RESUMO
Wheat yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Pst populations are composed of multiple genetic groups, each carrying one or more races characterized by different avirulence/virulence combinations. Since the severe epidemics in 2017, yellow rust has become the most economically important wheat foliar disease in Uruguay. A set of 124 Pst isolates collected from wheat fields in Uruguay between 2017 and 2021 were characterized phenotypically, and 27 of those isolates were subsequently investigated in-depth by additional molecular genotyping and race phenotyping analyses. Three genetic groups were identified, PstS7, PstS10, and PstS13, with the latter being the most prevalent. Two races previously reported in Europe, Warrior (PstS7) and Benchmark (PstS10), were detected in four and two isolates, respectively. A third race, known as Triticale2015 (PstS13), that was first detected in Europe in 2015 and in Argentina in 2017 was detected at several locations. Additional virulence to Yr3, Yr17, Yr25, Yr27, or Yr32 was detected in three new race variants within PstS13. The identification of these new races, which have not been reported outside South America, provides strong evidence of the local evolution of virulence in Pst during the recent epidemic years.
Assuntos
Doenças das Plantas , Puccinia , Triticum , Virulência/genética , Doenças das Plantas/microbiologia , Puccinia/patogenicidade , Puccinia/genética , Triticum/microbiologia , Uruguai , Genótipo , Evolução Biológica , Fenótipo , Basidiomycota/genética , Basidiomycota/patogenicidade , Basidiomycota/classificação , Basidiomycota/fisiologiaRESUMO
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. To understand the worldwide distribution of its molecular groups, as well as the diversity, differentiation, and migration of the Pst populations, 567 isolates collected from nine countries (China, Pakistan, Italy, Egypt, Ethiopia, Canada, Mexico, Ecuador, and the U.S.) in 2010-2018 were genotyped using 14 codominant simple sequence repeat markers. A total of 433, including 333 new multi-locus genotypes (MLGs), were identified, which were clustered into ten molecular groups (MGs). The MGs and country-wise populations differed in genetic diversity, heterozygosity, and correlation coefficient between the marker and virulence data. Many isolates from different countries, especially the isolates from Mexico, Ecuador, and the U.S., were found to be identical or closely related MLGs, and some of the MGs were present in all countries, indicating Pst migrations among different countries. The analysis of molecular variance revealed 78% variation among isolates, 12% variation among countries, and 10% variation within countries. Only low levels of differentiation were found by the pairwise comparisons of country populations. Of the 10 MGs, 5 were found to be involved in sexual and/or somatic recombination. Identical and closely related MLGs identified from different countries indicated international migrations. The study provides information on the distributions of various Pst genetic groups in different countries and evidence for the global migrations, which should be useful in understanding the pathogen evolution and in stressing the need for continual monitoring of the disease and pathogen populations at the global scale.