Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 128010, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979752

RESUMO

In practical applications, the gelatinisation temperature of starch is high. Most current glycogen branching enzymes (GBEs, EC 2.4.1.18) exhibit optimum activity at moderate or low temperatures and quickly lose their activity at higher temperatures, limiting the application of GBEs in starch modification. Therefore, we used the PROSS strategy combined with PDBePISA analysis of the dimer interface to further improve the heat resistance of hyperthermophilic bacteria Pyrococcus horikoshii OT3 GBE. The results showed that the melting temperature of mutant T508K increased by 3.1 °C compared to wild-type (WT), and the optimum reaction temperature increased by 10 °C for all mutants except V140I. WT almost completely lost its activity after incubation at 95 °C for 60 h, while all of the combined mutants maintained >40 % of their residual activity. Further, the content of the α-1,6 glycosidic bond of corn starch modified by H415W and V140I/H415W was approximately 2.68-fold and 1.92-fold higher than that of unmodified corn starch and corn starch modified by WT, respectively. Additionally, the glucan chains of DP < 13 were significantly increased in mutant modified corn starch. This method has potential for improving the thermal stability of GBE, which can be applied in starch branching in the food industry.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Pyrococcus horikoshii , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Pyrococcus , Amido/química , Glucanos , Estabilidade Enzimática
2.
Biosci Biotechnol Biochem ; 87(7): 717-723, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37096382

RESUMO

S-Adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) are important biochemical intermediates. SAM is the major methyl donor for diverse methylation reactions in vivo. The SAM to SAH ratio serves as a marker of methylation capacity. Stable isotope-labeled SAM and SAH are used to measure this ratio with high sensitivity. SAH hydrolase (EC 3.13.2.1; SAHH), which reversibly catalyzes the conversion of adenosine and L-homocysteine to SAH, is used to produce labeled SAH. To produce labeled SAH with high efficiency, we focused on the SAHH of Pyrococcus horikoshii OT3, a thermophilic archaeon. We prepared recombinant P. horikoshii SAHH using Escherichia coli and investigated its enzymatic properties. Unexpectedly, the optimum temperature and thermostability of P. horikoshii SAHH were much lower than its optimum growth temperature. However, addition of NAD+ to the reaction mixture shifted the optimum temperature of P. horikoshii SAHH to a higher temperature, suggesting that NAD+ stabilizes the structure of the enzyme.


Assuntos
NAD , Pyrococcus horikoshii , Pyrococcus horikoshii/metabolismo , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Homocisteína , Hidrolases/metabolismo
3.
Biotechnol Lett ; 44(8): 961-974, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763164

RESUMO

OBJECTIVES: Ionic liquids (ILs) that dissolve biomass are harmful to the enzymes that degrade lignocellulose. Enzyme hyperthermostability promotes a tolerance to ILs. Therefore, the limits of hyperthemophilic Pyrococcus horikoschii endoglucanase (PhEG) to tolerate 11 superbase ILs were explored. RESULTS: PhEG was found to be most tolerant to 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) in soluble 1% carboxymethylcellulose (CMC) and insoluble 1% Avicel substrates. At 35% concentration, this IL caused an increase in enzyme activity (up to 1.5-fold) with CMC. Several ILs were more enzyme inhibiting with insoluble Avicel than with soluble CMC. Km increased greatly in the presence ILs, indicating significant competitive inhibition. Increased hydrophobicity of the IL cation or anion was associated with the strongest enzyme inhibition and activation. Surprisingly, PhEG activity was increased 2.0-2.5-fold by several ILs in 4% substrate. Cations exerted the main role in competitive inhibition of the enzyme as revealed by their greater binding energy to the active site. CONCLUSIONS: These results reveal new ways to design a beneficial combination of ILs and enzymes for the hydrolysis of lignocellulose, and the strong potential of PhEG in industrial, high substrate concentrations in aqueous IL solutions.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus horikoshii , Biomassa , Cátions , Celulase/metabolismo , Celulose/metabolismo , Líquidos Iônicos/química , Pyrococcus horikoshii/metabolismo
4.
Int J Biol Macromol ; 208: 731-740, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35337912

