Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Physiol Plant ; 176(3): e14333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38710501

RESUMO

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proantocianidinas , Quercus , Proantocianidinas/metabolismo , Proantocianidinas/biossíntese , Quercus/genética , Quercus/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Frutas/genética , Frutas/metabolismo
2.
BMC Plant Biol ; 24(1): 123, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373900

RESUMO

Understanding the molecular processes and hormonal signals that govern root growth is of paramount importance for effective forest management. While Arabidopsis studies have shed light on the role of the primary root in root system development, the structure of root systems in trees is considerably more intricate, posing challenges to comprehend taproot growth in acorn-sown and nursery-cultivated seedlings. In this study, we investigated Quercus robur seedlings using rhizotrons, containers, and transplanted containers to rhizotrons, aiming to unravel the impact of forest nursery practices on processes governing taproot growth and root system development. Root samples were subjected to RNA-seq analysis to identify gene expression patterns and perform differential gene expression and phytohormone analysis. Among studied cultivation systems, differentially expressed genes (DEGs) exhibited significant diversity, where the number of co-occurring DEGs among cultivation systems was significantly smaller than the number of unique DEGs in different cultivation systems. Moreover, the results imply that container cultivation triggers the activation of several genes associated with linolenic acid and peptide synthesis in root growth. Upon transplantation from containers to rhizotrons, rapid enhancement in gene expression occurs, followed by gradual reduction as root growth progresses, ultimately reaching a similar expression pattern as observed in the taproot of rhizotron-cultivated seedlings. Phytohormone analysis revealed that taproot growth patterns under different cultivation systems are regulated by the interplay between auxin and cytokinin concentrations. Moreover, the diversification of hormone levels within the root zone and cultivation systems allows for taproot growth inhibition and prompt recovery in transplanted seedlings. Our study highlights the crucial role of hormone interactions during the early stages of taproot elongation, influencing root system formation across.


Assuntos
Arabidopsis , Quercus , Quercus/metabolismo , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol Biochem ; 207: 108367, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237422

RESUMO

Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Quercus , Proteínas de Arabidopsis/genética , Quercus/genética , Quercus/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 195(1): 698-712, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236304

RESUMO

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.


Assuntos
Parede Celular , Interações Hospedeiro-Parasita , Tumores de Planta , Vespas , Animais , Parede Celular/metabolismo , Vespas/fisiologia , Tumores de Planta/parasitologia , Quercus/metabolismo , Quercus/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Lignina/metabolismo
5.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003597

RESUMO

Brassinosteroids (BRs) play important regulatory roles in plant growth and development, with functional BR receptors being crucial for BR recognition or signaling. Although functional BR receptors have been extensively studied in herbaceous plants, they remain largely under-studied in forest tree species. In this study, nine BR receptors were identified in three representative oak species, of which BRI1s and BRL1s were functional BR receptors. Dispersed duplications were a driving force for oak BR receptor expansion, among which the Brassinosteroid-Insensitive-1 (BRI1)-type genes diverged evolutionarily from most rosids. In oak BRI1s, we identified that methionine in the conserved Asn-Gly-Ser-Met (NGSM) motif was replaced by isoleucine and that the amino acid mutation occurred after the divergence of Quercus and Fagus. Compared with QmBRL1, QmBRI1 was relatively highly expressed during BR-induced xylem differentiation and in young leaves, shoots, and the phloem and xylem of young stems of Quercus mongolica. Based on Arabidopsis complementation experiments, we proved the important role of QmBRI1 in oak growth and development, especially in vascular patterning and xylem differentiation. These findings serve as an important supplement to the findings of the structural, functional and evolutionary studies on functional BR receptors in woody plants and provide the first example of natural mutation occurring in the conserved BR-binding region (NGSM motif) of angiosperm BRI1s.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Quercus , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Quercus/genética , Quercus/metabolismo , Arabidopsis/metabolismo , Evolução Biológica , Regulação da Expressão Gênica de Plantas
6.
PLoS Comput Biol ; 19(9): e1011499, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729340

RESUMO

Over the last decade, genome-scale metabolic models have been increasingly used to study plant metabolic behaviour at the tissue and multi-tissue level under different environmental conditions. Quercus suber, also known as the cork oak tree, is one of the most important forest communities of the Mediterranean/Iberian region. In this work, we present the genome-scale metabolic model of the Q. suber (iEC7871). The metabolic model comprises 7871 genes, 6231 reactions, and 6481 metabolites across eight compartments. Transcriptomics data was integrated into the model to obtain tissue-specific models for the leaf, inner bark, and phellogen, with specific biomass compositions. The tissue-specific models were merged into a diel multi-tissue metabolic model to predict interactions among the three tissues at the light and dark phases. The metabolic models were also used to analyse the pathways associated with the synthesis of suberin monomers, namely the acyl-lipids, phenylpropanoids, isoprenoids, and flavonoids production. The models developed in this work provide a systematic overview of the metabolism of Q. suber, including its secondary metabolism pathways and cork formation.


