Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Sci Rep ; 14(1): 10036, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693432

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder in which loss of dopaminergic neurons in the substantia nigra results in a clinically heterogeneous group with variable motor and non-motor symptoms with a degree of misdiagnosis. Only 3-25% of sporadic Parkinson's patients present with genetic abnormalities that could represent a risk factor, thus environmental, metabolic, and other unknown causes contribute to the pathogenesis of Parkinson's disease, which highlights the critical need for biomarkers. In the present study, we prospectively collected and analyzed plasma samples from 194 Parkinson's disease patients and 197 age-matched non-diseased controls. N-acetyl putrescine (NAP) in combination with sense of smell (B-SIT), depression/anxiety (HADS), and acting out dreams (RBD1Q) clinical measurements demonstrated combined diagnostic utility. NAP was increased by 28% in Parkinsons disease patients and exhibited an AUC of 0.72 as well as an OR of 4.79. The clinical and NAP panel demonstrated an area under the curve, AUC = 0.9 and an OR of 20.4. The assessed diagnostic panel demonstrates combinatorial utility in diagnosing Parkinson's disease, allowing for an integrated interpretation of disease pathophysiology and highlighting the use of multi-tiered panels in neurological disease diagnosis.


Assuntos
Biomarcadores , Doença de Parkinson , Putrescina , Humanos , Doença de Parkinson/diagnóstico , Masculino , Biomarcadores/sangue , Feminino , Idoso , Pessoa de Meia-Idade , Putrescina/análogos & derivados , Estudos Prospectivos , Estudos de Casos e Controles
2.
J Agric Food Chem ; 72(14): 7870-7881, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38562057

RESUMO

This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.


Assuntos
Citrus sinensis , Ácidos Cumáricos , Microbioma Gastrointestinal , Putrescina/análogos & derivados , Citrus sinensis/metabolismo , Metilaminas/metabolismo
3.
Bioelectrochemistry ; 156: 108630, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147788

RESUMO

In this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex. An ultralow detection limit of 59.6 fM is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.1-100000 pM for TC. The CuTAPc-TFPP-COF-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and excellent applicability for real river water, milk, and pork samples. Therefore, the CuTAPc-TFPP-COF-based aptasensor will be promising for detecting trace harmful antibiotics residues in environmental water and food samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Isoindóis , Estruturas Metalorgânicas , Compostos Organometálicos , Porfirinas , Putrescina , Antibacterianos/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Putrescina/análogos & derivados , Reprodutibilidade dos Testes , Tetraciclina , Água
4.
Phytochemistry ; 197: 113122, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35131641

RESUMO

Diferuloylputrescine has been found in a variety of plant species, and recent work has provided evidence of its covalent bonding into lignin. Results from nuclear magnetic resonance spectroscopy revealed the presence of bonding patterns consistent with homo-coupling of diferuloylputrescine and the possibility of cross-coupling with lignin. In the present work, density functional theory calculations have been applied to assess the energetics associated with radical coupling, rearomatization, and dehydrogenation for possible homo-coupled dimers of diferuloylputrescine and cross-coupled dimers of diferuloylputrescine and coniferyl alcohol. The values obtained for these reaction energetics are consistent with those reported for monolignols and other novel lignin monomers. As such, this study shows that there would be no thermodynamic impediment to the incorporation of diferuloylputrescine into the lignin polymer and its addition to the growing list of non-canonical lignin monomers.


Assuntos
Lignina , Putrescina , Teoria da Densidade Funcional , Lignina/química , Espectroscopia de Ressonância Magnética , Putrescina/análogos & derivados
5.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216248

RESUMO

Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.