RESUMO

Ornithine δ-aminotransferase (Orn-AT) activity was detected for the enzyme annotated as a γ-aminobutyrate aminotransferase encoded by PH1423 gene from Pyrococcus horikoshii OT-3. Crystal structures of this novel archaeal ω-aminotransferase were determined for the enzyme in complex with pyridoxal 5'-phosphate (PLP), in complex with PLP and l-ornithine (l-Orn), and in complex with N-(5'-phosphopyridoxyl)-l-glutamate (PLP-l-Glu). Although the sequence identity was relatively low (28%), the main-chain coordinates of P. horikoshii Orn-AT monomer showed notable similarity to those of human Orn-AT. However, the residues recognizing the α-amino group of l-Orn differ between the two enzymes. In human Orn-AT, Tyr55 and Tyr85 recognize the α-amino group, whereas the side chains of Thr92* and Asp93*, which arise from a loop in the neighboring subunit, form hydrogen bonds with the α-amino group of the substrate in P. horikoshii enzyme. Site-directed mutagenesis suggested that Asp93* plays critical roles in maintaining high affinity for the substrate. This study provides new insight into the substrate binding of a novel type of Orn-AT. Moreover, the structure of the enzyme with the reaction-intermediate analogue PLP-l-Glu bound provides the first structural evidence for the "Glu switch" mechanism in the dual substrate specificity of Orn-AT.


Assuntos
Pyrococcus horikoshii , Archaea/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ornitina/química , Fosfato de Piridoxal/química , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato , Transaminases/química
5.
Commun Biol ; 4(1): 751, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140623

RESUMO

It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s-1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


Assuntos
Ácido Aspártico/metabolismo , Transporte Biológico/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Sódio/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Proteolipídeos/metabolismo , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
6.
EMBO J ; 40(1): e105415, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185289

RESUMO

Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/metabolismo , Transporte Biológico/fisiologia , Sistema X-AG de Transporte de Aminoácidos/genética , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Transporte Biológico/genética , Biologia Computacional/métodos , Mutação com Ganho de Função/genética , Modelos Moleculares , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato/genética
7.
Elife ; 92020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33155546

RESUMO

Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homolog, sodium, and aspartate symporter GltPh. However, the mechanism of gating on the cytoplasmic side of the membrane remains ambiguous. We report Cryo-EM structures of GltPh reconstituted into nanodiscs, including those structurally constrained in the cytoplasm-facing state and either apo, bound to sodium ions only, substrate, or blockers. The structures show that both substrate translocation and release involve movements of the bulky transport domain through the lipid bilayer. They further reveal a novel mode of inhibitor binding and show how solutes release is coupled to protein conformational changes. Finally, we describe how domain movements are associated with the displacement of bound lipids and significant membrane deformations, highlighting the potential regulatory role of the bilayer.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Proteínas Arqueais/genética , Transporte Biológico , Microscopia Crioeletrônica , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Domínios Proteicos , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Sódio/química , Sódio/metabolismo
8.
Sci Rep ; 10(1): 16483, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020522

RESUMO

Saturation-transfer difference (STD) NMR spectroscopy is a fast and versatile method which can be applied for drug-screening purposes, allowing the determination of essential ligand binding affinities (KD). Although widely employed to study soluble proteins, its use remains negligible for membrane proteins. Here the use of STD NMR for KD determination is demonstrated for two competing substrates with very different binding affinities (low nanomolar to millimolar) for an integral membrane transport protein in both detergent-solubilised micelles and reconstituted proteoliposomes. GltPh, a homotrimeric aspartate transporter from Pyrococcus horikoshii, is an archaeal homolog of mammalian membrane transport proteins-known as excitatory amino acid transporters (EAATs). They are found within the central nervous system and are responsible for fast uptake of the neurotransmitter glutamate, essential for neuronal function. Differences in both KD's and cooperativity are observed between detergent micelles and proteoliposomes, the physiological implications of which are discussed.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética/métodos , Mamíferos/metabolismo , Proteolipídeos/metabolismo , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato/fisiologia
9.
Nat Commun ; 11(1): 998, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081874

RESUMO

Glutamate transporters are cation-coupled secondary active membrane transporters that clear the neurotransmitter L-glutamate from the synaptic cleft. These transporters are homotrimers, with each protomer functioning independently by an elevator-type mechanism, in which a mobile transport domain alternates between inward- and outward-oriented states. Using single-particle cryo-EM we have determined five structures of the glutamate transporter homologue GltTk, a Na+- L-aspartate symporter, embedded in lipid nanodiscs. Dependent on the substrate concentrations used, the protomers of the trimer adopt a variety of asymmetrical conformations, consistent with the independent movement. Six of the 15 resolved protomers are in a hitherto elusive state of the transport cycle in which the inward-facing transporters are loaded with Na+ ions. These structures explain how substrate-leakage is prevented - a strict requirement for coupled transport. The belt protein of the lipid nanodiscs bends around the inward oriented protomers, suggesting that membrane deformations occur during transport.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Proteínas Arqueais/química , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ácido Aspártico/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Lipídeos/química , Modelos Moleculares , Nanoestruturas/química , Conformação Proteica , Estrutura Quaternária de Proteína , Pyrococcus horikoshii/metabolismo , Imagem Individual de Molécula , Simportadores/química , Simportadores/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
10.
Chembiochem ; 21(3): 346-352, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31265209

