Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259608

RESUMO

Apples grown in high heat, high light, and low humidity environments are at risk for sun injury disorders like sunburn and associated crop losses. Understanding the physiological and molecular mechanisms underlying sunburn will support improvement of mitigation strategies and breeding for more resilient varieties. Numerous studies have highlighted key biochemical processes involved in sun injury, such as the phenylpropanoid and reactive oxygen species (ROS) pathways, demonstrating both enzyme activities and expression of related genes in response to sunburn conditions. Most previous studies have focused on at-harvest activity of a small number of genes in response to heat stress. Thus, it remains unclear how stress events earlier in the season affect physiology and gene expression. Here, we applied heat stress to mid-season apples in the field and collected tissue along a time course-24, 48, and 72 h following a heat stimulus-to investigate dynamic gene expression changes using a transcriptomic lens. We found a relatively small number of differentially expressed genes (DEGs) and enriched functional terms in response to heat treatments. Only a few of these belonged to pathways previously described to be involved in sunburn, such as the AsA-GSH pathway, while most DEGs had not yet been implicated in sunburn or heat stress in pome fruit.


Assuntos
Malus , Queimadura Solar , Malus/genética , Frutas , Transcriptoma , Queimadura Solar/genética , Queimadura Solar/metabolismo , Estações do Ano , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744900

RESUMO

The bagging of fruits provides efficient protection from high-intensity sunlight and improves fruit color and quality. However, bagged fruit suddenly exposed to bright light can cause sunburn and destroys the peel cell structure. In this study, fruits from ten-year-old apple trees of 'Gala' variety were debagged, and the effect of sunburn on fruits was divided into: (1) normal peels (BFN), (2) peels with albefaction (BFA), and (3) browning (BFB). The non-bagging fruits (NBF) were set as a control to study the physiological characteristics of apple fruits with different levels of sunburn. Our results showed that in the early stages of debagged fruits' sunburn, the cell structure of the peel was partially destroyed, the color of the injured fruit surface turned white, and the peroxidation in the cell membrane of the peel increased. Initially, the fruit improved its photosynthetic protection ability, and the activity of antioxidants and phenolics was enhanced, to cope with external injury. However, with the increase in duration of high-intensity sunlight, the cell structure of the peel was severely damaged, and the increase in membrane peroxidation resulted in brown coloration of fruits. Under the same conditions, the photoprotection ability and antioxidant enzyme activity of non-bagged fruits showed higher levels. In conclusion, the non-bagged fruits were more adaptable to high-intensity sunlight as compared to debagged fruits.


Assuntos
Malus , Queimadura Solar , Antioxidantes/metabolismo , Frutas/metabolismo , Malus/metabolismo , Queimadura Solar/metabolismo , Luz Solar/efeitos adversos
3.
BMC Plant Biol ; 22(1): 169, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35369864

RESUMO

BACKGROUND: Sunburn is common in pomegranate, and sunburned fruits have poor appearance and low marketability. However, the physiological and metabolic responses to sunburn and their underlying molecular mechanisms in pomegranate fruit are little understood. Fruit of sunburn-sensitive cultivar 'Hongyushizi' was used to carry out physiological parameter detection and widely-targeted metabolomics and transcriptome study. RESULTS: Malondialdehyde and relative conductivity increased with the severity of sunburn, which indicated increased membrane injury. Meanwhile, the content of antioxidants (total phenols and flavonoids), which reduce and repair membrane damage, increased and were accompanied by increases in total antioxidant capacity. In sunburned fruits compared with controls, 129 metabolites changed (including naringenin, pelargonidin and kaempferol) and 447 differentially expressed genes including CHI (Pgr25966.1), F3'5'H (Pgr26644.1), and CHS (Pgr005566.1) may have contributed to these changes. Transcription factors, such as NAC 5 (Pgr008725.1), MYB 93 (Pgr001791.1), and MYB 111 (Pgr027973.1) may be involved in phenylpropanoid and flavonoid biosynthesis by regulating the CHI, F3'5'H, and CHS etc. CONCLUSIONS: These findings provide insight into the sunburn mechanisms of pomegranate, and also into the genetic improvement of fruit sunburn.


