Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Biochem Pharmacol ; 188: 114586, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932472

RESUMO

Mycotoxin contamination is an ongoing and growing issue that can create health risks and even cause death. Unfortunately, there is currently a lack of specific therapy against mycotoxins with few side effects. On the other hand, the strategic expression of CXCL17 in mucosal tissues suggests that it may be involved in immune response when exposed to mycotoxins, but the exact role of CXCL17 remains largely unknown. Using Caco-2 as a cell model of the intestinal epithelial barrier (the first line of defense against mycotoxins), we showed that a strong production of ROS-dependent CXCL17 was triggered by mycotoxins via p38 and JNK pathways. Under the mycotoxins stress, CXCL17 modulated enhanced immuno-protective response with a remission of inflammation and apoptosis through PI3K/AKT/mTOR. Based on our observed feedback of CXCL17 to the mycotoxins, we developed the CXCL17-mimetic peptides in silico (CX1 and CX2) that possessed the safety and the capability to ameliorate mycotoxins-inducible inflammation and apoptosis. In this study, the identification of detoxifying feature of CXCL17 is a prominent addition to the chemokine field, pointing out a new direction for curing the mycotoxins-caused damage.


Assuntos
Materiais Biomiméticos/farmacologia , Quimiocinas CXC/biossíntese , Desenvolvimento de Medicamentos/métodos , Micotoxinas/toxicidade , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Materiais Biomiméticos/síntese química , Células CACO-2 , Quimiocinas CXC/síntese química , Quimiocinas CXC/genética , Relação Dose-Resposta a Droga , Humanos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
2.
Inflammation ; 43(6): 2137-2146, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025329

RESUMO

Gefitinib (Iressa), is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), used in the targeted treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC). Skin toxicity is the major adverse effect observed in patients treated with EGFR-targeted TKIs such as gefitinib and erlotinib. To date, a corresponding skin animal model has not been established to address the mechanisms of these effects. Therefore, we analyzed the skin rash phenotype and its pathological features in Brown Norway (BN) rats treated with gefitinib 2.5 mg, 5.0 mg, or 10 mg/100 g/day for 4 weeks. We found that treatment with gefitinib led to weight loss, rash, itching, and hair loss in a dose-dependent manner. We also investigated the skin pathology and found that the animal model showed thickening of the epidermis, loss of moisture, and apoptosis of keratinocytes. Immunohistochemistry, flow cytometry, and analysis of monocytes and leukocytes in the blood revealed increased macrophage infiltration was associated with the cutaneous toxicities induced by gefitinib in the BN rats. Finally, we found that gefitinib-induced cutaneous toxicity is significantly associated with three inflammatory cytokines known to be secreted by activated macrophages, TREM-1, CINC-2, and CINC-3.


Assuntos
Gefitinibe/toxicidade , Macrófagos/efeitos dos fármacos , Pele/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Quimiocina CXCL2/biossíntese , Quimiocinas CXC/biossíntese , Modelos Animais de Doenças , Feminino , Cabelo/efeitos dos fármacos , Imuno-Histoquímica , Inflamação , Leucócitos , Macrófagos/metabolismo , Fenótipo , Ratos , Ratos Endogâmicos BN , Receptor Gatilho 1 Expresso em Células Mieloides/biossíntese
3.
J Neuroinflammation ; 17(1): 310, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33070779