Assuntos
Quercus , Quercus/genética , Quercus/metabolismo , Metabolismo Secundário , Lipídeos , Madeira/genética
7.
Plant J ; 116(5): 1293-1308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596909

RESUMO

With climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.


Assuntos
Quercus , Quercus/metabolismo , Antioxidantes/metabolismo , Estações do Ano , Florestas , Chuva , Folhas de Planta/metabolismo , Árvores/metabolismo , Secas , Água/metabolismo
8.
Inflammopharmacology ; 31(5): 2615-2630, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37405588

RESUMO

Gastric ulcers are caused by an imbalance between aggressive and defensive factors. The green synthesis of silver nanoparticles is becoming a new and promising method in the treatment of gastrointestinal ulcers. This study was conducted to investigate the protective and antioxidant effects of silver nanoparticles synthesized from Quercus brantii extract (NSQBE) on gastric damage induced by alcohol in rats. In this study, silver nanoparticles were produced by the green synthesis method using oak extract. The structure and morphology of nanoparticles were confirmed by various techniques such as UV-Vis spectroscopy, fourier transforms infrared spectrometer (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and dynamic light scattering )DLS(. For the animal studies, 30 male Wistar rats weighing 200 ± 20 g were randomly selected and divided into five groups (the normal, ethanolic, NSQBE treatment (received doses of 20 and 5 mg/kg), and standard (received a dose of 50 mg/kg of ranitidine) groups. After the rats were euthanized, their stomach was removed. A part of the stomach tissue of rats was used for histopathological studies, and the other part was used to study biochemical parameters such as the level of reactive oxygen species (ROS), protein carbonyl oxidation (PCO), malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and reduced glutathione (GSH) as well as nitric oxide (NO). Our results showed that in the ethanol group, the levels of ROS, MDA, PCO, and serum NO were higher than in the normal group. In addition, reduced GSH, CAT, SOD, tissue NO, gastric mucus, and antioxidant potential were decreased. In rats pretreated with NSQBE and ranitidine, the levels of ROS, MDA, PCO, and serum NO decreased, and the levels of GSH, CAT, SOD, tissue NO, gastric mucus, and antioxidant potential were increased in comparison to the ethanol group. The results of this study showed that silver nanoparticles synthesized using Quercus brantii are a promising approach for the treatment of gastric ulcers.


Assuntos
Nanopartículas Metálicas , Quercus , Úlcera Gástrica , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Quercus/química , Quercus/metabolismo , Ranitidina/farmacologia , Etanol/farmacologia , Prata/farmacologia , Prata/química , Prata/uso terapêutico , Ratos Wistar , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Superóxido Dismutase/metabolismo
9.
Asian Pac J Cancer Prev ; 24(7): 2383-2388, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505770

RESUMO

This study aimed to find out the mechanism of cytotoxic effects of galls of Quercus Brantii on A375 and SK-MEL-3 melanoma and AGO-1522 normal human fibroblast cell lines for the first time. Therefore, cell viability and cytotoxic activities were evaluated. Furthermore, ROS formation, lipid peroxidation, and release of cytochrome-c were also assessed. The results revealed that the extract of these galls at a concentration of 0.05 mg/ml significantly (P<0.001) increased cytotoxicity, ROS formation, TBARS formation, and cytochrome-c release in A375 and SK-MEL-3 melanoma cell lines compared to AGO-1522 normal human fibroblast. These results demonstrated that these galls can be considered a promising candidate which acts in synergy with anticancer agents used in the clinical treatment of human malignant melanoma.