Assuntos
Punica granatum , Queimadura Solar , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo , Queimadura Solar/metabolismo , Transcriptoma
4.
Immunity ; 54(7): 1374-1376, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260885

RESUMO

In a recent issue of Nature, Hoeffel et al. describe a novel pathway of sterile tissue repair utilizing a mouse model of sunburn. This wound healing pathway is coordinated by sensory neuron-derived TAFA4 that induces IL-10 production from Tim4+ dermal macrophages to prevent sustained inflammation and the emergence of tissue fibrosis.


Assuntos
Células Receptoras Sensoriais/patologia , Queimadura Solar/patologia , Cicatrização/fisiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Transdução de Sinais/fisiologia , Pele/metabolismo , Pele/patologia , Queimadura Solar/metabolismo
5.
Nature ; 594(7861): 94-99, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012116

RESUMO

Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.


Assuntos
Citocinas/metabolismo , Macrófagos/metabolismo , Regeneração , Células Receptoras Sensoriais/metabolismo , Cicatrização , Animais , Sobrevivência Celular , Citocinas/deficiência , Modelos Animais de Doenças , Feminino , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Fibrose/prevenção & controle , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Interleucina-10/biossíntese , Interleucina-10/metabolismo , Macrófagos/efeitos da radiação , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/efeitos da radiação , Pele/patologia , Pele/efeitos da radiação , Queimadura Solar/complicações , Queimadura Solar/etiologia , Queimadura Solar/metabolismo , Queimadura Solar/patologia , Raios Ultravioleta/efeitos adversos
6.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669452

RESUMO

Susceptibility to photoimmune suppression and photocarcinogenesis is greater in male than in female humans and mice and is exacerbated in female estrogen receptor-beta knockout (ER-ß-/-) mice. We previously reported that the active vitamin D hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), applied topically protects against the ultraviolet radiation (UV) induction of cutaneous cyclobutane pyrimidine dimers (CPDs) and the suppression of contact hypersensitivity (CHS) in female mice. Here, we compare these responses in female versus male Skh:hr1 mice, in ER-ß-/-/-- versus wild-type C57BL/6 mice, and in female ER-blockaded Skh:hr1 mice. The induction of CPDs was significantly greater in male than female Skh:hr1 mice and was more effectively reduced by 1,25(OH)2D in female Skh:hr1 and C57BL/6 mice than in male Skh:hr1 or ER-ß-/- mice, respectively. This correlated with the reduced sunburn inflammation due to 1,25(OH)2D in female but not male Skh:hr1 mice. Furthermore, although 1,25(OH)2D alone dose-dependently suppressed basal CHS responses in male Skh:hr1 and ER-ß-/- mice, UV-induced immunosuppression was universally observed. In female Skh:hr1 and C57BL/6 mice, the immunosuppression was decreased by 1,25(OH)2D dose-dependently, but not in male Skh:hr1, ER-ß-/-, or ER-blockaded mice. These results reveal a sex bias in genetic, inflammatory, and immune photoprotection by 1,25(OH)2D favoring female mice that is dependent on the presence of ER-ß.


Assuntos
Calcitriol/administração & dosagem , Receptor beta de Estrogênio/metabolismo , Transdução de Sinais/efeitos da radiação , Queimadura Solar/tratamento farmacológico , Queimadura Solar/metabolismo , Protetores Solares/administração & dosagem , Raios Ultravioleta , Administração Cutânea , Animais , Dermatite de Contato/tratamento farmacológico , Modelos Animais de Doenças , Receptor beta de Estrogênio/genética , Feminino , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/efeitos da radiação , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/efeitos da radiação , Fatores Sexuais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Neoplasias Cutâneas/prevenção & controle , Queimadura Solar/prevenção & controle
7.
Inflammopharmacology ; 29(3): 879-895, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33751333