Assuntos
Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Retina/diagnóstico por imagem , Retina/metabolismo , Animais , Antioxidantes/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Oxirredução/efeitos dos fármacos , Putrescina/análogos & derivados , Putrescina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Poliamina Oxidase
6.
Elife ; 102021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34282722

RESUMO

Background: Polyamine levels are intricately controlled by biosynthetic, catabolic enzymes and antizymes. The complexity suggests that minute alterations in levels lead to profound abnormalities. We described the therapeutic course for a rare syndrome diagnosed by whole exome sequencing caused by gain-of-function variants in the C-terminus of ornithine decarboxylase (ODC), characterized by neurological deficits and alopecia. Methods: N-acetylputrescine levels with other metabolites were measured using ultra-performance liquid chromatography paired with mass spectrometry and Z-scores established against a reference cohort of 866 children. Results: From previous studies and metabolic profiles, eflornithine was identified as potentially beneficial with therapy initiated on FDA approval. Eflornithine normalized polyamine levels without disrupting other pathways. She demonstrated remarkable improvement in both neurological symptoms and cortical architecture. She gained fine motor skills with the capacity to feed herself and sit with support. Conclusions: This work highlights the strategy of repurposing drugs to treat a rare disease. Funding: No external funding was received for this work.


Assuntos
Transportadores de Ácidos Dicarboxílicos/genética , Reposicionamento de Medicamentos , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Mutação com Ganho de Função/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Alopecia , Pré-Escolar , Transportadores de Ácidos Dicarboxílicos/química , Variação Genética , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Ornitina Descarboxilase/genética , Poliaminas , Putrescina/análogos & derivados , Doenças Raras/tratamento farmacológico , Doenças Raras/genética , Sequenciamento do Exoma
7.
Biochemistry ; 60(4): 303-313, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449614

RESUMO

Histone deacetylase 10 (HDAC10) is a zinc-dependent polyamine deacetylase enriched in the cytosol of eukaryotic cells. The active site of HDAC10 contains catalytic residues conserved in other HDAC isozymes that function as lysine deacetylases: Y307 assists the zinc ion in polarizing the substrate carbonyl for nucleophilic attack, and the H136-H137 dyad serves general base-general acid functions. As an inducer of autophagy, HDAC10 is an attractive target for the design of selective inhibitors that may be useful in cancer chemotherapy. Because detailed structural information regarding the catalytic mechanism of HDAC10 may inform new approaches to inhibitor design, we now report X-ray crystal structures of HDAC10 in which reaction intermediates with substrates N8-acetylspermidine and N-acetylputrescine are trapped in the active site. The Y307F substitution prevents activation of the substrate carbonyl for nucleophilic attack by the zinc-bound water molecule, thereby enabling crystallographic isolation of intact enzyme-substrate complexes. The H137A substitution removes the catalytically obligatory general acid, thereby enabling crystallographic isolation of oxyanionic tetrahedral intermediates. Finally, the acetate complex with the wild-type enzyme represents a product complex after dissociation of the polyamine coproduct. Taken together, these structures provide snapshots of the reaction coordinate of acetylpolyamine hydrolysis and are consistent with a mechanism in which tandem histidine residues H136 and H137 serve as general base and general acid catalysts, respectively. The function of the histidine dyad in the HDAC10 mechanism appears to be similar to that in HDAC6, but not HDAC8 in which both functions are served by the second histidine of the tandem pair.


Assuntos
Histona Desacetilases/química , Putrescina/análogos & derivados , Espermidina/análogos & derivados , Proteínas de Peixe-Zebra/química , Peixe-Zebra , Substituição de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Histona Desacetilases/genética , Mutação de Sentido Incorreto , Putrescina/química , Espermidina/química , Proteínas de Peixe-Zebra/genética
8.
Rheumatology (Oxford) ; 59(11): 3369-3379, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32310291