Assuntos
Antineoplásicos , Melanoma , Quercus , Humanos , Quercus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Melanoma/patologia , Antineoplásicos/farmacologia , Citocromos , Apoptose , Melanoma Maligno Cutâneo
10.
Molecules ; 28(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446829

RESUMO

The antioxidant constituents of ancestral products with ethnobotanical backgrounds are candidates for the study of filtering infusions to aid in pharmacotherapies focused on the treatment of depression and anxiety. Monoamine oxidase A (MAO-A) is an enzyme that regulates the metabolic breakdown of serotonin and noradrenaline in the nervous system. The goal of this study was to evaluate in vitro and in silico the effect of antioxidant constituents of filtering infusions from yerbaniz (Tagetes lucida (Sweet) Voss) and oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) as monoamine oxidase inhibitors. Materials were dried, ground, and mixed according to a simplex-centroid mixture design for obtaining infusions. Differential analysis of the phenolic constituent's ratio in the different infusions indicates that among the main compounds contributing to MAO-A inhibition are the gallic, chlorogenic, quinic, and shikimic acids, quercetin glucuronide and some glycosylated derivatives of ellagic acid and ellagic acid methyl ether. Infusions of Q. sideroxyla Bonpl. leaves, because of their content (99.45 ± 5.17 µg/mg) and synergy between these constituents for MAO-A inhibition (52.82 ± 3.20%), have the potential to treat depression and anxiety. Therefore, future studies with pharmacological approaches are needed to validate them as therapeutic agents with applications in mental health care.


Assuntos
Quercus , Tagetes , Antioxidantes/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Quercus/metabolismo , Ácido Elágico , Monoaminoxidase/metabolismo
11.
J Environ Radioact ; 264: 107187, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186982

RESUMO

To determine their transfer factors, activity concentrations of natural radionuclides were measured in the leaves and acorns of holm oak (Quercus ilex L.) trees collected from seven locations with different soil properties and radionuclide activity concentrations. The chemical and mineralogical compositions of the soils were also analysed to investigate the effect these had on radionuclide absorption by the trees. Soil chemistry showed significant effects on radionuclide incorporation into Quercus ilex L. tissues. A significant relationship was established between activity concentrations and soil content of Ca and P with 238U and 226Ra in the leaves and acorns of Quercus ilex L. Differentiated transfer was found for 40K, which showed greater transfer to the leaves than the other radionuclides. The activity concentration of U and 226Ra was higher in the fruits than in the leaves, with the opposite effect being observed for 40K. The risk of U and 226Ra transfer into the food chain through acorn consumption by livestock is predicted to increase in soils poor in Ca and rich in P.


Assuntos
Quercus , Monitoramento de Radiação , Frutas , Quercus/metabolismo , Chumbo/análise , Solo/química , Folhas de Planta/química , Árvores
12.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-37092696

RESUMO

Nitrogen-fixing Nepalese alder (Alnus nepalensis D. Don.), a pioneer species and nurse tree species, forms pure stands, and sometimes occurs in mixed stands in areas affected by landslides. The objective of this study was to understand the influence of A. nepalensis on carbon stock in white oak (Quercus leucotrichophora A. Camus) forests. We investigated the differences in vegetation biomass carbon (tree, sapling, seedling, shrub and herbs, and forest floor mass), soil organic carbon stock, and sequestration rates in five naturally occurring oak mixed alder (OMA) forest stands and five naturally occurring oak without alder (OWA) forest stands along the basal area gradient in order to investigate the role of A. nepalensis on ecosystem carbon stock. The total basal area ranged from 61.20 to 89.51 m2 ha-1 in the OMA stands and from 38.02 to 53.54 m2 ha-1 in the OWA stands. The total tree density of the OMA stands (1120 to 1330 trees ha-1) was higher than that of the OWA stands (950 to 1230 trees ha-1). The total ecosystem carbon stock in the OMA stands was significantly (P<0.05) higher than that in the OWA stands, ranging from 485.3 to 635.6 Mg C ha-1 in the former and from 378.8 to 472 Mg C ha-1 in the latter. Soil was the second largest carbon pool in all the studied stands, with the values ranging from 238.1 to 254.1 Mg C ha-1 in the OMA and 185.5 to 215.8 Mg C ha-1 in the OWA stands. The soil organic carbon (SOC) stock was 1.19 to 1.28 times higher in the OMA than in the OWA stands. Of the total ecosystem carbon stock in different OMA stands, A. nepalensis stored 16.2 to 38.8%. Annual carbon sequestration rates (6.6 to 9.5 Mg C ha-1 yr-1) in the OMA stands were significantly (P<0.05) higher than in the OWA (2.5 to 5.4 Mg C ha-1 yr-1) stands. Among all the species and across the stands, the greatest carbon sequestration was exhibited by A. nepalensis (3.4 to 5.3 Mg C ha-1 yr-1). The present results show the role of A. nepalensis in ecosystem carbon stock and sequestration rates. Significantly higher rates of carbon sequestration by oak in OMA stands than OWA stands clearly indicate the facilitative role of co-occurring nitrogen-fixing A. nepalensis. The results imply that Q. leucotrichophora mixed with a A. nepalensis plantation may be a good option for enhancing ecosystem carbon stock, carbon sequestration, and habitat restoration in the central Himalaya.