RESUMO

UVB radiation-mediated inflammation and the oxidative process involve the transient receptor potential vanilloid 1 (TRPV1) channel activation in neuronal and non-neuronal cells. Once diosmetin has been identified as a novel TRPV1 antagonist, we evaluated the action of diosmetin from the inflammatory [ear oedema, myeloperoxidase (MPO) activity, histological changes, and cytokines levels] and oxidative [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and SOD activities] parameters in mice exposed to UVB radiation (0.5 j/cm2). We also verified the action of diosmetin on UVB radiation-induced inflammatory parameters after cutaneous nerve fibers denervation by RTX (50 µg/kg s.c.). The topical treatment with the novel TRPV1 antagonist, diosmetin (1%; 15 mg/ear), reduced ear oedema, MPO activity, and MIP-2 and IL-1ß cytokines levels by 82 ± 8%, 59 ± 10%, 40 ± 12%, and 85 ± 9%, respectively. The action of diosmetin on ear oedema and inflammatory cell infiltration was histologically confirmed. Topical diosmetin (1%) also reduced NADPH oxidase activity by 67 ± 10% and reverted SOD activity by 81 ± 13%. After cutaneous nerve fibers denervation using RTX, diosmetin reduced ear oedema, but not the inflammatory cell infiltration in mice exposed to UVB radiation. Diosmetin can be a promising molecule against skin inflammatory disorders as a result of sunburn induced by UVB radiation exposure.


Assuntos
Flavonoides/administração & dosagem , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Queimadura Solar/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Raios Ultravioleta/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Pele/metabolismo , Creme para a Pele/administração & dosagem , Queimadura Solar/metabolismo , Canais de Cátion TRPV/metabolismo
8.
Biomed Pharmacother ; 136: 111258, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33482615

RESUMO

Although the application potential of amphibian skin-derived active peptides in alleviating ultraviolet B (UVB)-induced damage has attracted increasing attention, research remains in its infancy. In this study, a new peptide (OM-GL15, GLLSGHYGRASPVAC) was identified from the skin of the green odorous frog (Odorrana margaretae). Results showed that OM-GL15 scavenged free radicals (2,2'-diazo-bis-3-ethylbenzothiazoline-6-sulfonic acid and 1,1-diphenyl-2-trinitrophenylhydrazine) and reduced Fe3+ to Fe2+. Moreover, topical administration of OM-GL15 significantly alleviated UVB-induced skin photodamage in mice. Exploration of the underlying mechanisms further showed that OM-GL15 exerted antioxidant potency. Specifically, the peptide reduced the levels of lipid peroxidation and malondialdehyde and protected epidermal cells from UVB-induced apoptosis by inhibiting DNA damage via down-regulation of p53, caspase-3, caspase-9, and Bax and up-regulation of Bcl-2. Our results highlight the potential application of amphibian skin-derived peptides in protection against UVB-induced photodamage and provide a novel peptide candidate for the development of anti-photodamage agents.


Assuntos
Proteínas de Anfíbios/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Ranidae , Queimadura Solar/prevenção & controle , Proteínas de Anfíbios/isolamento & purificação , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Epiderme/metabolismo , Epiderme/patologia , Epiderme/efeitos da radiação , Feminino , Sequestradores de Radicais Livres/isolamento & purificação , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ranidae/metabolismo , Queimadura Solar/metabolismo , Queimadura Solar/patologia , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
9.
ACS Appl Mater Interfaces ; 13(2): 2382-2398, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33406837

RESUMO

In this article, we describe a method of delivery of chondroitin sulfate to skin as nanoparticles and demonstrate its anti-inflammatory and antioxidant role using UV irradiation as a model condition. These nanoparticles, formed through electrostatic interactions of chondroitin sulfate with a skin-penetrating peptide, were found to be homogenous with positive surface charges and stable at physiological and acidic pH under certain conditions. They were able to enter into the human keratinocyte cell line (HaCaT), artificial skin membrane (mimicking the human skin), and mouse skin tissue unlike free chondroitin sulfate. The preapplication of nanoparticles also exhibited reduced levels of oxidative stress, cyclobutane pyrimidine dimer formation, TNF-α, and so on in UV-B-irradiated HaCaT cells. In an acute UV-B irradiation mouse model, their topical application resulted in reduced epidermal thickness and sunburn cells, unlike in the case of free chondroitin sulfate. Thus, a completely noninvasive method was used to deliver a bio-macromolecule into the skin without using injections or abrasive procedures.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Sulfatos de Condroitina/administração & dosagem , Portadores de Fármacos/química , Peptídeos/química , Queimadura Solar/prevenção & controle , Administração Tópica , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Linhagem Celular , Sulfatos de Condroitina/farmacocinética , Sulfatos de Condroitina/uso terapêutico , Portadores de Fármacos/metabolismo , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/metabolismo , Absorção Cutânea , Queimadura Solar/metabolismo , Queimadura Solar/patologia , Raios Ultravioleta/efeitos adversos
10.
Biomolecules ; 12(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35053190