RESUMO

BACKGROUND: The major dose-limiting toxicity of paclitaxel, one of the most commonly used drugs to treat solid tumor, is painful neuropathy. However, the molecular mechanisms underlying paclitaxel-induced painful neuropathy are largely unclarified. METHODS: Paw withdrawal threshold was measured in the rats following intraperitoneal injection of paclitaxel. The qPCR, western blotting, protein or chromatin immunoprecipitation, ChIP-seq identification of NFATc2 binding sites, and microarray analysis were performed to explore the molecular mechanism. RESULTS: We found that paclitaxel treatment increased the nuclear expression of NFATc2 in the spinal dorsal horn, and knockdown of NFATc2 with NFATc2 siRNA significantly attenuated the mechanical allodynia induced by paclitaxel. Further binding site analysis utilizing ChIP-seq assay combining with gene expression profile revealed a shift of NFATc2 binding site closer to TTS of target genes in dorsal horn after paclitaxel treatment. We further found that NFATc2 occupancy may directly upregulate the chemokine CXCL14 expression in dorsal horn, which was mediated by enhanced interaction between NFATc2 and p300 and consequently increased acetylation of histone H4 in CXCL14 promoter region. Also, knockdown of CXCL14 in dorsal horn significantly attenuated mechanical allodynia induced by paclitaxel. CONCLUSION: These results suggested that enhanced interaction between p300 and NFATc2 mediated the epigenetic upregulation of CXCL14 in the spinal dorsal horn, which contributed to the chemotherapeutic paclitaxel-induced chronic pain.


Assuntos
Quimiocinas CXC/biossíntese , Epigênese Genética/efeitos dos fármacos , Fatores de Transcrição NFATC/biossíntese , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Paclitaxel/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Sequência de Bases , Quimiocinas CXC/genética , Epigênese Genética/fisiologia , Masculino , Fatores de Transcrição NFATC/genética , Neuralgia/genética , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
Prostate ; 80(10): 731-741, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32356572

RESUMO

BACKGROUND: Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS: Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1ß and TGF-ß1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS: OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-ß1 stimulated OPN secretion by NHPrE-1 cells and both IL-1ß and TGF-ß1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS: OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.


Assuntos
Osteopontina/biossíntese , Hiperplasia Prostática/metabolismo , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Humanos , Imuno-Histoquímica , Interleucina-6/biossíntese , Interleucina-6/genética , Masculino , Osteopontina/genética , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Estromais/metabolismo , Células Estromais/patologia
5.
Br J Haematol ; 188(2): 283-294, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423579

RESUMO

Monocytes polarize into pro-inflammatory macrophage-1 (M1) or alternative macrophage-2 (M2) states with distinct phenotypes and physiological functions. M2 cells promote tumour growth and metastasis whereas M1 macrophages show anti-tumour effects. We found that M2 cells were increased whereas M1 cells were decreased in bone marrow (BM) from multiple myeloma (MM) patients with progressive disease (PD) compared to those in complete remission (CR). Gene expression of Tribbles homolog 1 (TRIB1) protein kinase, an inducer of M2 polarization, was increased in BM from MM patients with PD compared to those in CR. Ruxolitinib (RUX) is an inhibitor of the Janus kinase family of protein tyrosine kinases (JAKs) and is effective for treating patients with myeloproliferative disorders. RUX markedly reduces both M2 polarization and TRIB1 gene expression in MM both in vitro and in vivo in human MM xenografts in severe combined immunodeficient mice. RUX also downregulates the expression of CXCL12, CXCR4, MUC1, and CD44 in MM cells and monocytes co-cultured with MM tumour cells; overexpression of these genes is associated with resistance of MM cells to the immunomodulatory agent lenalidomide. These results provide the rationale for evaluation of JAK inhibitors, including MM BM in combination with lenalidomide, for the treatment of MM patients.


Assuntos
Quimiocinas CXC/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Janus Quinases/metabolismo , Lenalidomida/farmacologia , Mucina-1/biossíntese , Mieloma Múltiplo/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Estudos de Casos e Controles , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/metabolismo , Quimiocinas CXC/metabolismo , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos SCID , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mucina-1/metabolismo , Mieloma Múltiplo/sangue , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Receptores CXCR4/biossíntese , Receptores CXCR4/metabolismo , Transdução de Sinais , Células THP-1
6.
Exp Dermatol ; 28(9): 1066-1073, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31373041

