Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12149, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34234174

RESUMO

Pteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.


Assuntos
Arsênio/metabolismo , Flores/metabolismo , Raízes de Plantas/metabolismo , Pteris/metabolismo , Poluentes do Solo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Autorradiografia , Biodegradação Ambiental , Transporte Biológico , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Hidroponia/métodos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Tomografia por Emissão de Pósitrons , Pteris/crescimento & desenvolvimento , Pteris/ultraestrutura
2.
Sci Rep ; 11(1): 5833, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712650

RESUMO

Heavy metals are naturally occurring elements that have a high atomic weight and let out in the environment by agriculture, industry, mining and therapeutic expertise and thrilling amassing of these elements pollutes the environment. In this study we have investigated the potential of garlic interplanting in promoting hyper accumulation and absorption of heavy metals to provide a basis for phytoremediation of polluted land. Monoculture and inter-plantation of garlic were conducted to investigate the absorption of cadmium and lead contamination in the land. A group of experiments with single planting (monoculture) of Lolium perenne, Conyza canadensis and Pteris vittata as accumulators were used. The results have shown that garlic has a potential as a hyper accumulate and absorb heavy metals. It was found that the accumulation of Cd and Pb was much higher with inter-planting. Garlic boosts up the absorption of heavy metals in Lolium perenne of Cd 66% and Pb 44% respectively. The Inter-planting of garlic with Pteris vittata promotes the Cd 26% and Pb 15%. While the maximum accumulation of Lead 87% and Cadmium 77% occurred in Conyza canadensis herb plant. The bacterial diversity in the soil was analyzed for each experimental soil and was found that the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Planctomycetes were commonly abundant in both single planting (monoculture) of ryegrass and interplanting ryegrass with garlic habitats. Variances were observed in the bacterial floral composition of single (monoculture) and intercropping (interplant) soils. Relative abundance of bacterial taxa revealed that the proportion of Proteobacteria, Acidobacteria, and Actinobacteria in the inter-planting group was slightly higher, while Firmicutes and Planctomycetes were low. This study provides the evidence to control the heavy metals contaminated soils with weed species. Growth promotion and heavy metal uptake of neighboring plants proved the specific plant-plant and plant-microbial associations with garlic plants. This inter-planting strategy can be used to improve heavy metal absorption.


Assuntos
Alho/crescimento & desenvolvimento , Metais Pesados/análise , Microbiologia do Solo , Poluentes do Solo/análise , Bactérias/isolamento & purificação , Biodegradação Ambiental , Biodiversidade , Conyza/crescimento & desenvolvimento , Conyza/metabolismo , Alho/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Metais Pesados/metabolismo , Pteris/crescimento & desenvolvimento , Pteris/metabolismo , Poluentes do Solo/metabolismo
3.
PLoS One ; 15(5): e0233055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413087

RESUMO

Given the close relationship between cytokinins (CKs), photosynthesis and nitrogen metabolism, this study assessed the effect of arsenic (As) contamination on these metabolic components in the As-hyperaccumulators Pteris cretica L. var. Albo-lineata (Pc-A) and var. Parkerii (Pc-P) as well as the As-non-hyperaccumulator Pteris straminea Mett. ex Baker (Ps). The ferns were cultivated in a pot experiment for 23 weeks in soil spiked with As at the levels 20 and 100 mg·kg-1. For the purpose of this study, the CKs were placed into five functionally different groups according to their structure and physiological roles: bioactive forms (bCKs; CK free bases); inactive or weakly active forms (dCKs; CK N-glucosides); transport forms (tCKs; CK ribosides); storage forms (sCKs; O-glucosides); and primary products of CK biosynthesis (ppbCKs; CK nucleotides). An important finding was higher CKs total content, accumulation of sCKs and reduction of dCKs in As-hyperaccumulators in contrast to non-hyperaccumulator ferns. A significant depletion of C resources was confirmed in ferns, especially Ps, which was determined by measuring the photosynthetic rate and chlorophyll fluorescence. A fluorescence decrease signified a reduction in the C/N ratio, inducing an increase of bioactive CKs forms in Pc-P and Ps. The impact of As on N utilization was significant in As-hyperaccumulators. The glutamic acid/glutamine ratio, an indicator of primary N assimilation, diminished in all ferns with increased As level in the soil. In conclusion, the results indicate a large phenotypic diversity of Pteris species to As and suggest that the CKs composition and the glutamic acid/glutamine ratio can be used as a tool to diagnose As stress in plants.