RESUMO

OBJECTIVES: RA develops slowly over years. We tested for metabolic changes prior to RA onset using a large non-targeted metabolomics platform to identify novel pathways and advance understanding of RA development. METHODS: Two hundred and fifty-four incident RA cases with plasma samples drawn pre-RA onset in the Nurses' Health Study (NHS) cohorts were matched 1:2 to 501 controls on age, race, menopause/post-menopausal hormone use and blood collection features. Relative abundances of 360 unique, known metabolites were measured. Conditional logistic regression analyses assessed associations between metabolites and incidence of RA, adjusted for age, smoking and BMI, accounting for multiple comparisons. Subgroup analyses investigated seropositive (sero+) RA and RA within 5 years of sample collection. Significant metabolites were then tested in a female military pre-RA case-control study (n = 290). RESULTS: In the NHS, metabolites associated with RA and sero+RA in multivariable models included 4-acetamidobutanoate (odds ratio (OR) = 0.80/S.d., 95% CI: 0.66, 0.95), N-acetylputrescine (OR = 0.82, 95% CI: 0.69, 0.96), C5 carnitine (OR = 0.84, 95% CI: 0.71, 0.99) and C5:1 carnitine (OR = 0.81, 95% CI: 0.68, 0.95). These were involved primarily in polyamine and leucine, isoleucine and valine metabolism. Several metabolites associated with sero+RA within 5 years of diagnosis were replicated in the independent military cohort: C5 carnitine (OR = 0.55, 95% CI: 0.33, 0.92), C5:1 carnitine (OR = 0.62, 95% CI: 0.39, 0.99) and C3 carnitine (OR = 0.57, 95% CI: 0.36, 0.91). CONCLUSION: Several metabolites were inversely associated with incidence of RA among women. Three short-chain acylcarnitines replicated in a smaller dataset and may reflect inflammation in the 5-year period prior to sero+RA diagnosis.


Assuntos
Artrite Reumatoide/sangue , Metaboloma , Adulto , Fatores Etários , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/etiologia , Índice de Massa Corporal , Ácido Butírico/sangue , Caprilatos/sangue , Carnitina/sangue , Estudos de Casos e Controles , Feminino , Humanos , Incidência , Modelos Logísticos , Metionina/análogos & derivados , Metionina/sangue , Pessoa de Meia-Idade , Militares , Enfermeiras e Enfermeiros , Fosfatidiletanolaminas/sangue , Estudos Prospectivos , Putrescina/análogos & derivados , Putrescina/sangue , Reprodutibilidade dos Testes , Fatores de Risco , Fumar , Espermidina/sangue , Triptofano/análogos & derivados , Triptofano/sangue , Estados Unidos
9.
Sci Rep ; 10(1): 5778, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238850

RESUMO

In response to infestation by herbivores, rice plants rapidly biosynthesize defense compounds by activating a series of defense-related pathways. However, which defensive compounds in rice are effective against herbivores remains largely unknown. We found that the infestation of white-backed planthopper (WBPH) Sogatella furcifera gravid females significantly increased levels of jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and H2O2, and reduced the level of ethylene in rice; levels of 11 of the tested 12 phenolamides (PAs) were subsequently enhanced. In contrast, WBPH nymph infestation had no effect on levels of JA, JA-Ile, ethylene and H2O2 in rice, and enhanced levels of only 2 of 12 PAs. Moreover, infestation by brown planthopper Nilaparvata lugens gravid females also affected the production of these PAs differently. Bioassays revealed that 4 PAs - N-feruloylputrescine, N-feruloyltyramine, feruloylagmatine and N1,N10-diferuloylspermidine - were toxic to newly emerged WBPH female adults. Our results suggest that WBPH- or BPH-induced biosynthesis of PAs in rice seems to be shaped primarily by the specific profile of defense-related signals elicited by the herbivore and that PAs play a role in conferring the resistance to WBPH on rice.