RESUMO

Psoriasis is a chronic inflammatory systemic disease caused by deregulation of the interleukin-23/-17 axis that allows the activation of Th17 lymphocytes and the reprogramming of keratinocytes proliferative response, thereby inducing the secretion of cyto-/chemokines and antimicrobial peptides. Beside cell-to-cell contacts and release of cytokines, hormones and second messengers, cells communicate each other through the release of extracellular vesicles containing DNA, RNA, microRNAs and proteins. It has been reported the alteration of extracellular vesicles trafficking in several diseases, but there is scarce evidence of the involvement of extracellular vesicles trafficking in the pathogenesis of psoriasis. The main goal of the study was to characterize the release, the cargo content and the capacity to transfer bioactive molecules of extracellular vesicles produced by keratinocytes following recombinant IL-17A treatment if compared to untreated keratinocytes. A combined approach of standard ultracentrifugation, RNA isolation and real-time RT-PCR techniques was used to characterize extracellular vesicles cargo. Flow cytometry was used to quantitatively and qualitatively analyse extracellular vesicles and to evaluate cell-to-cell extracellular vesicles transfer. We report that the treatment of human keratinocytes with IL-17A significantly modifies the extracellular vesicles cargo and release. Vesicles from IL-17A-treated cells display a specific pattern of mRNA which is undid by IL-17A neutralization. Extracellular vesicles are taken up by acceptor cells irrespective of their content but only those derived from IL-17A-treated cells enable recipient cells to express psoriasis-associated mRNA. The results imply a role of extracellular vesicles in amplifying the pro-inflammatory cascade induced in keratinocyte by pro-psoriatic cytokines.


Assuntos
Vesículas Extracelulares/efeitos dos fármacos , Interleucina-17/farmacologia , Queratinócitos/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular Transformada , Quimiocina CCL20/biossíntese , Quimiocina CCL20/genética , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Endocitose , Vesículas Extracelulares/metabolismo , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/biossíntese , Interleucina-6/genética , Queratinócitos/metabolismo , Tamanho da Partícula , Psoríase/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes/farmacologia , Succinimidas/metabolismo , beta-Defensinas/biossíntese , beta-Defensinas/genética
7.
Int J Mol Sci ; 20(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373289

RESUMO

The pathogenic mechanisms of acute lung injury due to direct and indirect pulmonary insults are incompletely understood. Using an unbiased, discovery and quantitative proteomic approach, we examined bronchoalveolar lavage fluid (BALF) proteome following lipopolysaccharide (LPS)-induced direct and indirect lung injury in mice. A total of 1017 proteins were both identified and quantitated in BALF from control, intratracheal (I.T., direct) and intraperitoneal (I.P., indirect) LPS-treated mice. The two LPS groups shared 13 up-regulated and 22 down-regulated proteins compared to the control group. Ingenuity pathway analysis revealed that acute-phase response signaling was activated by both I.T. and I.P. LPS; however, the magnitude of activation was much greater in the I.T. LPS group. Intriguingly, two canonical signaling pathways, liver X receptor/retinoid X receptor activation, and the production of nitric oxide and reactive oxygen species in macrophages, were activated by I.T. but suppressed by I.P. LPS. Cxcl15 (also known as lungkine) was also up-regulated by I.T. but down-regulated by I.P. LPS. In conclusion, our quantitative discovery-based proteomic approach identified commonalities, as well as significant differences in BALF protein expression profiles between LPS-induced direct and indirect lung injury, and importantly, LPS-induced indirect lung injury resulted in suppression of select components of lung innate immunity.