RESUMO

Sunburn is a physiological disorder that reduces grape quality and vineyard yield. It is the result of excessive sunlight and high temperatures. As climate change continues to increase air temperatures, reports of sunburn damage in vineyards worldwide are becoming more frequent. Grapes produce secondary metabolites (carotenoids, polyphenols and aroma compounds) to counter photooxidative stress and acclimate to higher radiation environments. This study evaluated changes in these compounds in during ripening when grapes were exposed post-flowering (ED) and at véraison (LD), and compared them to a nondefoliated control (ND). ND contained more α-terpineol and violaxanthin, and the defoliated treatments contained more zeaxanthin, ß-carotene, C6 compounds and flavonoids. ED berries adapted better to higher-light environments, displayed larger changes in secondary metabolite concentrations and lower levels of sunburn damage than LD berries did. The composition of berries with increasing sunburn damage was evaluated for the first time. Berries with no damage had the lowest concentrations of flavonoids and oxidized glutathione, and the highest concentrations of chlorophyll and α-terpineol. As damage increased, destruction of photosynthetic pigments, increase in polyphenols and loss of aroma compounds were evidenced. A significant effect of temperature and developmental stage on grape composition was also observed. This study provides a holistic overview of changes in secondary metabolites experienced by grape berries when exposed to excessive light, how these vary along development and how they affect sunburn incidence.


Assuntos
Queimadura Solar , Vitis , Flavonoides/metabolismo , Frutas/química , Polifenóis/análise , Queimadura Solar/metabolismo , Queimadura Solar/prevenção & controle
11.
Biomed Pharmacother ; 134: 111161, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360043

RESUMO

Artificial sunscreens are already gaining traction in order to protect the skin from sunburns, photoaging and photocarcinogenesis. However, the efficacy and safety of most artificial sunscreen constituents are hindered by their photostability, toxicity and damage to marine ecosystems. Natural selection and evolution have ensured that plants and animals have developed effective protective mechanisms against the deleterious side effects of oxidative stress and ultraviolet radiation (UV). Hence, natural antioxidants such as sun blockers are drawing considerable attention. The exact mechanism by which natural components act as sunscreen molecules has not been clearly established. However, conjugated π system is reported to play an important role in protecting the vital genetic material within the organism. Compared to artificial sunscreens, natural sunscreens with strong UV absorptive capacities are largely limited by low specific extinction value and by their inability to spread in large-scale sunscreen cosmetic applications. Previous studies have documented that natural components exert their photoprotective effects (such as improved skin elasticity and hydration, skin texture, and wrinkles) through their antioxidant effects, and through the regulation of UV-induced skin inflammation, barrier impairment and aging. This review focuses on natural antioxidant topical formulations with sun protection factor (SPF). Lignin, melanin, silymarin and other ingredients have been added to high sun protection nature sunscreens without any physical or chemical UV filters. This paper also provides a reference for adopting novel technical measures (extracting high content components, changing the type of solution, optimizing formulation, applying Nano technology, et al) to design and prepare nature sunscreen formulations equated with commercial sunscreen formulations. Another strategy is to add natural antioxidants from plants, animals, microorganisms and marine organisms as special enhancer or modifier ingredients to reinforce SPF values. Although the photoprotective effects of natural components have been established, their deleterious side effects have not been elucidated.