Assuntos
Arsênio/toxicidade , Citocininas/metabolismo , Nitrogênio/metabolismo , Pteris/efeitos dos fármacos , Pteris/metabolismo , Aminoácidos/metabolismo , Biomassa , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Pteris/crescimento & desenvolvimento , Poluentes do Solo/toxicidade
4.
J Hazard Mater ; 388: 121756, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31818671

RESUMO

Both thallium (Tl) and arsenic (As) bear severe toxicity. Brake fern (Pteris vittata L.) is well-known for its hyperaccumulation capacity of As, yet its role on Tl accumulation remains unknown. Herein, brake ferns growing near an As tailing site in Yunnan, Southwestern China are for the first time discovered as a co-hyperaccumulator of both Tl and As. The results showed that the brake ferns extracted both As and Tl efficiently from the soils into the fronds. The studied ferns growing on Tl and As co-polluted soils were found to accumulate extremely high levels of both As (7215-11110 mg/kg) and Tl (6.47-111 mg/kg). Conspicuously high bio-accumulation factor (BCF) was observed for As (7.8) and even higher for Tl (28.4) among these co-hyperaccumulators, wherein the contents of As and Tl in contaminated soils were 1240 ± 12 and 3.91 ± 0.01 mg/kg, respectively. The applied advanced characterization techniques (e.g. transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS)) indicated a preferential uptake of Tl(I) while simultaneous accumulation of As (III) and As(V) from the Tl(I)/Tl(III)-As (III)/As(V) co-existent rhizospheric soils. The findings benefit the phytoremediation practice and pose implications for managing and restoring Tl-As co-contaminated soils in other countries.


Assuntos
Arsênio/análise , Bioacumulação , Recuperação e Remediação Ambiental/métodos , Mineração , Pteris/crescimento & desenvolvimento , Poluentes do Solo/análise , Tálio/análise , Arsênio/metabolismo , Transporte Biológico , China , Pteris/metabolismo , Poluentes do Solo/metabolismo , Tálio/metabolismo
5.
Ecotoxicol Environ Saf ; 182: 109462, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31351329

RESUMO

Wheat (W) and accumulators (A) were planted in plots (arsenic amended soil and without arsenic) designed with ecotoxicological concern for arsenic safe-grains. For the study sixteen plots of 2 × 2 × 0.5 m (l × b × h) size were prepared. Arsenic (As) in the form of sodium arsenate was applied at 50 mg/kg in plots. Out of these sixteen plots eight plots had arsenic amended soil and rest 8 without any arsenic (C). Accumulator's viz. Pteris vittata (PV), Phragmites australis (PA) and Vetiveria zizanioides (VZ) were planted along with wheat in combination (W + PV, W + PA and W + VZ) in twelve plots (6 AWAs plots and 6 AWC plots). In the rest 4 plots (2 WAs plots and 2 WC plots), only wheat was planted. The study was conducted for two cropping seasons, where accumulators were left in the plots between the cropping seasons except that before 2nd cropping accumulators were properly pruned and extra tillers were removed. The germination % of wheat in WAs in 1st and the 2nd cropping season was found to be 55 and 57%, while in AWAs and AWC plots it was between 86 and 92% (W + VZ, 56 and 73%). The physiological activity was found to be reduced in WAs plots compared to AWAs (except for vetiver combination) and AWC plots in both cropping seasons. The antioxidant activity was enhanced in WAs compared with AWAs. The arsenic concentration in grains of wheat was within the permissible limit set by WHO and GOI in AWAs plots while it exceeded the limit in W + VZ (in 1st cropping) and WAs in both cropings.