Assuntos
Lesão Pulmonar Aguda/patologia , Líquido da Lavagem Broncoalveolar/química , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Proteoma/análise , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Quimiocinas CXC/biossíntese , Escherichia coli/patogenicidade , Perfilação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
8.
Circ Res ; 124(8): 1253-1265, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30739581

RESUMO

RATIONALE: Regeneration of denuded or injured endothelium is an important component of vascular injury response. Cell-cell communication between endothelial cells and smooth muscle cells (SMCs) plays a critical role not only in vascular homeostasis but also in disease. We have previously demonstrated that PKCδ (protein kinase C-delta) regulates multiple components of vascular injury response including apoptosis of SMCs and production of chemokines, thus is an attractive candidate for a role in SMC-endothelial cells communication. OBJECTIVE: To test whether PKCδ-mediated paracrine functions of SMCs influence reendothelialization in rodent models of arterial injury. METHODS AND RESULTS: Femoral artery wire injury was performed in SMC-conditional Prkcd knockout mice, and carotid angioplasty was conducted in rats receiving transient Prkcd knockdown or overexpression. SMC-specific knockout of Prkcd impaired reendothelialization, reflected by a smaller Evans blue-excluding area in the knockout compared with the wild-type controls. A similar impediment to reendothelialization was observed in rats with SMC-specific knockdown of Prkcd. In contrast, SMC-specific gene transfer of Prkcd accelerated reendothelialization. In vitro, medium conditioned by AdPKCδ-infected SMCs increased endothelial wound closure without affecting their proliferation. A polymerase chain reaction-based array analysis identified Cxcl1 and Cxcl7 among others as PKCδ-mediated chemokines produced by SMCs. Mechanistically, we postulated that PKCδ regulates Cxcl7 expression through STAT3 (signal transducer and activator of transcription 3) as knockdown of STAT3 abolished Cxcl7 expression. The role of CXCL7 in SMC-endothelial cells communication was demonstrated by blocking CXCL7 or its receptor CXCR2, both significantly inhibited endothelial wound closure. Furthermore, insertion of a Cxcl7 cDNA in the lentiviral vector that carries a Prkcd shRNA overcame the adverse effects of Prkcd knockdown on reendothelialization. CONCLUSIONS: SMCs promote reendothelialization in a PKCδ-dependent paracrine mechanism, likely through CXCL7-mediated recruitment of endothelial cells from uninjured endothelium.


Assuntos
Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Comunicação Parácrina/fisiologia , Proteína Quinase C-delta/metabolismo , Regeneração/genética , Lesões do Sistema Vascular/metabolismo , Animais , Apoptose/fisiologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Quimiocina CXCL1/biossíntese , Quimiocinas/biossíntese , Quimiocinas CXC/antagonistas & inibidores , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Artéria Femoral/lesões , Técnicas de Inativação de Genes , Camundongos , Camundongos Transgênicos , Proteína Quinase C-delta/genética , Receptores de Interleucina-8B/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Lesões do Sistema Vascular/fisiopatologia , Cicatrização
9.
Invest Ophthalmol Vis Sci ; 59(6): 2222-2228, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715366

RESUMO

Purpose: To determine the levels of the neutrophil chemoattractants CXCL1, CXCL2, CXCL5, CXCL6, and CXCL8, the T helper 1 chemoattractants CXCL9, CXCL10 and CXCL11, the lymphoid chemokines CXCL12 and CXCL13 and the soluble form of the transmembrane chemokines CXCL16 and CX3CL1, in aqueous humor samples from patients with specific uveitic entities. Methods: Aqueous humor samples from patients with active uveitis associated with Behçet's disease (n = 13), sarcoidosis (n = 8), HLA-B27-related inflammation (n = 12), Vogt-Koyanagi-Harada (VKH) disease (n = 12), and healthy controls (n = 9) were assayed with the use of a multiplex assay. Results: All chemoattractant levels were significantly higher in all patients than in the controls. The levels of all neutrophil chemoattractants and CXCL10, CXCL16, and CX3CL1 were significantly higher in nongranulomatous uveitis (Behçet's disease and HLA-B27-associated uveitis) than in granulomatous uveitis (sarcoidosis and VKH disease), whereas the levels of the B cell chemoattractant CXCL13 were significantly higher in granulomatous uveitis than in nongranulomatous uveitis. CXCL13 levels were highest in the patients with VKH disease. CXCL9, CXCL11, and CXCL12 levels did not differ significantly. Conclusions: Inflammation in nongranulomatous uveitis appears to be driven by neutrophils and T helper 1 lymphocytes, whereas B lymphocytes may contribute to the inflammatory process in granulomatous uveitis, particularly in VKH disease.