Assuntos
Antioxidantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Queimadura Solar/prevenção & controle , Protetores Solares/administração & dosagem , Administração Cutânea , Animais , Antioxidantes/efeitos adversos , Antioxidantes/isolamento & purificação , Humanos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Queimadura Solar/etiologia , Queimadura Solar/metabolismo , Queimadura Solar/patologia , Protetores Solares/efeitos adversos , Protetores Solares/isolamento & purificação , Raios Ultravioleta/efeitos adversos
12.
Mar Drugs ; 18(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143013

RESUMO

Every day, we come into contact with ultraviolet radiation (UVR). If under medical supervision, small amounts of UVR could be beneficial, the detrimental and hazardous effects of UVR exposure dictate an unbalance towards the risks on the risk-benefit ratio. Acute and chronic effects of ultraviolet-A and ultraviolet-B involve mainly the skin, the immune system, and the eyes. Photodamage is an umbrella term that includes general phototoxicity, photoaging, and cancer caused by UVR. All these phenomena are mediated by direct or indirect oxidative stress and inflammation and are strictly connected one to the other. Astaxanthin (ASX) and fucoxanthin (FX) are peculiar marine carotenoids characterized by outstanding antioxidant properties. In particular, ASX showed exceptional efficacy in counteracting all categories of photodamages, in vitro and in vivo, thanks to both antioxidant potential and activation of alternative pathways. Less evidence has been produced about FX, but it still represents an interesting promise to prevent the detrimental effect of UVR. Altogether, these results highlight the importance of digging into the marine ecosystem to look for new compounds that could be beneficial for human health and confirm that the marine environment is as much as full of active compounds as the terrestrial one, it just needs to be more explored.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Pele/efeitos dos fármacos , Queimadura Solar/prevenção & controle , Protetores Solares/farmacologia , Xantofilas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Neoplasias Induzidas por Radiação/patologia , Estresse Oxidativo/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Queimadura Solar/etiologia , Queimadura Solar/metabolismo , Queimadura Solar/patologia
13.
Genet Med ; 22(1): 26-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371819

RESUMO

PURPOSE: This study investigated whether genetic counseling and test reporting for the highly penetrant CDKN2A melanoma predisposition gene promoted decreases in sun exposure. METHODS: A prospective, nonequivalent control group design compared unaffected participants (N = 128, Mage = 35.24, 52% men) from (1) families known to carry a CDKN2A pathogenic variant, who received counseling about management recommendations and a positive or negative genetic test result and (2) no-test control families known not to carry a CDKN2A pathogenic variant, who received equivalent counseling based on their comparable family history. Changes in daily ultraviolet radiation (UVR) exposure (J/m2), skin pigmentation (melanin index), and sunburns between baseline and one year following counseling were compared among carriers (n = 32), noncarriers (n = 46), and no-test control participants (n = 50). RESULTS: Both carriers and no-test control participants exhibited a decrease one year later in daily UVR dose (B = -0.52, -0.33, p < 0.01). Only carriers exhibited a significant decrease in skin pigmentation at the wrist one year later (B = -0.11, p < 0.001), and both carriers and no-test control participants reported fewer sunburns than noncarriers (p < 0.05). Facial pigmentation did not change for any group. Noncarriers did not change on any measure of UVR exposure. CONCLUSIONS: These findings support the clinical utility of disclosing CDKN2A test results and providing risk management education to high-risk individuals.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Aconselhamento Genético/métodos , Testes Genéticos/métodos , Melaninas/metabolismo , Queimadura Solar/epidemiologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Estudos Prospectivos , Exposição à Radiação/estatística & dados numéricos , Queimadura Solar/metabolismo , Luz Solar/efeitos adversos , Adulto Jovem
14.
Dermatol Clin ; 37(2): 149-157, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30850037

RESUMO

Cumulative ultraviolet exposure plays a critical role in photodamage. Recent advancements in photomedicine have resulted in a more thorough understanding of these mechanisms. Despite this, the adoption of routine sun protective practices is commonly not undertaken regularly by a large proportion of the public. Various obstacles exist that contribute to the public's nonadherence to these practices. Sunscreens, which are an integral component in all photoprotective regimens, have been questioned recently in terms of their safety. The aim of this article is to provide an overview of new concepts in photoprotection and also address current controversies pertaining to sunscreens.