Assuntos
Antioxidantes/metabolismo , Arseniatos/análise , Poaceae/química , Pteris/química , Poluentes do Solo/análise , Triticum/química , Biodegradação Ambiental , Vetiveria/química , Vetiveria/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Pteris/crescimento & desenvolvimento , Solo/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
6.
Sci Total Environ ; 660: 18-24, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30639714

RESUMO

Soils contaminated with Pb and As are difficult to remediate. In this study, the utility of coupling As-hyperaccumulator Pteris vittata with metal-resistant rhizobacteria was explored. Siderophore-producing and P-solubilizing As-resistant bacteria from the P. vittata rhizosphere were screened for resistance to multiple metals. Results indicated Pseudomonas spp. strain PG-12 was most efficient in resisting multiple metals, i.e., up to 0.6 mM Cd and 10 mM Pb. Amplification of gene fragments encoding various metal efflux transporters (PbrA and CadA2) from genomic DNA of PG-12 suggested that metal efflux might play a role in its metal resistance and detoxification. In addition, PG-12 produced significant levels of plant growth hormones including 17.4 µg mL-1 indole acetic acid and 3.54 µg mL-1 gibberellin. P. vittata sporophytes inoculated with PG-12 were grown in Pb-contaminated medium and exhibited improved growth, increased P uptake, and reduced Pb uptake into plant tissue compared to the control. Results demonstrated that viable PG-12 cells were responsible for Pb immobilization and plant growth enhancement in P. vittata. The ability of PG-12 cells to solubilize P and display resistance to multiple metals combined with the production of plant hormones indole acetic acid and gibberellin make PG-12 a suitable candidate for plant growth promotion in metal-contaminated soil.


Assuntos
Bactérias/metabolismo , Chumbo/metabolismo , Pteris/crescimento & desenvolvimento , Rizosfera , Arsênio/metabolismo , Biodegradação Ambiental , Pteris/efeitos dos fármacos , Microbiologia do Solo
7.
Ecotoxicol Environ Saf ; 169: 306-315, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30458397

RESUMO

Co-planting with multiple plant species has great value for the remediation of soil co-contaminated with metal(loid)s. A pot experiment has been conducted to study the growth, phytoextraction of metal(loid) and complementarity by co-planting Pteris vittata L. with three metal(loid)-tolerant species with large biomass (namely Arundo donax L., Morus alba L., and Broussonetia papyrifera L.) on soil co-contaminated with As, Cd, Pb, and Zn. The results showed that the co-planting can favor the growth and uptake of As in hyperaccumulator P. vittata L., and improve comprehensive extraction of metal(loid). The total biomass and content of As in the roots of P. vittata L. under the co-planting system were significantly (p < 0.05) improved by 117.5% and 122.0%, respectively, compared with that in monoculture, while the content of As, Cd, Pb and Zn in the tissues of A. donax L., M. alba L. and B. papyrifera L. was slightly increased. The comprehensive accumulation amounts for As, Cd, Pb, and Zn by the four plants co-planting in contaminated soil were higher than that in part of plant's monoculture. Moreover, availability of As, Cd, and Zn in the contaminated soil was decreased in the co-planting system, meanwhile soil urease and acid phosphatase activities in soil significantly (p < 0.05) promoted as compared to the monocultures. The results suggested that positive interaction between hyperaccumulator and three metal(loid)-tolerant species can effectively enhance the growth of P. vittata L., regulate the comprehensive metal(loid)s accumulation capacity, and improve the environmental quality of contaminated soil, which drives high phytoremediation potential for metal(loid)s-contaminated soil by the co-planting.