Assuntos
Agmatina/análogos & derivados , Ácidos Cumáricos/metabolismo , Hemípteros/fisiologia , Oryza/parasitologia , Doenças das Plantas/parasitologia , Putrescina/análogos & derivados , Tiramina/análogos & derivados , Agmatina/metabolismo , Animais , Ciclopentanos/metabolismo , Etilenos/metabolismo , Feminino , Herbivoria , Interações Hospedeiro-Parasita , Peróxido de Hidrogênio/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Oryza/fisiologia , Oxilipinas/metabolismo , Putrescina/metabolismo , Espermidina/análogos & derivados , Espermidina/metabolismo , Tiramina/metabolismo
10.
J Invest Dermatol ; 140(10): 2032-2040.e1, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32119868

RESUMO

Hyperpigmentary conditions can arise when melanogenesis in the epidermis is misregulated. Understanding the pathways underlying melanogenesis is essential for the development of effective treatments. Here, we report that a group of metabolites called polyamines are important in the control of melanogenesis in human skin. Polyamines are cationic molecules present in all cells and are essential for cellular function. We report that polyamine regulator ODC1 is upregulated in melanocytes from melasma lesional skin. We report that the polyamine putrescine can promote pigmentation in human skin explants and primary normal human epidermal melanocytes through induction of tyrosinase which is rate-limiting for the synthesis of melanin. Putrescine supplementation on normal human epidermal melanocytes results in the activation of polyamine catabolism, which results in increased intracellular H2O2. Polyamine catabolism is also increased in human skin explants that have been treated with putrescine. We further report that inhibition of polyamine catabolism prevents putrescine-induced promotion of tyrosinase levels and pigmentation in normal human epidermal melanocytes, showing that polyamine catabolism is responsible for the putrescine induction of melanogenesis. Our data showing that putrescine promotes pigmentation has important consequences for hyperpigmented and hypopigmented conditions. Further understanding of how polyamines control epidermal pigmentation could open the door for the development of new therapeutics.


Assuntos
Epiderme/efeitos dos fármacos , Melaninas/biossíntese , Putrescina/farmacologia , Poliaminas Biogênicas/metabolismo , Células Cultivadas , Transportadores de Ácidos Dicarboxílicos/fisiologia , Epiderme/metabolismo , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Putrescina/análogos & derivados , Pigmentação da Pele/efeitos dos fármacos
11.
Methods Enzymol ; 633: 29-47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32046852

RESUMO

Siderophores have important functions for bacteria in iron acquisition and as virulence factors. In this chapter we will discuss the engineering of cyclic hydroxamate siderophores by various biochemical approaches based on the example of Shewanella algae. The marine gamma-proteobacterium S. algae produces three different cyclic hydroxamate siderophores as metabolites via a single biosynthetic gene cluster and one of them is an important key player in interspecies competition blocking swarming of Vibrio alginolyticus. AvbD is the key metabolic enzyme assembling the precursors into three different core structures and hence an interesting target for metabolic and biochemical engineering. Synthetic natural and unnatural precursors can be converted in vitro with purified AvbD to generate siderophores with various ring sizes ranging from analytical to milligram scale. These engineered siderophores can be applied, for example, as swarming inhibitors against V. alginolyticus. Here, we describe the synthesis of the natural and unnatural siderophore precursors HS[X]A and provide our detailed protocols for protein expression of AvbD, conversion of HS[X]A with the enzyme to produce ring-size engineered siderophores and secondly for a biosynthetic feeding strategy that allows to extract engineered siderophores in the milligram scale.


Assuntos
Antibiose , Proteínas de Bactérias/biossíntese , Ácidos Hidroxâmicos/química , Engenharia Metabólica/métodos , Shewanella/metabolismo , Sideróforos/biossíntese , Proteínas de Bactérias/genética , Diaminas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Hidroxâmicos/metabolismo , Movimento/efeitos dos fármacos , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Putrescina/análogos & derivados , Putrescina/biossíntese , Putrescina/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Shewanella/química , Sideróforos/química , Succinatos/química , Vibrio alginolyticus/efeitos dos fármacos , Vibrio alginolyticus/fisiologia
12.
J Integr Plant Biol ; 62(5): 601-613, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31081586