Assuntos
Antioxidantes/uso terapêutico , Desoxirribodipirimidina Fotoliase/uso terapêutico , Envelhecimento da Pele , Neoplasias Cutâneas/prevenção & controle , Queimadura Solar/prevenção & controle , Protetores Solares/uso terapêutico , Benzofenonas/efeitos adversos , Colecalciferol/uso terapêutico , Recifes de Corais , Disruptores Endócrinos/efeitos adversos , Meio Ambiente , Radicais Livres/metabolismo , Humanos , Dímeros de Pirimidina/metabolismo , Fator de Proteção Solar , Queimadura Solar/metabolismo , Luz Solar , Titânio/uso terapêutico , Raios Ultravioleta , Vitaminas/uso terapêutico , Óxido de Zinco/uso terapêutico
15.
Appl Biochem Biotechnol ; 188(2): 555-567, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30547280

RESUMO

The purpose of this study was to examine the protective effects of intracellular homogeneous melanin produced by Lachnum YM156 (LIM) against ultraviolet B (UVB) induced damage in mice. The possible structural formula of the LIM was concluded based on elemental analysis, ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and mass spectrometry (MS). The LIM was modified by arginine to improve its water solubility and biological activities. LIM and ALIM show significant anti-radiation activity in which LIM and ALIM protect the skin under UV radiation. Results indicate that activities of anti-oxidant enzymes in skin were improved after treatment of LIM or ALIM. In addition, LIM and ALIM inhibited over expression of the pro-inflammatory cytokines, including interleukin (IL)-1α, IL-1ß, and IL-6 and tumor necrosis factor-α (TNF-α). The protection ability of ALIM was higher than that of LIM at the same dose. Thus, applied LIM and ALIM may be a promising radiation-protective agent.


Assuntos
Ascomicetos/metabolismo , Melaninas/química , Melaninas/farmacologia , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Pele/lesões , Raios Ultravioleta/efeitos adversos , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Biotecnologia , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Melaninas/isolamento & purificação , Camundongos , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Protetores contra Radiação/isolamento & purificação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Queimadura Solar/tratamento farmacológico , Queimadura Solar/imunologia , Queimadura Solar/metabolismo
17.
Int J Mol Sci ; 19(9)2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30205563

RESUMO

Skin color diversity is the most variable and noticeable phenotypic trait in humans resulting from constitutive pigmentation variability. This paper will review the characterization of skin pigmentation diversity with a focus on the most recent data on the genetic basis of skin pigmentation, and the various methodologies for skin color assessment. Then, melanocyte activity and amount, type and distribution of melanins, which are the main drivers for skin pigmentation, are described. Paracrine regulators of melanocyte microenvironment are also discussed. Skin response to sun exposure is also highly dependent on color diversity. Thus, sensitivity to solar wavelengths is examined in terms of acute effects such as sunburn/erythema or induced-pigmentation but also long-term consequences such as skin cancers, photoageing and pigmentary disorders. More pronounced sun-sensitivity in lighter or darker skin types depending on the detrimental effects and involved wavelengths is reviewed.


Assuntos
Dermatopatias/etiologia , Pigmentação da Pele , Raios Ultravioleta/efeitos adversos , Animais , Eritema/etiologia , Eritema/genética , Eritema/metabolismo , Predisposição Genética para Doença , Humanos , Melaninas/análise , Melaninas/genética , Melaninas/metabolismo , Fenótipo , Transtornos da Pigmentação/etiologia , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/metabolismo , Polimorfismo de Nucleotídeo Único , Dermatopatias/genética , Dermatopatias/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Pigmentação da Pele/efeitos da radiação , Queimadura Solar/etiologia , Queimadura Solar/genética , Queimadura Solar/metabolismo
18.
J Pharm Pharmacol ; 70(11): 1461-1473, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30132896