Assuntos
Metaloides/análise , Metais Pesados/análise , Pteris/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Biomassa
8.
Chemosphere ; 220: 237-248, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30584955

RESUMO

Tree-herb co-planting is regarded as an ecologically sustainable approach for the remediation of metal(loid)-contaminated soil. In this study, two herb species, Pteris vittata L. and Arundo donax L., and two woody species, Morus alba L. and Broussonetia papyrifera L., were selected for the tree-herb co-planting, and their impacts on the changing of microbial community structure in metal(loid)-contaminated soil were studied by high-throughput sequencing. The results showed that the microbial diversity was stably maintained by the tree-herb interactions, while the composition of the microbial community was clearly affected in metal(loid)-contaminated soil. According to the Venn and flower diagrams, heat map and principal coordinate analysis, both plant monocultures and co-planting had specific microbial community structures, which suggested that the composition and abundance of bacterial communities varied between plant monoculture and tree-herb co-planting treatments. In particular, A. donax L. played a vital role in increasing the abundances of Cyanobacteria (>1%) in metal(loid)-contaminated soil when co-planted with woody plants. Furthermore, some specific microorganisms combined with plants played a key role in improving enzyme activity in the contaminated soil. Correspondingly, sucrase and acid phosphatase activities in monoculture and co-planting treatments significantly (p < 0.05) increased by 1.05-3.37 and 7.24-20.3 times. These results indicated that the rhizospheric interactions in the tree-herb co-planting system positively affected the soil microbes and had stronger impacts on the composition of soil microorganisms, which was closely related to the improvement of the biological quality in the metal(loid)-contaminated soil.


Assuntos
Cianobactérias/efeitos dos fármacos , Enzimas/metabolismo , Metaloides/análise , Poaceae/crescimento & desenvolvimento , Pteris/crescimento & desenvolvimento , Poluentes do Solo/análise , Árvores/crescimento & desenvolvimento , Biodegradação Ambiental , Solo/química , Microbiologia do Solo
9.
Plant Physiol Biochem ; 132: 652-659, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30340177

RESUMO

Our previous results showed that content of trans-zeatin (tZ) increases in leaves of heavy metal hyperaccumulators but decreases in non-hyperaccumulators growing in multiple heavy metal polluted soils. However, the relationship between arsenic (As) accumulation and endogenous forms of cytokinins (CTKs) in As hyperaccumulators remains unknown. Here a hydroponic experiment was conducted to compare the CTK forms in the As hyperaccumulator Pteris cretica var. nervosa and non-hyperaccumulator Pteris ensiformis under arsenate stress (0, 2, 5, and 10 mg L-1). A simple and cost-effective procedure for the determination of CTK forms in plants was established, and a stepwise regression analysis was used to study the relationship among total As contents and different forms of endogenous CTKs in fronds of two plants. The results showed that the optimized chromatographic parameters were Zobax SB-C18 column (5 µm × 4.6 mm × 250 mm), UV detection detector at 269 nm, a flow rate of 0.6 mL min-1, constant temperature of 45 °C and gradient elution with methanol-acetonitrile-1% acetic acid. Contents of chlorophylls in the fronds of P. ensiformis were significantly decreased with addition of As compared to P. cretica var. nervosa. Furthermore, the total As content in fronds of P. cretica var. nervosa was positively correlated to the contents of N6-(2-isopentenyl) adenine-7-ß-D-glucoside (iP7G) and N6-(2-isopentenyl) adenosine (iPR). However, the total As content in fronds of P. ensiformis was negatively correlated to its trans-zeatin riboside (ZR) content. Therefore, iP7G and iPR could positively improve As accumulation by P. cretica var. nervosa.


Assuntos
Arseniatos/toxicidade , Citocininas/metabolismo , Pteris/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Pteris/anatomia & histologia , Pteris/efeitos dos fármacos , Pteris/crescimento & desenvolvimento , Padrões de Referência , Análise de Regressão , Especificidade da Espécie
10.
Ecotoxicol Environ Saf ; 158: 37-43, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29656162