RESUMO

Polyamines are small aliphatic amines found in almost all organisms, ranging from bacteria to plants and animals. In most plants, putrescine, the metabolic precursor for longer polyamines, such as spermidine and spermine, is produced from arginine, with either agmatine or ornithine as intermediates. Here we show that Arabidopsis thaliana (Arabidopsis) arginine decarboxylase 1 (ADC1), one of the two known arginine decarboxylases in Arabidopsis, not only synthesizes agmatine from arginine, but also converts Nδ -acetylornithine to N-acetylputrescine. Phylogenetic analyses indicate that duplication and neofunctionalization of ADC1 and NATA1, the enzymes that synthesize Nδ -acetylornithine in Arabidopsis, co-occur in a small number of related species in the Brassicaceae. Unlike ADC2, which is localized in the chloroplasts, ADC1 is in the endoplasmic reticulum together with NATA1, an indication that these two enzymes have access to the same substrate pool. Together, these results are consistent with a model whereby NATA1 and ADC1 together provide a pathway for the synthesis of N-acetylputrescine in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carboxiliases/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carboxiliases/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Putrescina/análogos & derivados , Putrescina/metabolismo
13.
J Integr Plant Biol ; 62(2): 228-246, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30920733

RESUMO

Plant growth-promoting rhizobacteria (PGPR), whose growth is stimulated by root exudates, are able to improve plant growth and health. Among those, bacteria of the genus Azospirillum were shown to affect root secondary metabolite content in rice and maize, sometimes without visible effects on root architecture. Transcriptomic studies also revealed that expression of several genes involved in stress and plant defense was affected, albeit with fewer genes when a strain was inoculated onto its original host cultivar. Here, we investigated, via a metabolic profiling approach, whether rice roots responded differently and with gradual intensity to various PGPR, isolated from rice or not. A common metabolomic signature of nine compounds was highlighted, with the reduced accumulation of three alkylresorcinols and increased accumulation of two hydroxycinnamic acid amides (HCAA), identified as N-p-coumaroylputrescine and N-feruloylputrescine. This was accompanied by the increased transcription of two genes involved in the N-feruloylputrescine biosynthetic pathway. Interestingly, exposure to a rice bacterial pathogen triggered a reduced accumulation of these HCAA in roots, a result contrasting with previous reports of increased HCAA content in leaves upon pathogen infection. Accumulation of HCAA, that are potential antimicrobial compounds, might be considered as a primary reaction of plant to bacterial perception.


Assuntos
Metabolômica/métodos , Oryza/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Ácidos Cumáricos/metabolismo , Folhas de Planta/genética , Raízes de Plantas/genética , Putrescina/análogos & derivados , Putrescina/metabolismo
14.
Nutrients ; 11(11)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684160

RESUMO

N-carbamoyl putrescine (NCP), the decarboxylation derivative of citrulline, metabolically related to polyamines, may exert biological effects in mammals. The aim of this study was (i) to evaluate the nutritional properties of NCP in healthy rats and (ii) to determine the effect of NCP administration on muscle metabolism in malnourished old rats. The nutritional properties of NCP were first evaluated in 20 8-week-old male rats randomized to receive for two weeks a standard diet either alone (C group) or supplemented with NCP, 5 or 50 mg/kg/d. In a second study, 29 malnourished 18-month-old male rats were studied either before or after a 4-day refeeding with a standard diet either alone (REN group) or supplemented with NCP, 1 or 10 mg/kg/d. NCP had no effect on weight gain and body composition in either of the two studies. In healthy rats, muscle protein content was significantly increased in the soleus with NCP 5 mg/kg/d. A decrease in plasma glutamine and kidney spermine was observed at the 50 mg/kg/d dose; otherwise, no significant changes in plasma chemistry and tissue polyamines were observed. In malnutrition-induced sarcopenic old rats, refeeding with NCP 10 mg/kg/d was associated with higher tibialis weight and a trend for increased protein content in extensor digitorum longus (EDL). While the muscle protein synthesis rate was similar between groups, ribosomal protein S6 kinase was increased in tibialis and higher in the EDL in NCP-treated rats. The muscle RING-finger protein-1 expression was decreased in tibialis and urinary 3-methyl-histidine to creatinine ratio slightly lower with the supply of NCP. However, this initial period of refeeding was also associated with elevated fasted plasma triglycerides and glucose, significant in NCP groups, suggesting glucose intolerance and possibly insulin resistance. NCP was well-tolerated in healthy young-adults and in malnourished old rats. In healthy adults, NCP at 5 mg/kg/d induced a significant increase in protein content in the soleus, a type I fiber-rich muscle. In malnourished old rats, NCP supply during refeeding, may help to preserve lean mass by limiting protein breakdown; however, these effects may be limited in our model by a possible immediate refeeding-associated glucose intolerance.