Assuntos
Humor Aquoso/metabolismo , Quimiocinas CX3C/biossíntese , Quimiocinas CXC/biossíntese , Uveíte/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
10.
Mol Cell Biochem ; 448(1-2): 311-320, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29520695

RESUMO

Upregulation of A-kinase-interacting protein 1 (AKIP1) has been observed in breast and esophageal cancers, indicating that AKIP1 may be a potent oncogenic protein. However, the role of AKIP1 in cervical cancer still remains unknown. This study aimed to explore the role of AKIP1 in cervical cancer and to investigate the underlying mechanism of AKIP1 in tumor growth. Expression of AKIP1 in cervical cancer cells was determined by qRT-PCR and western blotting. Cell-Light EdU and colony formation assays were used to determine cell proliferation. CXCL1 and CXCL8 proteins were quantified by ELISA kits. Western blotting and qRT-PCR were used to examine the alterations in signaling-related proteins and mRNA, respectively. Endothelial cell tube formation assay was performed to evaluate the effect of AKIP1 on angiogenesis. A BALB/c nude mouse xenograft model was used to evaluate the role of AKIP1 in vivo. Cancer cell proliferation was inhibited and tumor growth and angiogenesis restrained in BALB/c nude mice by suppressing AKIP1 expression in cervical cancer cell lines. In addition, overexpression of AKIP1 in cervical cancer cells elevated the levels of CXCL1, CXCL2, and CXCL8. These three chemokines were not only involved in endothelial tube formation by binding to the endothelial receptor CXCR2, but also in cervical cancer cell proliferation and clone formation, which were induced by overexpression of AKIP1. Furthermore, we found that AKIP1-induced chemokine expression was decreased by an inhibitor of nuclear factor kappa-B kinase subunit ß. These results show that AKIP1 is crucial in cervical cancer angiogenesis and growth by elevating the levels of the NF-κB-dependent chemokines CXCL1, CXCL2, and CXCL8.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiocinas CXC/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Nucleares/metabolismo , Regulação para Cima , Neoplasias do Colo do Útero/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Quimiocinas CXC/genética , Feminino , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Proteínas Nucleares/genética , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
11.
J Biol Chem ; 292(42): 17561-17575, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842479

RESUMO

Intervertebral disc degeneration (IDD) causes chronic back pain and is linked to production of proinflammatory molecules by nucleus pulposus (NP) and other disc cells. Activation of tonicity-responsive enhancer-binding protein (TonEBP)/NFAT5 by non-osmotic stimuli, including proinflammatory molecules, occurs in cells involved in immune response. However, whether inflammatory stimuli activate TonEBP in NP cells and whether TonEBP controls inflammation during IDD is unknown. We show that TNF-α, but not IL-1ß or LPS, promoted nuclear enrichment of TonEBP protein. However, TNF-α-mediated activation of TonEBP did not cause induction of osmoregulatory genes. RNA sequencing showed that 8.5% of TNF-α transcriptional responses were TonEBP-dependent and identified genes regulated by both TNF-α and TonEBP. These genes were over-enriched in pathways and diseases related to inflammatory response and inhibition of matrix metalloproteases. Based on RNA-sequencing results, we further investigated regulation of novel TonEBP targets CXCL1, CXCL2, and CXCL3 TonEBP acted synergistically with TNF-α and LPS to induce CXCL1-proximal promoter activity. Interestingly, this regulation required a highly conserved NF-κB-binding site but not a predicted TonE, suggesting cross-talk between these two members of the Rel family. Finally, analysis of human NP tissue showed that TonEBP expression correlated with canonical osmoregulatory targets TauT/SLC6A6, SMIT/SLC5A3, and AR/AKR1B1, supporting in vitro findings that the inflammatory milieu during IDD does not interfere with TonEBP osmoregulation. In summary, whereas TonEBP participates in the proinflammatory response to TNF-α, therapeutic strategies targeting this transcription factor for treatment of disc disease must spare osmoprotective, prosurvival, and matrix homeostatic activities.