RESUMO

OBJECTIVES: To evaluate the effects of a topical emulsion containing pyrrolidine dithiocarbamate (PDTC) (EcPDTC) in skin oxidative stress and inflammation triggered by ultraviolet B (UVB) irradiation (dose of 4.14 J/cm2 ). METHODS: Hairless mouse received treatment with 0.5 g of EcPDTC or control emulsion (CTRLE) on the dorsal surface skin 12 h, 6 h and 5 min before and 6 h after the irradiation. Oxidative stress was evaluated by ferric reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging capacity, reduced glutathione quantitation, catalase activity, superoxide anion production and lipid peroxidation products. Inflammation parameters were as follows: skin oedema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, collagen fibre damage, mast cell and sunburn cell counts, and cytokine production. KEY FINDINGS: Topical treatment with EcPDTC protected from UVB-induced skin injury by maintaining the antioxidant capacity levels similar to non-irradiated control group. Furthermore, EcPDTC inhibited UVB irradiation-induced superoxide anion production, lipid peroxidation and reduced skin inflammation by inhibiting skin oedema, neutrophil recruitment, metalloproteinase-9 activity, collagen fibre damage, mast cell and sunburn cell counts, and cytokine (TNF-α and IL-1ß) production. CONCLUSIONS: Topical treatment with EcPDTC improves antioxidant systems and inhibits inflammation, protecting the skin from the damaging effects of UVB irradiation.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Pirrolidinas/administração & dosagem , Pele/efeitos dos fármacos , Queimadura Solar/prevenção & controle , Tiocarbamatos/administração & dosagem , Raios Ultravioleta , Administração Cutânea , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Citocinas/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Emulsões , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos Pelados , Estresse Oxidativo/efeitos dos fármacos , Pirrolidinas/química , Pele/metabolismo , Pele/patologia , Queimadura Solar/metabolismo , Queimadura Solar/patologia , Tiocarbamatos/química
19.
J Biomed Mater Res B Appl Biomater ; 106(7): 2535-2543, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29322633

RESUMO

Transplantation of autologous cultured melanocytes as cell suspension has been used for the treatment of vitiligo. The recipient site is often prepared by laser-mediated dermabrasion. Such procedures encounter disadvantages including prolonged transplantation duration, unsecured cell adherence to lesional skin and potential scarring. To improve this, here we propose a method by preparing recipient sites before transplantation by psoralen and ultraviolet A (PUVA)-induced sunburn followed by transplanting cells with a chitosan-based melanocyte spheroid patch. We evaluated the method in nude mice. Application of methoxsalen-soaked filter paper on skin for 30 min followed by ultraviolet A exposure induced controlled sunburn blisters in 2 days. Upon transplantation, the blister roof could be quickly peeled off by a waxing patch. The chitosan membrane on which melanocytes were precultured into multicellular spheroids was transplanted with cells facing the skin. The chitosan patch adhered well to skin and secured the contact of melanocytes with the recipient site. One day later, melanocyte spheroids already detached from the chitosan membrane and adhered to the recipient skin. Our results suggest that the combination of chitosan-based melanocyte spheroid patch with epidermal ablation by PUVA-induced sunburn reaction can be a feasible method to facilitate melanocyte transplantation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2535-2543, 2018.


Assuntos
Células Imobilizadas/transplante , Quitosana/química , Melanócitos/transplante , Pele/metabolismo , Esferoides Celulares/transplante , Queimadura Solar/terapia , Animais , Células Imobilizadas/metabolismo , Feminino , Xenoenxertos , Humanos , Masculino , Melanócitos/metabolismo , Camundongos , Camundongos Nus , Esferoides Celulares/metabolismo , Queimadura Solar/metabolismo
20.
Adv Exp Med Biol ; 996: 311-318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29124711

RESUMO

Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.


Assuntos
Descoberta de Drogas/métodos , Pele/efeitos dos fármacos , Queimadura Solar/prevenção & controle , Luz Solar/efeitos adversos , Protetores Solares/administração & dosagem , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Composição de Medicamentos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Queimadura Solar/diagnóstico , Queimadura Solar/metabolismo , Protetores Solares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...