RESUMO

Protein C-terminal hydrazides are useful for bioconjugation and construction of proteins from multiple fragments through native chemical ligation. To generate C-terminal hydrazides in proteins, an efficient intein-based preparation method has been developed by using thiols and hydrazine to accelerate the formation of the transient thioester intermediate and subsequent hydrazinolysis. This approach not only increases the yield, but also improves biocompatibility. The scope of the method has been expanded by employing Pyrococcus horikoshii RadA split intein, which can accommodate a broad range of extein residues before the site of cleavage. The use of split RadA minimizes premature intein N cleavage in vivo and offers control over the initiation of the intein N cleavage reaction. It is expected that this versatile preparation method will expand the utilization of protein C-terminal hydrazides in protein preparation and modification.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidrazinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Hidrazinas/química , Inteínas , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo
11.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 9): 576-585, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31475924

RESUMO

Archaea are motile by the rotation of the archaellum. The archaellum switches between clockwise and counterclockwise rotation, and movement along a chemical gradient is possible by modulation of the switching frequency. This modulation involves the response regulator CheY and the archaellum adaptor protein CheF. In this study, two new crystal forms and protein structures of CheY are reported. In both crystal forms, CheY is arranged in a domain-swapped conformation. CheF, the protein bridging the chemotaxis signal transduction system and the motility apparatus, was recombinantly expressed, purified and subjected to X-ray data collection.


Assuntos
Proteínas Arqueais/química , Proteínas Quimiotáticas Aceptoras de Metil/química , Pyrococcus horikoshii/química , Archaea/química , Archaea/genética , Archaea/metabolismo , Quimiotaxia/genética , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Flagelos/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/biossíntese , Proteínas Quimiotáticas Aceptoras de Metil/genética , Conformação Proteica , Multimerização Proteica , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Transdução de Sinais
12.
J Biol Inorg Chem ; 24(6): 777-782, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31463593

RESUMO

Diphthamide, the target of diphtheria toxin, is a post-translationally modified histidine residue found in archaeal and eukaryotic translation elongation factor 2 (EF2). In the first step of diphthamide biosynthesis, a [4Fe-4S] cluster-containing radical SAM enzyme, Dph1-Dph2 heterodimer in eukaryotes or Dph2 homodimer in archaea, cleaves S-adenosylmethionine and transfers the 3-amino-3-carboxypropyl group to EF2. It was demonstrated previously that for the archaeal Dph2 homodimer, only one [4Fe-4S] cluster is necessary for the in vitro activity. Here, we demonstrate that for the eukaryotic Dph1-Dph2 heterodimer, the [4Fe-4S] cluster-binding cysteine residues in each subunit are required for diphthamide biosynthesis to occur in vivo. Furthermore, our in vitro reconstitution experiments with Dph1-Dph2 mutants suggested that the Dph1 cluster serves a catalytic role, while the Dph2 cluster facilitates the reduction of the Dph1 cluster by the physiological reducing system Dph3/Cbr1/NADH. Our results reveal the asymmetric functional roles of the Dph1-Dph2 heterodimer and may help to understand how the Fe-S clusters in radical SAM enzymes are reduced in biology.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Sequência de Aminoácidos , Histidina/biossíntese , Histidina/química , Proteínas Ferro-Enxofre/química , Mutação , Multimerização Proteica , Pyrococcus horikoshii/metabolismo , S-Adenosilmetionina/metabolismo
13.
Biomater Sci ; 7(5): 1801-1804, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30869657

RESUMO

Here we report a novel aspect of molecular chaperone prefoldin (PFD) as a biomaterial in the biocatalytic synthesis of gold nanoparticles (AuNPs) using glycerol dehydrogenase (GLD). We found that PFD could inhibit the aggregation of AuNPs during the biosynthesis, leading to the formation of AuNPs with controlled size distribution.


Assuntos
Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas , Chaperonas Moleculares/metabolismo , Tamanho da Partícula , Biocatálise , Pyrococcus horikoshii/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo
14.
J Comput Biol ; 26(5): 457-472, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30785305