Assuntos
Disco Intervertebral/metabolismo , Osmorregulação , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Aldeído Redutase/biossíntese , Aldeído Redutase/genética , Animais , Linhagem Celular , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Criança , Pré-Escolar , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Humanos , Lactente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Lipopolissacarídeos/toxicidade , Masculino , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Ratos , Simportadores/biossíntese , Simportadores/genética , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética
12.
Proc Natl Acad Sci U S A ; 114(19): E3816-E3822, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439009

RESUMO

As estrogen receptor ß-/- (ERß-/-) mice age, the ventral prostate (VP) develops increased numbers of hyperplastic, fibroplastic lesions and inflammatory cells. To identify genes involved in these changes, we used RNA sequencing and immunohistochemistry to compare gene expression profiles in the VP of young (2-mo-old) and aging (18-mo-old) ERß-/- mice and their WT littermates. We also treated young and old WT mice with an ERß-selective agonist and evaluated protein expression. The most significant findings were that ERß down-regulates androgen receptor (AR) signaling and up-regulates the tumor suppressor phosphatase and tensin homolog (PTEN). ERß agonist increased expression of the AR corepressor dachshund family (DACH1/2), T-cadherin, stromal caveolin-1, and nuclear PTEN and decreased expression of RAR-related orphan receptor c, Bcl2, inducible nitric oxide synthase, and IL-6. In the ERß-/- mouse VP, RNA sequencing revealed that the following genes were up-regulated more than fivefold: Bcl2, clusterin, the cytokines CXCL16 and -17, and a marker of basal/intermediate cells (prostate stem cell antigen) and cytokeratins 4, 5, and 17. The most down-regulated genes were the following: the antioxidant gene glutathione peroxidase 3; protease inhibitors WAP four-disulfide core domain 3 (WFDC3); the tumor-suppressive genes T-cadherin and caveolin-1; the regulator of transforming growth factor ß signaling SMAD7; and the PTEN ubiquitin ligase NEDD4. The role of ERß in opposing AR signaling, proliferation, and inflammation suggests that ERß-selective agonists may be used to prevent progression of prostate cancer, prevent fibrosis and development of benign prostatic hyperplasia, and treat prostatitis.


Assuntos
Envelhecimento/metabolismo , Regulação para Baixo , Receptor beta de Estrogênio/metabolismo , Próstata/metabolismo , Receptores Androgênicos/biossíntese , Transdução de Sinais , Envelhecimento/genética , Envelhecimento/patologia , Androgênios/metabolismo , Animais , Quimiocina CXCL16/biossíntese , Quimiocina CXCL16/genética , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Clusterina/biossíntese , Clusterina/genética , Receptor beta de Estrogênio/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinas/biossíntese , Queratinas/genética , Masculino , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/biossíntese , Ubiquitina-Proteína Ligases Nedd4/genética , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Androgênicos/genética , Proteína Smad7/biossíntese , Proteína Smad7/genética
13.
Thorax ; 72(9): 780-787, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28250200

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. METHODS: We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. RESULTS: Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14, which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CONCLUSIONS: CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. TRIAL REGISTRATION NUMBER: Post-results, NCT00968981.


