compound was cytotoxic at a specific concentration range after 24 h exposure. Furthermore, the lack of direct virucidal effect of VPD outside of an infected cell environment was demonstrated. Finally, VPD was shown to have an antiviral effect on the viral production of two strains of pseudorabies virus (wild type NIA-3 and recombinant PRV-XGF) at the concentrations ranging from 0.5 to 1.5 mM, suggesting that VPD could be a suitable alternative to nucleoside analogues as an antiherpetic drug against Aujeszky's disease.


Assuntos
Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Pseudorraiva/tratamento farmacológico , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Neuroblastoma , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/virologia
16.
PLoS Pathog ; 17(11): e1010117, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843605

RESUMO

Plasmacytoid dendritic cells (pDC) are important innate immune cells during the onset of viral infections as they are specialized in the production of massive amounts of antiviral type I interferon (IFN). Alphaherpesviruses such as herpes simplex virus (HSV) or pseudorabies virus (PRV) are double stranded DNA viruses and potent stimulators of pDC. Detailed information on how PRV activates porcine pDC is lacking. Using PRV and porcine primary pDC, we report here that PRV virions, so-called heavy (H-)particles, trigger IFNα production by pDC, whereas light (L-) particles that lack viral DNA and capsid do not. Activation of pDC requires endosomal acidification and, importantly, depends on the PRV gD envelope glycoprotein and O-glycosylations. Intriguingly, both for PRV and HSV-1, we found that L-particles suppress H-particle-mediated activation of pDC, a process which again depends on viral gD. This is the first report describing that gD plays a critical role in alphaherpesvirus-induced pDC activation and that L-particles directly interfere with alphaherpesvirus-induced IFNα production by pDC.


Assuntos
Células Dendríticas/imunologia , Herpes Simples/imunologia , Interferon Tipo I/metabolismo , Pseudorraiva/imunologia , Proteínas do Envelope Viral/metabolismo , Vírion/fisiologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Suídeo 1/fisiologia , Masculino , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Suínos , Testículo/imunologia , Testículo/metabolismo , Testículo/virologia , Proteínas do Envelope Viral/genética
17.
Viruses ; 13(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34372529

RESUMO

Pseudorabies virus (PRV) is an economically significant swine infectious agent. A PRV outbreak took place in China in 2011 with novel virulent variants. Although the association of viral genomic variability with pathogenicity is not fully confirmed, the knowledge concerning PRV genomic diversity and evolution is still limited. Here, we sequenced 54 genomes of novel PRV variants isolated in China from 2012 to 2017. Phylogenetic analysis revealed that China strains and US/Europe strains were classified into two separate genotypes. PRV strains isolated from 2012 to 2017 in China are highly related to each other and genetically close to classic China strains such as Ea, Fa, and SC. RDP analysis revealed 23 recombination events within novel PRV variants, indicating that recombination contributes significantly to the viral evolution. The selection pressure analysis indicated that most ORFs were under evolutionary constraint, and 19 amino acid residue sites in 15 ORFs were identified under positive selection. Additionally, 37 unique mutations were identified in 19 ORFs, which distinguish the novel variants from classic strains. Overall, our study suggested that novel PRV variants might evolve from classical PRV strains through point mutation and recombination mechanisms.


Assuntos
Genoma Viral , Herpesvirus Suídeo 1/genética , Filogenia , Pseudorraiva/epidemiologia , Análise de Sequência de DNA , Animais , Surtos de Doenças , Variação Genética , Genômica , Genótipo , Herpesvirus Suídeo 1/classificação , Fases de Leitura Aberta , Pseudorraiva/virologia , Recombinação Genética , Suínos , Doenças dos Suínos/virologia
18.
Int J Biol Macromol ; 188: 359-368, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339791

RESUMO

Pseudorabies virus (PRV) was isolated from some human cases recently and the infected patients manifested respiratory dysfunction and acute neurological symptoms. However, no effective drug or vaccine, preventing the progression of PRV infection, is available. Nectin-1 was the only reported receptor for PRV cell entry both swine and human origin, representing an excellent target to block PRV infection, and especially its transmission from pigs to humans. A PRV-gD specific mAbs (10B6) was isolated from hybridomas and its neutralizing activities in vitro and in vivo were determined. 10B6 exhibited effective neutralizing activities in vitro with IC50 = 2.514 µg/ml and 4.297 µg/ml in the presence and absence of complement. And in vivo, 10B6 provided 100% protection against PRV lethal challenge with a dose of 15 mg/kg. Further, 10B6 could bind to a conserved epitope, 316QPAEPFP322, locating in gD pro-fusion domain, and finally blocks the binding of PRV-gD to nectin-1. Moreover, 10B6 showed an effective inhibition on PRV cell-attachment in a cell type-independent manner and could also block the virus spreading among cells. 10B6 exhibited effectively neutralizing activities to Chinese PRV variant strain in vitro and in vivo by blocking gD binding to nectin-1, implied both prophylactic and therapeutic interventions against PRV infections.


Assuntos
Glicoproteínas/genética , Herpesvirus Suídeo 1/efeitos dos fármacos , Nectinas/genética , Doenças do Sistema Nervoso/prevenção & controle , Pseudorraiva/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Linhagem Celular , Glicoproteínas/química , Herpesvirus Suídeo 1/patogenicidade , Humanos , Nectinas/antagonistas & inibidores , Nectinas/imunologia , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/virologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Pseudorraiva/genética , Pseudorraiva/imunologia , Pseudorraiva/virologia , Suínos/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
19.
Viruses ; 13(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200728

RESUMO

The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.


Assuntos
Herpesvirus Suídeo 1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Transporte Vesicular/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular , Células Cultivadas , Imunofluorescência , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Proteínas de Transporte Vesicular/genética , Vírion/ultraestrutura , Replicação Viral
20.
Vet Res ; 52(1): 95, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174954

RESUMO

Pseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


Assuntos
Sistemas CRISPR-Cas , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/patogenicidade , Animais , Feminino , Herpesvirus Suídeo 1/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Pseudorraiva/virologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...