RESUMO

In bacterial and archaeal purine biosynthetic pathways, sixth step involves utilization of enzyme PurE, catalyzing the translation of aminoimidazole ribonucleotide to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) with carbon dioxide. The formation of CAIR takes place through an unstable intermediate N5-CAIR, played by two enzymes-N5-CAIR synthetase (PurK) and N5-CAIR mutase (PurE) that further catalyzes the reaction of N5-CAIR to CAIR. In this study, N5-CAIR mutase (PH0320) from Pyrococcus horikoshii OT3 (PurE) was considered. The three-dimensional structure of Pyrococcus horikoshii OT3 was modeled based on the structure of PurE from Escherichia coli. The modeled structure was subjected to molecular dynamics simulation up to 100 ns, and least energy structure from the simulation was subjected to virtual screening and induced fit docking to identify the best potent leads. A total of five best antagonists were identified based on their affinity and mode of binding leading with conserved residues Ser18, Ser20, Asp21, Ser45, Ala46, His47, Arg48, Ala72, Gly73, Ala75, and His77 promotes the activity of Ph-N5-CAIR mutase. In addition to molecular dynamics, absorption, digestion, metabolism, and excretion properties, binding free energy and density functional theory calculations of compounds were carried out. Based on analyses, compound from National Cancer Institute (NCI) database, NCI_826 was adjudged as the best potent lead molecule and could be suggested as the suitable inhibitor of N5-CAIR mutase.


Assuntos
Proteínas de Bactérias/metabolismo , Transferases Intramoleculares/metabolismo , Pyrococcus horikoshii/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Purinas/metabolismo , Ribonucleotídeos/metabolismo
15.
Nucleic Acids Res ; 46(15): 7820-7830, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30010948

RESUMO

The ATP-binding cassette (ABC) protein ABCE1 is an essential factor in ribosome recycling during translation. However, the detailed mechanochemistry of its recruitment to the ribosome, ATPase activation and subunit dissociation remain to be elucidated. Here, we show that the ribosomal stalk protein, which is known to participate in the actions of translational GTPase factors, plays an important role in these events. Biochemical and crystal structural data indicate that the conserved hydrophobic amino acid residues at the C-terminus of the archaeal stalk protein aP1 binds to the nucleotide-binding domain 1 (NBD1) of aABCE1, and that this binding is crucial for ATPase activation of aABCE1 on the ribosome. The functional role of the stalk•ABCE1 interaction in ATPase activation and the subunit dissociation is also investigated using mutagenesis in a yeast system. The data demonstrate that the ribosomal stalk protein likely participates in efficient actions of both archaeal and eukaryotic ABCE1 in ribosome recycling. The results also show that the stalk protein has a role in the function of ATPase as well as GTPase factors in translation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/genética , Ribossomos/metabolismo , Sulfolobus solfataricus/genética , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Biossíntese de Proteínas/fisiologia , Pyrococcus horikoshii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sulfolobus solfataricus/metabolismo
16.
Elife ; 72018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29889023

RESUMO

Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Conformação Proteica , Multimerização Proteica , Sequência de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Homologia de Sequência de Aminoácidos
17.
Biochemistry ; 57(25): 3454-3459, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29708734

RESUMO

Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.


Assuntos
Vias Biossintéticas , Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/metabolismo , Histidina/metabolismo , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato
18.
Biosci Biotechnol Biochem ; 82(8): 1327-1334, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29629656

RESUMO

In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.


Assuntos
Acetilglucosamina/metabolismo , Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Calorimetria/métodos , Cromatografia de Afinidade/métodos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Genes Arqueais , Proteínas de Fluorescência Verde/metabolismo , Temperatura Alta , Micrococcus/metabolismo , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Sci Rep ; 8(1): 1891, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382938

RESUMO

The homologues of the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B) are assumed to be present in archaea. Likewise, an ORF, PH0208 in Pyrococcus horikoshii OT3 have been proposed to encode one of the homologues of regulatory subunits of eIF2B. However, PH0208 protein also shares sequence similarity with a functionally non-related enzyme, ribose-1,5-bisphosphate isomerase (R15Pi), involved in conversion of ribose-1,5-bisphosphate (R15P) to ribulose-1,5-bisphosphate (RuBP) in an AMP-dependent manner. Herein, we have determined the crystal structure of PH0208 protein in order to decipher its true function. Although structurally similar to the regulatory subunits of eIF2B, the ability to bind R15P and RuBP suggests that PH0208 would function as R15Pi. Additionally, this study for the first time reports the binding sites of AMP and GMP in R15Pi. The AMP binding site in PH0208 protein clarified the role of AMP in providing structural stability to R15Pi. The binding of GMP to the 'AMP binding site' in addition to its own binding site indicates that GMP might also execute a similar function, though with less specificity. Furthermore, we have utilized the resemblance between PH0208 and the regulatory subunits of eIF2B to propose a model for the regulatory mechanism of eIF2B in eukaryotes.


Assuntos
Proteínas Arqueais/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Isomerases/metabolismo , Pentosefosfatos/metabolismo , Pyrococcus horikoshii/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Subunidades Proteicas/metabolismo
20.
Nucleic Acids Res ; 46(6): 3232-3244, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471537

RESUMO

Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.


Assuntos
Proteínas Arqueais/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Pyrococcus horikoshii/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Pyrococcus horikoshii/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...