Assuntos
Quimiocinas CXC/biossíntese , Proteínas Hedgehog/fisiologia , Fibrose Pulmonar Idiopática/metabolismo , Idoso , Anilidas/farmacologia , Animais , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Células Cultivadas , Quimiocinas CXC/sangue , Quimiocinas CXC/efeitos dos fármacos , Quimiocinas CXC/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Piridinas/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
14.
Cell Physiol Biochem ; 41(4): 1684-1696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28359053

RESUMO

OBJECTIVE: Platelets are a major source of chemokines. Here, we demonstrate for the first time that platelets express significant amounts of CXCL14 and disclose powerful effects of platelet-derived CXCL14 on monocyte and endothelial migration. METHODS: The expression of CXCL14 in platelets and in the supernatant of activated platelets was analysed by immunoblotting, ELISA, and flow cytometry. The effect of platelet-derived CXCL14 on monocyte migration was evaluated using a modified Boyden chamber. The effect of CXCL14 on monocyte phagocytosis was tested by using fluorochrome-labelled E.coli particles. The effect of platelet-derived CXCL14 on endothelial migration was explored by the use of an endothelial scratch assay. RESULTS: Hitherto unrecognized expression of CXCL14 in human and murine platelets was uncovered by immunoblotting. Activation with platelet agonists such as adenosine-di-phosphate (ADP), collagen-related peptide (CRP), or thrombin-receptor activating peptide (TRAP), increased CXCL14 surface expression (flow cytometry) and release into the supernatant (immunoblotting, ELISA). Since CXCL14 is known to be chemotactic for CD14+ monocytes, we investigated the chemotactic potential of platelet-derived CXCL14 on human monocytes. Activated platelet supernatant induced monocyte migration, which was counteracted upon neutralization of platelet-derived CXCL14 as compared to IgG control. Blocking of the chemokine receptor CXCR4, but not CXCR7, reduced the number of migratory monocytes towards recombinant CXCL14, suggesting the involvement of CXCR4 in the CXCL14-directed monocyte chemotaxis. Recombinant CXCL14 enhanced the phagocytic uptake of E.coli particles by monocytes. In scratch assays with cultured endothelial cells (HUVECs), platelet-derived CXCL14 counteracted the pro-angiogenic effects of VEGF, supporting its previously recognized angiostatic potential. CONCLUSIONS: Platelets are a relevant source of CXCL14. Platelet-derived CXCL14 at the site of vascular lesions might play an important role in vascular repair/regeneration.


Assuntos
Plaquetas/metabolismo , Quimiocinas CXC/biossíntese , Regulação da Expressão Gênica/fisiologia , Ativação Plaquetária/fisiologia , Animais , Plaquetas/citologia , Quimiotaxia/fisiologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos , Monócitos/citologia , Monócitos/metabolismo
15.
Oncotarget ; 8(12): 18885-18900, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27935865

RESUMO

Due to exposure to environmental toxicants, a "field cancerization" effect occurs in the lung resulting in the development of a field of initiated but morphologically normal appearing cells in the damaged epithelium of bronchial airways with dysregulated gene expression patterns. Using a mouse model of lung squamous cell carcinoma (SCC), we performed transcriptome sequencing (RNA-Seq) to profile bronchial airway gene expression and found activation of the PI3K and Myc signaling networks in cytologically normal bronchial airway epithelial cells of mice with preneopastic lung SCC lesions, which was reversed by treatment with the PI3K Inhibitor XL-147 and pioglitazone, respectively. Activated MYC signaling was also present in premalignant and tumor tissues from human lung SCC patients. In addition, we identified a key microRNA, mmu-miR-449c-5p, whose suppression significantly up-regulated Myc expression in the normal bronchial airway epithelial cells of mice with early stage SCC lesions. We developed a novel bronchial genomic classifier in mice and validated it in humans. In the classifier, Ppbp (pro-platelet basic protein) was overexpressed 115 fold in the bronchial airways of mice with preneoplastic lung SCC lesions. This is the first report that demonstrates Ppbp as a novel biomarker in the bronchial airway for lung cancer diagnosis.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/genética , Quimiocinas CXC/biossíntese , Neoplasias Pulmonares/genética , Lesões Pré-Cancerosas/genética , Animais , Brônquios/efeitos dos fármacos , Quimioprevenção , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Pioglitazona , Quinoxalinas/farmacologia , Sulfonamidas/farmacologia , Tiazolidinedionas/farmacologia , Transcriptoma
16.
Cytotherapy ; 18(12): 1532-1542, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27720639