Assuntos
Envelhecimento/fisiologia , Citrulina/metabolismo , Proteínas Musculares/metabolismo , Putrescina/análogos & derivados , Animais , Masculino , Putrescina/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Int J Syst Evol Microbiol ; 69(6): 1573-1578, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30958260

RESUMO

A slightly beige-pigmented, Gram-stain-negative, rod-shaped bacterium, strain IMT-318T, was isolated from soil in a field located in Malvern, Alabama, USA. Phylogenetic analysis based on the 16S rRNA gene placed the strain within the genus Pigmentiphaga with highest 16S rRNA gene sequence similarity of 98.74 % and 98.67 % to the type strains of Pigmentiphaga kullae and Pigmentiphaga daeguensis, respectively. Sequence similarities to all other species of the genus were below 98.0 %. Results of the chemotaxonomic analysis, however, showed clear similarities to the genus Pigmentiphaga. The main cellular fatty acids of the strain were C16 : 0, C18 : 1 ω7c, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The major quinone was ubiquinone Q-8. The polar lipid profile was composed of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified aminophospholipid. In the polyamine pattern, putrescine and 2-hydroxyputrescine were predominant. The diamino acid of the peptidoglycan was meso-diaminopimelic acid. Based on phylogenetic, chemotaxonomic and phenotypic analyses, we propose a new species of the genus Pigmentiphaga, with the name Pigmentiphaga humi sp. nov. and strain IMT-318T (=LMG 30658T=CIP 111626T=CCM 8859T) as the type strain.


Assuntos
Alcaligenaceae/classificação , Substâncias Húmicas , Filogenia , Microbiologia do Solo , Alabama , Alcaligenaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Fosfolipídeos/química , Putrescina/análogos & derivados , Putrescina/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
16.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097446

RESUMO

Shewanella oneidensis is an extensively studied bacterium capable of respiring minerals, including a variety of iron ores, as terminal electron acceptors (EAs). Although iron plays an essential and special role in iron respiration of S. oneidensis, little has been done to date to investigate the characteristics of iron transport in this bacterium. In this study, we found that all proteins encoded by the pub-putA-putB cluster for putrebactin (S. oneidensis native siderophore) synthesis (PubABC), recognition-transport of Fe3+-putrebactin across the outer membrane (PutA), and reduction of ferric putrebactin (PutB) are essential to putrebactin-mediated iron uptake. Although homologs of PutA are many, none can function as its replacement, but some are able to work with other bacterial siderophores. We then showed that Fe2+-specific Feo is the other primary iron uptake system, based on the synthetical lethal phenotype resulting from the loss of both iron uptake routes. The role of the Feo system in iron uptake appears to be more critical, as growth is significantly impaired by the absence of the system but not of putrebactin. Furthermore, we demonstrate that hydroxyl acids, especially α-types such as lactate, promote iron uptake in a Feo-dependent manner. Overall, our findings underscore the importance of the ferrous iron uptake system in metal-reducing bacteria, providing an insight into iron homeostasis by linking these two biological processes.IMPORTANCES. oneidensis is among the first- and the best-studied metal-reducing bacteria, with great potential in bioremediation and biotechnology. However, many questions regarding mechanisms closely associated with those applications, such as iron homeostasis, including iron uptake, export, and regulation, remain to be addressed. Here we show that Feo is a primary player in iron uptake in addition to the siderophore-dependent route. The investigation also resolved a few puzzles regarding the unexpected phenotypes of the putA mutant and lactate-dependent iron uptake. By elucidating the physiological roles of these two important iron uptake systems, this work revealed the breadth of the impacts of iron uptake systems on the biological processes.


