Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 217: 114852, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35636011

RESUMO

Mutations in the GBA gene, encoding glucocerebrosidase (GCase), are linked to Gaucher disease (GD) and are the most common risk factors for Parkinson's disease (PD). The glucosylsphingosine (GlcSph) in cerebrospinal fluid (CSF) is used as a pharmacodynamic marker for GCase functionalizing therapy in GD patients. Its isobaric structural isomer, galactosylsphingosine (GalSph, psychosine), is also used as a diagnostic blood marker in Krabbe disease (KD) which is caused by a deficiency in ß-galactocerebrosidase (GALC). However, there are no reports of GlcSph quantification in the CSF of GBA-PD patients and normal healthy humans due to low concentrations. In this study, we successfully quantified GlcSph in healthy human CSF using a highly sensitive LC-MS/MS method with separation of GalSph. The lower limit of quantitation (LLOQ) was 0.1 pg/mL. Additionally, GlcSph and GalSph concentrations in the plasma and brain were determined using different LC-MS/MS methods. The mean concentrations of GlcSph and GalSph in normal human CSF were 1.07 and 9.44 pg/mL, respectively. The GalSph level in the CSF and brain was higher than that of GlcSph, whereas plasma GalSph was lower than GlcSph. Because GCase and GALC are expressed in the brain and the peripheral tissues, GlcSph and GalSph in CSF would be a good surrogate of concentration change in the brain by targeted therapies. This method measures normal levels of GlcSph and GalSph in healthy human CSF without accumulation of sphingolipids, and confirms whether abnormal CSF concentrations can be reduced to normal levels by therapy.


Assuntos
Doença de Gaucher , Doença de Parkinson , Cromatografia Líquida , Humanos , Psicosina/análogos & derivados , Psicosina/análise , Psicosina/genética , Espectrometria de Massas em Tandem
2.
J Biol Chem ; 297(3): 101064, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375644

RESUMO

An inherited deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) characterized by massive intralysosomal storage of the acidic glycosphingolipid sulfatide and progressive demyelination. Lyso-sulfatide, which differs from sulfatide by the lack of the N-linked fatty acid, also accumulates in MLD and is considered a key driver of pathology although its concentrations are far below sulfatide levels. However, the metabolic origin of lyso-sulfatide is unknown. We show here that ASA-deficient murine macrophages and microglial cells express an endo-N-deacylase that cleaves the N-linked fatty acid from sulfatide. An ASA-deficient astrocytoma cell line devoid of this activity was used to identify the enzyme by overexpressing 13 deacylases with potentially matching substrate specificities. Hydrolysis of sulfatide was detected only in cells overexpressing the enzyme fatty acid amide hydrolase (FAAH). A cell-free assay with recombinant FAAH confirmed the novel role of this enzyme in sulfatide hydrolysis. Consistent with the in vitro data, deletion of FAAH lowered lyso-sulfatide levels in a mouse model of MLD. Regardless of the established cytotoxicity of lyso-sulfatide and the anti-inflammatory effects of FAAH inhibition seen in mouse models of several neurological diseases, genetic inactivation of FAAH did not mitigate, but rather exacerbated the disease phenotype of MLD mice. This unexpected finding was reflected by worsening of rotarod performance, increase of anxiety-related exploratory activity, aggravation of peripheral neuropathy, and reduced life expectancy. Thus, we conclude that FAAH has a protective function in MLD and may represent a novel therapeutic target for treatment of this fatal condition.


Assuntos
Amidoidrolases/metabolismo , Leucodistrofia Metacromática/patologia , Psicosina/análogos & derivados , Amidoidrolases/genética , Amidoidrolases/fisiologia , Animais , Linhagem Celular , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/genética , Modelos Animais de Doenças , Feminino , Leucodistrofia Metacromática/enzimologia , Leucodistrofia Metacromática/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , Cultura Primária de Células , Psicosina/genética , Psicosina/metabolismo , Sulfoglicoesfingolipídeos/metabolismo
3.
Biomolecules ; 11(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374753

RESUMO

Krabbe disease (KD, or globoid cell leukodystrophy; OMIM #245200) is an inherited neurodegenerative condition belonging to the class of the lysosomal storage disorders. It is caused by genetic alterations in the gene encoding for the enzyme galactosylceramidase, which is responsible for cleaving the glycosydic linkage of galatosylsphingosine (psychosine or PSY), a highly cytotoxic molecule. Here, we describe morphological and functional alterations in the visual system of the Twitcher (TWI) mouse, the most used animal model of Krabbe disease. We report in vivo electrophysiological recordings showing defective basic functional properties of the TWI primary visual cortex. In particular, we demonstrate a reduced visual acuity and contrast sensitivity, and a delayed visual response. Specific neuropathological alterations are present in the TWI visual cortex, with reduced myelination, increased astrogliosis and microglia activation, and around the whole brain. Finally, we quantify PSY content in the brain and optic nerves by high-pressure liquid chromatography-mass spectrometry methods. An increasing PSY accumulation with time, the characteristic hallmark of KD, is found in both districts. These results represent the first complete characterization of the TWI visual system. Our data set a baseline for an easy testing of potential therapies for this district, which is also dramatically affected in KD patients.