RESUMO

Cytokinins (CTKs) are effective in alleviating abiotic stresses on plants, but little information is available regarding the effects of CTKs on arsenic (As) accumulation and changes of chloroplast ultrastructure in plants with different As-accumulating ability. Here a hydroponic experiment was designed to evaluate the effects of different concentration of kinetin (KT, 0-40 mg/L) on growth and chloroplast ultrastructure of As hyperaccumulator Pteris cretica var. nervosa and non-hyperaccumulator Pteris ensiformis treated by 5 mg/L arsenate for 14 days. The growth parameters, As accumulation, contents of photosynthetic pigments and chloroplast ultrastructure were examined. The results showed that KT promoted the growth of two plants, and significantly increased As accumulation and translocation in P. cretica var. nervosa and P. ensiformis at 5 and 20 mg/L, respectively. Additionally, the contents of chlorophyll a and carotenoid in two plants showed no significant difference at 20 mg/L KT compared to the control. Chloroplast ultrastructure of P. cretica var. nervosa was integral with KT application. Comparatively, the swollen chloroplasts were increased, plasmolysis appeared, and chloroplast grana slice layers and stroma lamellas were clearly separated or distorted at 5 mg/L KT in P. ensiformis. The length and width of chloroplasts in P. cretica var. nervosa were significantly increased with KT addition compared to the control. However, the length of chloroplasts in P. ensiformis was significantly decreased but their width showed no significant change. Furthermore, the deterioration of chloroplast ultrastructure in P. ensiformis was ameliorated by 40 mg/L KT. These results suggested that KT increased As accumulation and was beneficial to maintain the photosynthetic pigments for a good growth of plants. Therefore, KT could maintain and reorganize the ultrastructure integrality of As-stressed chloroplasts to some extent for the two plants, especially at high concentration.


Assuntos
Arseniatos/efeitos adversos , Arsênio/efeitos adversos , Cloroplastos/efeitos dos fármacos , Cinetina/farmacologia , Fotossíntese/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Pteris/efeitos dos fármacos , Adaptação Fisiológica , Arseniatos/metabolismo , Arsênio/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Cloroplastos/ultraestrutura , Hidroponia , Reguladores de Crescimento de Plantas/farmacologia , Pteris/crescimento & desenvolvimento , Pteris/metabolismo , Pteris/ultraestrutura , Especificidade da Espécie , Estresse Fisiológico
11.
Environ Sci Pollut Res Int ; 25(13): 12600-12611, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29468391

RESUMO

Soils that are slightly or moderately contaminated with arsenic (As) can be safely utilized by intercropping As hyperaccumulator Pteris vittata with cash crops. Introducing hyperaccumulators into crop planting systems results in the alleviation of the adverse effects of As and competition effect for resources. The balance between these two effects determines intercropping efficiency. The effect of using different hyperaccumulator populations on such balance is the focus of this study. Through a tank experiment, four P. vittata populations were compared on the basis of their intercropping efficiencies and physiological and morphological characteristics. The evaluation of the intercropping efficiency of P. vittata was mainly based on the capabilities of the species to promote growth and decrease As concentrations in intercropped Morus alba. Two populations of P. vittata were appropriate for intercropping with M. alba, with the alleviation effect of As harm as the main effect on the intercropping system. These populations showed extensive root overlap with M. alba and efficient uptake of bioavailable As, thus depleting As in the rhizosphere and lowering As risk. After different P. vittata populations were used, varied interspecific interactions were observed. Root overlap and aboveground morphological parameters are the key factors determining intercropping efficiency among P. vittata populations.


Assuntos
Arsênio/análise , Produção Agrícola/métodos , Morus/crescimento & desenvolvimento , Pteris/crescimento & desenvolvimento , Poluentes do Solo/análise , Biodegradação Ambiental , Morus/metabolismo , Raízes de Plantas/química , Pteris/metabolismo , Rizosfera , Solo/química
12.
Environ Sci Pollut Res Int ; 25(1): 124-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27928750

RESUMO

Research on the appropriate method for evaluating phytoremediation efficiency is limited. A 2-year field experiment was conducted to investigate phytoremediation efficiency using the hyperaccumulator Pteris vittata on an arsenic (As)-contaminated site. The remediation efficiency was evaluated through the removal rate of As in soils and extraction rate of heavy metals in plants. After 2 years of remediation, the concentration of total As in soils decreased from 16.27 mg kg-1 in 2012 to 14.58 mg kg-1 in 2014. The total remediation efficiency of As was 10.39% in terms of the removal rate of heavy metals calculated for soils, whereas the remediation efficiency calculated from As uptake by P. vittata was 16.09%. Such a discrepancy aroused further consideration on the potential input of As. A large amount of As was brought in by atmospheric emissions, which possibly biased the calculation of remediation efficiency. In fact, considering also the atmospheric depositions of As, the corrected removal rate of As from soil was 16.57%. Therefore, the results of this work suggest that (i) when evaluating the phytoextraction efficiency, the whole input and output cycle of the element of interest in the targeted ecosystem must be considered, and (ii) P. vittata has the potential to be used to remediate As-contaminated soils in Henan Province, China.