Assuntos
Ferro/metabolismo , Putrescina/análogos & derivados , Shewanella/genética , Shewanella/metabolismo , Succinatos/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Homeostase , Proteínas de Membrana/genética , Putrescina/metabolismo , Sideróforos/genética , Sideróforos/metabolismo
17.
J Biol Inorg Chem ; 23(7): 969-982, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946977

RESUMO

Dihydroxamic acid macrocyclic siderophores comprise four members: putrebactin (putH2), avaroferrin (avaH2), bisucaberin (bisH2), and alcaligin (alcH2). This mini-review collates studies of the chemical biology and coordination chemistry of these macrocycles, with an emphasis on putH2. These Fe(III)-binding macrocycles are produced by selected bacteria to acquire insoluble Fe(III) from the local environment. The macrocycles are optimally pre-configured for Fe(III) binding, as established from the X-ray crystal structure of dinuclear [Fe2(alc)3] at neutral pH. The dimeric macrocycles are biosynthetic products of two endo-hydroxamic acid ligands flanked by one amine group and one carboxylic acid group, which are assembled from 1,4-diaminobutane and/or 1,5-diaminopentane as initial substrates. The biosynthesis of alcH2 includes an additional diamine C-hydroxylation step. Knowledge of putH2 biosynthesis supported the use of precursor-directed biosynthesis to generate unsaturated putH2 analogues by culturing Shewanella putrefaciens in medium supplemented with unsaturated diamine substrates. The X-ray crystal structures of putH2, avaH2 and alcH2 show differences in the relative orientations of the amide and hydroxamic acid functional groups that could prescribe differences in solvation and other biological properties. Functional differences have been borne out in biological studies. Although evolved for Fe(III) acquisition, solution coordination complexes have been characterised between putH2 and oxido-V(IV/V), Mo(VI), or Cr(V). Retrosynthetic analysis of 1:1 complexes of [Fe(put)]+, [Fe(ava)]+, and [Fe(bis)]+ that dominate at pH < 5 led to a forward metal-templated synthesis approach to generate the Fe(III)-loaded macrocycles, with apo-macrocycles furnished upon incubation with EDTA. This mini-review aims to capture the rich chemistry and chemical biology of these seemingly simple compounds.


Assuntos
Complexos de Coordenação/metabolismo , Compostos Férricos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Peptídeos Cíclicos/metabolismo , Putrescina/análogos & derivados , Succinatos/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Compostos Férricos/química , Ácidos Hidroxâmicos/química , Estrutura Molecular , Peptídeos Cíclicos/química , Putrescina/química , Putrescina/metabolismo , Succinatos/química
18.
J Agric Food Chem ; 66(17): 4402-4413, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29665690

RESUMO

The structure of the phenolic polymer in maize grain fibers, with 5.5% Klason lignin content, has been studied. For this, the milled wood lignin (MWL) and dioxane lignin (DL) preparations were isolated and analyzed. The data indicated that the lignin in maize fibers was syringyl rich, mostly involved in ß-aryl ether, resinol, and phenylcoumaran substructures. 2D NMR and derivatization followed by reductive cleavage (DFRC) also revealed the occurrence of associated ferulates together with trace amounts of p-coumarates acylating the γ-OH of lignin side chains, predominantly on S-lignin units. More interesting was the occurrence of diferuloylputrescine, a ferulic acid amide, which was identified by 2D NMR and comparison with a synthesized standard, that was apparently incorporated into this lignin. A phenylcoumaran structure involving a diferuloylputrescine coupled through 8-5' linkages to another diferuloylputrescine (or to a ferulate or a guaiacyl lignin unit) was found, providing compelling evidence for its participation in radical coupling reactions. The occurrence of diferuloylputrescine in cell walls of maize kernels and other cereal grains appears to have been missed in previous works, perhaps due to the alkaline hydrolysis commonly used for composition studies.