Assuntos
Galactosilceramidase/genética , Leucodistrofia de Células Globoides/genética , Doenças por Armazenamento dos Lisossomos/genética , Córtex Visual/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Galactosilceramidase/metabolismo , Humanos , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Camundongos , Bainha de Mielina/metabolismo , Psicosina/genética , Psicosina/metabolismo , Córtex Visual/patologia
4.
Mol Genet Metab ; 129(4): 286-291, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32044242

RESUMO

In Gaucher disease type 1 (GD1), genetic deficiency of lysosomal glucocerebrosidase results in the accumulation of glucosylceramide and glucosylsphingosine (GlcSph), that underlie chronic lipid-mediated metabolic inflammation. An important age-related phenotype is high risk of monoclonal gammopathy (MG), including multiple myeloma. We identified GlcSph, a pathological lyso-sphingolipid exclusively elevated in GD, as a mediator of B cell activation and as an antigenic target for GD1-associated MG. Saposin C (SapC), is a lipid-binding protein and activator of lysosomal glucocerebrosidase, which when mutated, cause a rare variant of GD. Sera of GD1 patients with MG of diverse immunoglobulin types were compared to GD patients without gammopathy for reactivity against GlcSph and SapC. We show reactivity of clonal immunoglobulin in GD1 to GlcSph but not to SapC. In two patients with GD1 and gammopathy, GlcSph-reduction therapy with eliglustat resulted in reduction in clonal Ig. Together, our data show that GlcSph but not SapC is the antigenic target in GD1-associated MG and that therapy aimed at reducing the levels of immunogenic lipid resulted in reduction of clonal immunoglobulin in vivo.


Assuntos
Doença de Gaucher/genética , Imunoglobulinas/imunologia , Gamopatia Monoclonal de Significância Indeterminada/genética , Psicosina/análogos & derivados , Saposinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Feminino , Doença de Gaucher/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/etiologia , Psicosina/genética , Psicosina/imunologia , Pirrolidinas/uso terapêutico
5.
Neurobiol Dis ; 120: 51-62, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30176352

RESUMO

Krabbe disease (KD), or globoid cell leukodystrophy, is an inherited lysosomal storage disease with leukodystrophy caused by a mutation in the galactosylceramidase (GALC) gene. The majority of patients show the early onset form of KD dominated by cerebral demyelination with apoptotic oligodendrocyte (OL) death. However, the initial pathophysiological changes in developing OLs remain poorly understood. Here, we show that OLs of twitcher mice, an authentic mouse model of KD, exhibited developmental defects and impaired myelin formation in vivo and in vitro. In twitcher mouse brain, abnormal myelination and reduced expression of myelin genes during the period of most active OL differentiation and myelination preceded subsequent progressive OL death and demyelination. Importantly, twitcher mouse OL precursor cells proliferated normally, but their differentiation and survival were intrinsically defective. These defects were associated with aberrant accumulation of endogenous psychosine (galactosylsphingosine) and reduced activation of the Erk1/2 and Akt/mTOR pathways before apoptotic cell death. Collectively, our results demonstrate that GALC deficiency in developing KD OLs profoundly affects their differentiation and maturation, indicating the critical contribution of OL dysfunction to KD pathogenesis.


Assuntos
Modelos Animais de Doenças , Leucodistrofia de Células Globoides/metabolismo , Oligodendroglia/metabolismo , Psicosina/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/patologia , Psicosina/genética
6.
PLoS One ; 13(2): e0193438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29481565