Assuntos
Arsênio/análise , Metais Pesados/análise , Pteris/crescimento & desenvolvimento , Poluentes do Solo/análise , Arsênio/metabolismo , Biodegradação Ambiental , China , Modelos Teóricos , Pteris/metabolismo , Solo/química , Poluentes do Solo/metabolismo
13.
Environ Pollut ; 223: 230-237, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28108165

RESUMO

Arsenic (As) in soils is often adsorbed on Fe-(hydro)oxides surface, rendering them more resistant to dissolution, which is undesirable for phytoremediation of As-contaminated soils. Arsenic hyperaccumulator Pteris vittata prefers to grow in calcareous soils where available Fe and As are low. To elucidate its mechanisms of acquiring Fe and As from insoluble sources in soils, we investigated dissolution of goethite with pre-adsorbed arsenate (AsV; As-goethite) in presence of four organic ligands, including two root exudates (oxalate and phytate, dominant in P. vittata) and two microbial siderophores (PG12-siderophore and desferrioxamine B). Their presence increased As solubilization from As-goethite from 0.03 to 0.27-5.33 mg L-1 compared to the control. The siderophore/phytate bi-ligand treatment released 7.42 mg L-1 soluble Fe, which was 1.2-fold that of the sum of siderophore and phytate, showing a synergy in promoting As-goethite dissolution. In the ligand-mineral-plant system, siderophore/phytate was most effective in releasing As and Fe from As-goethite. Moreover, the continuous plant uptake induced more As-goethite dissolution. The continued release of As and Fe significantly enhanced their plant uptake (from 0.01 to 0.43 mg plant-1 As and 2.7-14.8 mg plant-1 Fe) and plant growth (from 1.2 to 3.1 g plant-1 fw) in P. vittata. Since microbial siderophores and root exudates often coexist in soil rhizosphere, their synergy in enhancing dissolution of insoluble As-Fe minerals may play an important role in efficient phytoremediation of As-contaminated soils.


Assuntos
Arsenicais/metabolismo , Compostos de Ferro/metabolismo , Minerais/metabolismo , Raízes de Plantas/metabolismo , Pteris/metabolismo , Sideróforos/metabolismo , Poluentes do Solo/análise , Solo/química , Arsenicais/química , Biodegradação Ambiental , Compostos de Ferro/química , Minerais/química , Raízes de Plantas/química , Pteris/crescimento & desenvolvimento , Poluentes do Solo/química , Solubilidade
14.
Ecotoxicol Environ Saf ; 138: 199-205, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28061413

RESUMO

A pot experiment was conducted to compare the content of endogenous trans-zeatin (Z), plant arsenic (As) uptake and physiological indices in the fronds of As-hyperaccumulator (Pteris cretica var. nervosa) and non-hyperaccumulator (Pteris ensiformis). Furthermore, a stepwise regression method was used to study the relationship among determined indices, and the time-course effect of main indices was also investigated under 100mg/kg As stress with time extension. In the 100-200mg/kg As treatments, plant height showed no significant difference and endogenous Z content significantly increased in P. cretica var. nervosa compared to the control, but a significant decrease of height and endogenous Z was observed in P. ensiformis. The concentrations of As (III) and As (V) increased significantly in the fronds of two plants, but this increase was much higher in P. cretica var. nervosa. Compared to the control, the contents of chlorophyll and soluble protein were significantly increased in P. cretica var. nervosa but decreased in P. ensiformis in the 200mg/kg As treatment, respectively. A significant positive correlation was found between the contents of endogenous Z and total As in P. cretica var. nervosa, but such a correlation was not found in P. ensiformis. Additionally, in the time-course effect experiment, a peak value of each index was appeared in the 43rd day in two plants, except for chlorophyll in P. ensiformis, but this value was significantly higher in P. cretica var. nervosa than that in P. ensiformis. In conclusion, a higher endogenous Z content contributed to As accumulation of P. cretica var. nervosa under As stress.