Assuntos
Lignina/química , Putrescina/análogos & derivados , Zea mays/química , Acilação , Parede Celular/química , Grão Comestível/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Polímeros/química , Putrescina/análise , Putrescina/química , Sementes/química
19.
ACS Chem Biol ; 13(5): 1153-1158, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29653054

RESUMO

Bacteria compete for ferric iron by producing siderophores, and some microbes engage in piracy by scavenging siderophores of their competitors. The macrocyclic hydroxamate siderophore avaroferrin of Shewanella algae inhibits swarming of Vibrio alginolyticus by evading this piracy. Avaroferrin, as well as related putrebactin and bisucaberin, are produced by the IucC-like synthetases AvbD, PubC, and BibCC. Here, we have established that they are capable of synthesizing not only their native product but also other siderophores. Exploiting this relaxed substrate specificity by synthetic precursors generated 15 different ring-size engineered macrocycles ranging from 18- to 28-membered rings, indicating unprecedented biosynthetic flexibility of the enzymes. Two of the novel siderophores could be obtained in larger quantities by precursor-directed biosynthesis in S. algae. Both inhibited swarming motility of Vibrio and, similar to avaroferrin, the most active one exhibited a heterodimeric architecture. Our results demonstrate the impact of minor structural changes on biological activity, which may trigger the evolution of siderophore diversity.


Assuntos
Sideróforos/fisiologia , Vibrio/fisiologia , Ácidos Hidroxâmicos , Compostos Macrocíclicos/química , Peptídeos Cíclicos/fisiologia , Putrescina/análogos & derivados , Putrescina/fisiologia , Shewanella/metabolismo , Especificidade por Substrato , Succinatos
20.
Parasitol Res ; 117(5): 1371-1380, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29516214

RESUMO

Infection with Trichomonas vaginalis produces a malodorous seropurulent vaginal discharge due to several chemicals, including polyamines. The presence of 1,4-diamino-2-butanone (DAB) reduces the amount of intracellular putrescine by 90%, preventing the cotransport of exogenous spermine. DAB-treated parasites present morphological changes, which are restored by adding exogenous putrescine into the culture medium. However, the effect of polyamines over the trichomonad proteomic profile is unknown. In this study, we used a proteomic approach to analyze the polyamine-depletion and restoration effect by exogenous putrescine on T. vaginalis proteome. In the presence of inhibitor DAB, we obtained 369 spots in polyamine-depleted condition and observed 499 spots in the normal culture media. With DAB treatment, the intensity of 43 spots was increased but was found to be reduced in 39 spots, as compared to normal conditions. Interestingly, in DAB-treated parasites restored with a medium with added exogenous putrescine, 472 spots were found, of which 33 were upregulated and 63 were downregulated in protein intensity. Some of these downregulated proteins in DAB-treated parasites are involved in several cellular pathways such as glycolysis, glycolytic fermentation, arginine dihydrolase pathway, redox homeostasis, host cell binding mediated by carbohydrate, chaperone function, and cytoskeletal remodeling. Interestingly, the intensity of some of the proteins was restored by adding exogenous putrescine. In conclusion, the presence of DAB altered the proteomic profile of T. vaginalis, resulting in a decrease in the intensity of 130 proteins and an increase in the intensity of 43 proteins that was restored by the addition of putrescine.


Assuntos
Proteoma/efeitos dos fármacos , Putrescina/análogos & derivados , Putrescina/metabolismo , Espermina/metabolismo , Trichomonas vaginalis/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Meios de Cultura/metabolismo , Regulação para Baixo , Feminino , Proteômica/métodos , Putrescina/farmacologia , Vagina/química , Vagina/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...