RESUMO

α-Synuclein aggregation has been linked to Gaucher's disease (GD) and Krabbe's disease (KD), lysosomal conditions affecting glycosphingolipid metabolism. α-Synuclein pathology has been directly attributed to the dysregulation of glycosphingolipids in both conditions, specifically to increased galactosylsphingosine (psychosine) content in the context of KD. Furthermore, the gene (GALC) coding for the psychosine degrading enzyme galactosylceramidase (GALC), has recently been identified as a risk loci for Parkinson's disease. However, it is unknown if changes in psychosine metabolism and GALC activity in the context of the aging human brain correlate with Parkinson's disease. We investigated psychosine accumulation and GALC activity in the aging brain using fresh frozen post-mortem tissue from Parkinson's (PD, n = 10), Alzheimer's (AD, n = 10), and healthy control patients (n = 9), along with tissue from neuropsychiatric patients (schizophrenia, bipolar disorder and depression, n = 15 each). An expanded mutational analysis of PD (n = 20), AD (n = 10), and healthy controls (n = 30) examined if PD was correlated with carriers for severe GALC mutations. Psychosine content within the cerebral cortex of PD patients was elevated above control patients. Within all patients, psychosine displayed a significant (p<0.05) and robust regional distribution in the brain with higher levels in the white matter and substantia nigra. A mutational analysis revealed an increase in the incidence of severe GALC mutations within the PD patient population compared to the cohorts of Alzheimer's patients and healthy controls tested. In addition to α-synuclein pathology identified in the KD brain, control patients identified as GALC mutational carriers or possessing a GALC pathogenic variant had evidence of α-synuclein pathology, indicating a possible correlation between α-synuclein pathology and dysregulation of psychosine metabolism in the adult brain. Carrier status for GALC mutations and prolonged exposure to increased psychosine could contribute to α-synuclein pathology, supporting psychosine metabolism by galactosylceramidase as a risk factor for Parkinson's disease.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Galactosilceramidase/metabolismo , Doença de Parkinson/metabolismo , Psicosina/genética , Psicosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autopsia , Estudos de Coortes , Feminino , Humanos , Masculino , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo
7.
J Neurosci ; 37(40): 9617-9631, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28847804

RESUMO

Glucocerebrosidase 1 (GBA) mutations responsible for Gaucher disease (GD) are the most common genetic risk factor for Parkinson's disease (PD). Although the genetic link between GD and PD is well established, the underlying molecular mechanism(s) are not well understood. We propose that glucosylsphingosine, a sphingolipid accumulating in GD, mediates PD pathology in GBA-associated PD. We show that, whereas GD-related sphingolipids (glucosylceramide, glucosylsphingosine, sphingosine, sphingosine-1-phosphate) promote α-synuclein aggregation in vitro, glucosylsphingosine triggers the formation of oligomeric α-synuclein species capable of templating in human cells and neurons. Using newly generated GD/PD mouse lines of either sex [Gba mutant (N370S, L444P, KO) crossed to α-synuclein transgenics], we show that Gba mutations predispose to PD through a loss-of-function mechanism. We further demonstrate that glucosylsphingosine specifically accumulates in young GD/PD mouse brain. With age, brains exhibit glucosylceramide accumulations colocalized with α-synuclein pathology. These findings indicate that glucosylsphingosine promotes pathological aggregation of α-synuclein, increasing PD risk in GD patients and carriers.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a prevalent neurodegenerative disorder in the aging population. Glucocerebrosidase 1 mutations, which cause Gaucher disease, are the most common genetic risk factor for PD, underscoring the importance of delineating the mechanisms underlying mutant GBA-associated PD. We show that lipids accumulating in Gaucher disease, especially glucosylsphingosine, play a key role in PD pathology in the brain. These data indicate that ASAH1 (acid ceramidase 1) and GBA2 (glucocerebrosidase 2) enzymes that mediate glucosylsphingosine production and metabolism are attractive therapeutic targets for treating mutant GBA-associated PD.


Assuntos
Glucosilceramidase/biossíntese , Mutação/fisiologia , Doença de Parkinson/metabolismo , Psicosina/análogos & derivados , alfa-Sinucleína/biossíntese , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Glucosilceramidase/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Psicosina/biossíntese , Psicosina/genética , alfa-Sinucleína/genética
8.
J Neurosci Res ; 94(11): 974-81, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638582

RESUMO

Until recently, lipids were considered inert building blocks of cellular membranes. This changed three decades ago when lipids were found to regulate cell polarity and vesicle transport, and the "lipid raft" concept took shape. The lipid-driven membrane anisotropy in form of "rafts" that associate with proteins led to the view that organized complexes of lipids and proteins regulate various cell functions. Disturbance of this organization can lead to cellular, tissue, and organ malfunction. Sphingolipidoses, lysosomal storage diseases that are caused by enzyme deficiencies in the sphingolipid degradation pathway, were found to be particularly detrimental to the brain. These enzyme deficiencies result in accumulation of sphingolipid metabolites in lysosomes, although it is not yet clear how this accumulation affects the organization of lipids in cellular membranes. Krabbe's disease (KD), or globoid cell leukodystrophy, was one of the first sphingolipidosis for which the raft concept offered a potential mechanism. KD is caused by mutations in the enzyme ß-galactocerebrosidase; however, elevation of its substrate, galactosylceramide, is not observed or considered detrimental. Instead, it was found that a byproduct of galactosylceramide metabolism, the lysosphingolipid psychosine, is accumulated. The "psychosine hypothesis" has been refined by showing that psychosine disrupts lipid rafts and vesicular transport critical for the function of glia and neurons. The role of psychosine in KD is an example of how the disruption of sphingolipid metabolism can lead to elevation of a toxic lysosphingolipid, resulting in disruption of cellular membrane organization and neurotoxicity. © 2016 Wiley Periodicals, Inc.