Assuntos
Arsênio/metabolismo , Arsênio/farmacologia , Pteris/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/farmacologia , Zeatina/metabolismo , Arsênio/análise , Biodegradação Ambiental , Clorofila/metabolismo , Pteris/química , Pteris/crescimento & desenvolvimento , Fatores de Tempo , Zeatina/análise
15.
Int J Phytoremediation ; 19(5): 463-469, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739905

RESUMO

A pot experiment was conducted to explore the phytoremediation of a diphenylarsinic acid (DPAA)-spiked soil using Pteris vittata associated with exogenous Phyllobacterium myrsinacearum RC6b. Removal of DPAA from the soil, soil enzyme activities, and the functional diversity of the soil microbial community were evaluated. DPAA concentrations in soil treated with the fern or the bacterium were 35-47% lower than that in the control and were lowest in soil treated with P. vittata and P. myrsinacearum together. The presence of the bacterium added in the soil significantly increased the plant growth and DPAA accumulation. In addition, the activities of dehydrogenase and fluorescein diacetate hydrolysis and the average well-color development values increased by 41-91%, 37-78%, and 35-73%, respectively, in the treatments with P. vittata and/or P. myrsinacearum compared with the control, with the highest increase in the presence of P. vittata and P. myrsinacearum together. Both fern and bacterium alone greatly enhanced the removal of DPAA and the recovery of soil ecological function and these effects were further enhanced by P. vittata and P. myrsinacearum together. Our findings provide a new strategy for remediation of DPAA-contaminated soil by using a hyperaccumulator/microbial inoculant alternative to traditional physicochemical method or biological degradation.


Assuntos
Alphaproteobacteria/metabolismo , Arsenicais/metabolismo , Pteris/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Pteris/crescimento & desenvolvimento , Solo/química
16.
J Hazard Mater ; 325: 279-287, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-27940117

RESUMO

Phytoremediation of arsenic (As)-contaminated soil by hyperaccumulator Pteris vittata is promising. A better understanding of the rhizosphere microbial dynamics that regulate As availability and plant growth is important to optimize the phytoremediation process. In this study, Illumina sequencing of 16S rRNA genes was applied to assess the rhizosphere microbial community structure of P. vittata. Microbial functionality was monitored by soil enzyme activities and MPN-PCR targeting genes of interest. Arsenic (100mgkg-1 AsV) addition to soil significantly increased DOC, root exudates, As and P uptake and the frond biomass of P. vittata. Moreover, As-enrichment significantly increased soil enzyme activities involved in N, P and S cycling and the gene abundance of As transforming bacteria, Fe- and S-reducing bacteria and N and C fixing bacteria in the rhizosphere of P. vittata. Together, the results revealed that the combined selective pressure of As and rhizosphere resulted in stimulation of microbial community, which most likely has a role in reductive dissolution of Fe and S, As and P mobilization, C degradation and fixation, and N fixation. These changes appeared to have a role in mitigation of As toxicity and to promote growth and the As uptake ability of P. vittata under As-enriched conditions.


Assuntos
Arsênio/química , Exsudatos de Plantas/química , Pteris/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo , Poluentes Químicos da Água/química , Adsorção , Aminas/química , Bactérias/metabolismo , Biodegradação Ambiental , Catálise , Concentração de Íons de Hidrogênio , Íons , Cinética , Microscopia Eletrônica de Varredura , Pteris/efeitos dos fármacos , Solo/química , Poluentes do Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química
17.
Chemosphere ; 149: 366-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26874625

RESUMO

Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils.


Assuntos
Arsênio/toxicidade , Pteris/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Arsênio/análise , Arsenitos , Biodegradação Ambiental , Biomassa , Fosfatos/química , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/química , Pteris/efeitos dos fármacos , Solo , Poluentes do Solo/análise
18.
Chemosphere ; 147: 36-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26761595

RESUMO

We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 µmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation.