Assuntos
Alnus , Carbono , Ecossistema , Florestas , Quercus , Árvores , Alnus/metabolismo , Biomassa , Carbono/análise , Carbono/metabolismo , Nepal , Quercus/metabolismo , Solo/química , Árvores/química , Árvores/metabolismo , Fixação de Nitrogênio/fisiologia
13.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108671

RESUMO

The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant's defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study's main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak.


Assuntos
Micorrizas , Quercus , Micorrizas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Quercus/metabolismo , Resistência à Seca , Ácido Abscísico/metabolismo , Betaína/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Secas , Prolina/metabolismo
14.
IUBMB Life ; 75(4): 337-352, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36971473

RESUMO

In October 2020, we were finally able to gather for a celebration of Eddy Fischer's 100th birthday. As with many other events, COVID had disrupted and restricted preparations for the gathering, which ultimately was held via ZOOM. Nevertheless, it was a wonderful opportunity to share a day with Eddy, an exceptional scientist and true renaissance man, and to appreciate his stellar contributions to science. Eddy Fischer, together with Ed Krebs, was responsible for the discovery of reversible protein phosphorylation, which launched the entire field of signal transduction. The importance of this seminal work is now being felt throughout the biotechnology industry with the development of drugs that target protein kinases, which have transformed the treatment of a wide array of cancers. I was privileged to have worked with Eddy both as a postdoc and a junior faculty member, during which time we laid the foundations for our current understanding of the protein tyrosine phosphatase (PTP) family of enzymes and their importance as critical regulators of signal transduction. This tribute to Eddy is based upon the talk I presented at the event, giving a personal perspective on Eddy's influence on my career, our early research efforts together in this area, and how the field has developed since then.


Assuntos
COVID-19 , Quercus , Humanos , Quercus/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Fosforilação
15.
New Phytol ; 238(5): 2016-2032, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792969

RESUMO

Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein-protein and DNA-protein interaction assays. Our high-quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.


Assuntos
Antocianinas , Quercus , Antocianinas/metabolismo , Quercus/genética , Quercus/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Fatores de Transcrição/metabolismo , Metaboloma , Pigmentação/genética , Cromossomos , Glucosídeos , Cor
16.
Tree Physiol ; 43(5): 805-816, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36579830

RESUMO

Phloem loading and sugar distribution are key steps for carbon partitioning in herbaceous and woody species. Although the phloem loading mechanisms in herbs are well studied, less is known for trees. It was shown for saplings of Fagus sylvatica L. and Quercus robur L. that the sucrose concentration in the phloem sap was higher than in the mesophyll cells, which suggests that phloem loading of sucrose involves active steps. However, the question remains whether this also applies for tall trees. To approach this question, tissue-specific sugar and starch contents of small and tall trees of F. sylvatica and Q. robur as well as the sugar concentration in the subcellular compartments of mesophyll cells were examined. Moreover, sucrose uptake transporters (SUTs) were analyzed by heterology expression in yeast and the tissue-specific expressions of SUTs were investigated. Sugar content in leaves of the canopy (11 and 26 m height) was up to 25% higher compared with that of leaves of small trees of F. sylvatica and Q. robur (2 m height). The sucrose concentration in the cytosol of mesophyll cells from tall trees was between 120 and 240 mM and about 4- to 8-fold lower than the sucrose concentration in the phloem sap of saplings. The analyzed SUT sequences of both tree species cluster into three types, similar to SUTs from other plant species. Heterologous expression in yeast confirmed that all analyzed SUTs are functional sucrose transporters. Moreover, all SUTs were expressed in leaves, bark and wood of the canopy and the expression levels in small and tall trees were similar. The results show that the phloem loading in leaves of tall trees of F. sylvatica and Q. robur probably involves active steps, because there is an uphill concentration gradient for sucrose. SUTs may be involved in phloem loading.