Assuntos
Glicosídeo Hidrolases/genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Mutação/genética , Psicosina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Glicosídeo Hidrolases/deficiência , Humanos , Leucodistrofia de Células Globoides/patologia , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Psicosina/genética
9.
PLoS One ; 8(3): e57560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23520473

RESUMO

Gaucher disease results from GBA1 mutations that lead to defective acid ß-glucosidase (GCase) mediated cleavage of glucosylceramide (GC) and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*). Gba1 heteroallelism for D409V and null alleles (9V/null) led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C*) with V394L homozygosity (4L;C*) showed major GC18:0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C*) led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.


Assuntos
Envelhecimento/metabolismo , Encéfalo/enzimologia , Doença de Gaucher/enzimologia , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Mutação de Sentido Incorreto , Psicosina/análogos & derivados , Envelhecimento/genética , Envelhecimento/patologia , Substituição de Aminoácidos , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidas/genética , Humanos , Camundongos , Camundongos Mutantes , Especificidade de Órgãos/genética , Psicosina/genética , Psicosina/metabolismo , Saposinas/genética , Saposinas/metabolismo
10.
J Biol Chem ; 287(6): 4275-87, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22167193

RESUMO

Isofagomine (IFG) is an acid ß-glucosidase (GCase) active site inhibitor that acts as a pharmacological chaperone. The effect of IFG on GCase function was investigated in GCase mutant fibroblasts and mouse models. IFG inhibits GCase with K(i) ∼30 nM for wild-type and mutant enzymes (N370S and V394L). Fibroblasts treated with IFG at µM concentrations showed enhancement of WT and mutant GCase activities and protein levels. Administration of IFG (30 mg/kg/day) to the mice homozygous for GCase mutations (V394L, D409H, or D409V) led to increased GCase activity in visceral tissues and brain extracts. IFG effects on GCase stability and substrate levels were evaluated in a mouse model (hG/4L/PS-NA) that has doxycycline-controlled human WT GCase (hGCase) expression driven by a liver-specific promoter and is also homozygous for the IFG-responsive V394L GCase. Both human and mouse GCase activity and protein levels were increased in IFG-treated mice. The liver-secreted hGCase in serum was stabilized, and its effect on the lung and spleen involvement was enhanced by IFG treatment. In 8-week IFG-treated mice, the accumulated glucosylceramide and glucosylsphingosine were reduced by 75 and 33%, respectively. Decreases of storage cells were correlated with >50% reductions in substrate levels. These results indicate that IFG stabilizes GCase in tissues and serum and can reduce visceral substrates in vivo.


Assuntos
Doença de Gaucher/enzimologia , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Imino Piranoses/farmacologia , Psicosina/análogos & derivados , Substituição de Aminoácidos , Animais , Domínio Catalítico , Células Cultivadas , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/genética , Glucosilceramidas/genética , Humanos , Camundongos , Mutação de Sentido Incorreto , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Psicosina/genética , Psicosina/metabolismo
11.
Neurochem Res ; 23(3): 251-9, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9482237

RESUMO

Twenty five years ago in 1972, a hypothesis was introduced to explain the pathogenetic mechanism underlying the unusual cellular and biochemical characteristics of globoid cell leukodystrophy (Krabbe disease). It postulated that galactosylsphingosine (psychosine), which cannot be degraded due to the underlying genetic defect, is responsible for the very rapid loss of the oligodendrocytes and the consequent paradoxical analytical finding, the lack of accumulation of the primary substrate, galactosylceramide, in patients' brain. It took nearly ten years before the actual accumulation of psychosine was demonstrated in human Krabbe patients and also in the brain of twitcher mice, an equivalent murine mutant. Meanwhile this "psychosine hypothesis" has been extended to Gaucher disease and then to a more general hypothesis encompassing all sphingolipidoses that the "lyso-derivatives" of the primary sphingolipid substrates of the defective enzymes in respective disorders play a key role in their pathogenesis. Some of these extensions not only remain speculative without conclusive factual evidence but may eventually turn out to be an overstretching. This article attempts, from my personal perspective, at tracing historical development of the "psychosine hypothesis" and examining its current status and possible future directions.


Assuntos
Leucodistrofia de Células Globoides/história , Psicosina/história , Psicosina/metabolismo , Animais , História do Século XVIII , História do Século XX , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Psicosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...