Assuntos
Arsênio/metabolismo , Cromatos/metabolismo , Pteris/metabolismo , Poluentes do Solo/metabolismo , Sulfatos/metabolismo , Biodegradação Ambiental , Biomassa , Cromatos/análise , Hidroponia , Peroxidação de Lipídeos/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pteris/química , Pteris/crescimento & desenvolvimento , Poluentes do Solo/análise , Sulfatos/análise
19.
Chemosphere ; 144: 1937-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547029

RESUMO

Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655-5389 (89-91% AsIII) and 971-1467 mg kg(-1) (41-73% AsIII), corresponding to 22-52% decrease in the As in the media. Bacterial inoculation enhanced As and P uptake by up to 47 and 69%, and PV growth by 20-74%, which may be related to elevated As and P in plants (r = 0.88-0.97, p < 0.05). Though AsV was supplied, 95% of the As in the bacteria-free media was AsIII, suggesting efficient efflux of AsIII by PV roots (120 µg g(-1) root fw). This was supported by the fact that no AsV was detected in media inoculated with As-reducers while 95% of AsV was detected with As-oxidizer. Our data showed that, under As-stress, PV reduced As toxicity by efficient AsIII efflux into media and AsIII translocation to the fronds, and bacteria benefited PV growth probably via enhanced As and P uptake.


Assuntos
Arseniatos/farmacocinética , Arsenitos/farmacocinética , Bactérias/metabolismo , Pteris/metabolismo , Poluentes do Solo/farmacocinética , Arseniatos/farmacologia , Arsênio/metabolismo , Arsenitos/farmacologia , Bactérias/efeitos dos fármacos , Resistência a Medicamentos , Oxirredução , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pteris/efeitos dos fármacos , Pteris/crescimento & desenvolvimento , Poluentes do Solo/farmacologia
20.
Environ Sci Pollut Res Int ; 23(4): 3578-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490937

RESUMO

In recent years, the response of fern gametophytes to environment has raised much attention. However, studies on the influence of plant invasion to fern gametophytes are scarce. Allelopathy plays an important role in biological invasion. Hence, it is necessary to study the allelopathic effects of invasive plants on fern gametophytes and elucidate the mechanisms by which invasive plants cause phytotoxicity. As one of the main invasive plants in China, Bidens pilosa exhibits allelopathic effects on spermatophyte growth. Field investigation shows that many ferns are threatened by the invasion of B. pilosa. The distribution of Pteris multifida overlaps with that of B. pilosa in China. To examine the potential involvement of allelopathic mechanisms of B. pilosa leaves, changes in the physiology in P. multifida gametophytes are analyzed. We found that cell membrane and antioxidant enzyme activities as well as photosynthesis pigment contents of the gametophytes were affected by B. pilosa leachates. Gametophytes of P. multifida exposed to B. pilosa had increased damages to cell membranes, expressed in thiobarbituric acid reacting substance (TBARS) concentrations, malondialdehyde (MDA), electrolyte leakage (membrane permeability), and degree of injury. Enzyme activities, assessed by superoxide dismutase (SOD) and catalase (CAT) as well as guaiacol peroxidase (GPX) enhanced with the increase in leachate concentration after 2-day exposure. Meanwhile, lower chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoid (Car), and the total chlorophyll were measured as leachate concentrations increased. At day 10, leaf leachates of B. pilosa exhibited the greatest inhibition. These results suggest that the observed inhibitory or stimulatory effects on the physiology studied can have an adverse effect on P. multifida and that allelopathic interference seems to have involved in this process.


Assuntos
Bidens/crescimento & desenvolvimento , Células Germinativas Vegetais/efeitos dos fármacos , Espécies Introduzidas , Feromônios/farmacologia , Pteris/efeitos dos fármacos , Alelopatia/fisiologia , Bidens/química , Catalase/metabolismo , China , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Células Germinativas Vegetais/fisiologia , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/fisiologia , Pteris/crescimento & desenvolvimento , Pteris/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...