Assuntos
Fagus , Quercus , Árvores/metabolismo , Açúcares/metabolismo , Sacarose/metabolismo , Fagus/metabolismo , Quercus/metabolismo , Saccharomyces cerevisiae , Floema/metabolismo , Proteínas de Membrana Transportadoras , Transporte Biológico , Carboidratos , Folhas de Planta/metabolismo
17.
Biochem Genet ; 61(3): 879-900, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36214954

RESUMO

Since the late 1980s, the oak decline has affected the Zagros oak forests in western Iran. Persian oak (Quercus brantii L.) the most important tree species of these forests has been damaged more than any other plant species. In the present study, the RNA sequencing technique was used for the first time to identify key genes and molecular mechanisms involved in Persian oak decline. The RNA was extracted from the leaves of healthy and declined oak trees, and sequenced using the Illumina HiSeq 2500 platform (2 × 150 bp paired-end reads). De novo transcriptome assembly of Persian oak revealed 56,743 unigenes and 6049 differentially expressed genes (DEGs) between declined and control samples. The results of gene ontology analysis showed that most of the DEGs involved in oak decline belong to the group of stress-responsive genes. In general, oak decline samples showed significant reductions in gene expression associated with "photosynthesis and storage of sugar" and "protein synthesis and related processes." Additionally, DEGs related to the starch degradation pathway were up-regulated, whereas DEGs associated with acetate-mevalonate (MVA), biosynthesis of lignin, and lignases pathways were down-regulated. The present study's findings can be an effective step in identifying the genes involved in oak decline and deciphering the relationship between this phenomenon and biotic and abiotic stresses.


Assuntos
Quercus , Quercus/genética , Quercus/metabolismo , RNA-Seq , Perfilação da Expressão Gênica , Transcriptoma , Análise de Sequência de RNA , Regulação da Expressão Gênica de Plantas
18.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293036

RESUMO

Quercus aliena is an economically important tree species and one of the dominant native oak species in China. Although its leaves typically turn yellow in autumn, we observed natural variants with red leaves. It is important to understand the mechanisms involved in leaf color variation in this species. Therefore, we compared a Q. aliena tree with yellow leaves and three variants with red leaves at different stages of senescence in order to determine the causes of natural variation. We found that the accumulation of anthocyanins such as cyanidin 3-O-glucoside and cyanidin 3-O-sambubiglycoside had a significant effect on leaf coloration. Gene expression analysis showed upregulation of almost all genes encoding enzymes involved in anthocyanin synthesis in the red-leaved variants during the early and main discoloration stages of senescence. These findings are consistent with the accumulation of anthocyanin in red variants. Furthermore, the variants showed significantly higher expression of transcription factors associated with anthocyanin synthesis, such as those encoded by genes QaMYB1 and QaMYB3. Our findings provide new insights into the physiological and molecular mechanisms involved in autumn leaf coloration in Q. aliena, as well as provide genetic resources for further development and cultivation of valuable ornamental variants of this species.


Assuntos
Antocianinas , Quercus , Antocianinas/metabolismo , Quercus/genética , Quercus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo
19.
Physiol Plant ; 174(5): e13788, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36169620

RESUMO

Epigenetic regulators are proteins involved in controlling gene expression. Information about the epigenetic regulators within the Fagaceae, a relevant family of trees and shrubs of the northern hemisphere ecosystems, is scarce. With the intent to characterize these proteins in Fagaceae, we searched for orthologs of DNA methyltransferases (DNMTs) and demethylases (DDMEs) and Histone modifiers involved in acetylation (HATs), deacetylation (HDACs), methylation (HMTs), and demethylation (HDMTs) in Fagus, Quercus, and Castanea genera. Blast searches were performed in the available genomes, and freely available RNA-seq data were used to de novo assemble transcriptomes. We identified homologs of seven DNMTs, three DDMEs, six HATs, 11 HDACs, 32 HMTs, and 21 HDMTs proteins. Protein analysis showed that most of them have the putative characteristic domains found in these protein families, which suggests their conserved function. Additionally, to elucidate the evolutionary history of these genes within Fagaceae, paralogs were identified, and phylogenetic analyses were performed with DNA and histone modifiers. We detected duplication events in all species analyzed with higher frequency in Quercus and Castanea and discuss the evidence of transposable elements adjacent to paralogs and their involvement in gene duplication. The knowledge gathered from this work is a steppingstone to upcoming studies concerning epigenetic regulation in this economically important family of Fagaceae.


Assuntos
Histonas , Quercus , Filogenia , Histonas/genética , Histonas/metabolismo , Duplicação Gênica , Epigênese Genética , Elementos de DNA Transponíveis , Ecossistema , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Quercus/metabolismo , Metiltransferases/genética
20.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077370

RESUMO

The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.


Assuntos
Quercus , Ecossistema , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Quercus/metabolismo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...