RESUMO

BACKGROUND AIMS: Few studies have examined the migration pattern of natural killer (NK) cells, especially after radiation treatment for cancer. We investigated whether irradiation can modulate the expression of chemokines in cancer cells and the migration of NK cells to irradiated tumor cells. METHODS: The expression of chemokine receptors (CXCR3, CXCR4 and CXCR6) on interleukin-2 (IL-2)/IL-15-activated NK cells was assessed using flow cytometry. Related chemokine ligands (CXCL11, CXCL12 and CXCL16) in human breast cancer cell lines (MCF7, SKBR3 and MDA-MB231) irradiated at various doses were assessed using reverse transcription-polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA). The cell-free culture supernatant was collected 96 h after irradiation of breast cancer cell lines for migration and blocking assays. RESULTS: The activated NK cells expressed CXCR6. Expression of the CXCR6 ligand CXCL16 increased in a time- and dose-dependent manner in all analyzed cancer cell lines. CXCL16 expression was statistically significantly enhanced in all breast cancer cell lines on day 3 after 20 Gy irradiation. Activated NK cells migration correlated with CXCL16 concentration (R2 = 0.91; P <0.0001). Significantly enhanced migration of NK cells to irradiated cancer cells was observed for a dose of 20 Gy in MCF7 (P = 0.043) and SKBR3 (P = 0.043) cells, but not in MDA-MB231 (P = 0.225) cells. A blocking assay using a CXCR6 antibody showed a significant decrease in the migration of activated NK cells in all cancer cell lines. CONCLUSIONS: Our data indicate that irradiation induces CXCL16 chemokine expression in cancer cells and enhances the migration of activated NK cells expressing CXCR6 to irradiated breast cancer cells. These results suggest that radiation would improve the anti-tumor effect of NK cells through enhanced migration of NK cells to tumor site for the treatment of patients with breast cancer.


Assuntos
Neoplasias da Mama/radioterapia , Movimento Celular/efeitos da radiação , Quimiocinas CXC/biossíntese , Células Matadoras Naturais/imunologia , Receptores de Quimiocinas/biossíntese , Receptores Depuradores/biossíntese , Receptores Virais/biossíntese , Anticorpos Bloqueadores/farmacologia , Linhagem Celular Tumoral , Quimiocina CXCL12/biossíntese , Quimiocina CXCL16 , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Interleucina-15/metabolismo , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Células MCF-7 , Receptores CXCR3/biossíntese , Receptores CXCR4/biossíntese , Receptores CXCR6 , Receptores de Quimiocinas/imunologia , Receptores Virais/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia
17.
J Lipid Res ; 57(10): 1806-1820, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27512010

RESUMO

Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2 (CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown of either CXCL3 or CXCR2 by specific siRNA effectively inhibited the course of adipogenic differentiation. CXCL3 treatment of 3T3-L1 cells significantly induced the phosphorylation of ERK and c-jun N-terminal kinase (JNK). Furthermore, CXCL3-induced CCAAT-enhancer binding protein (C/EBP)ß and δ expression was suppressed by both ERK and JNK-specific inhibitors. Furthermore, chromatin immunoprecipitation assay revealed functional binding of PPARγ2 within the cxcl3 promoter region. Taken together, these results have indicated that CXCL3 is a novel adipokine that facilitates adipogenesis in an autocrine and/or a paracrine manner through induction of c/ebpb and c/ebpd.


Assuntos
Adipogenia/fisiologia , Adipocinas/biossíntese , Diferenciação Celular/fisiologia , Quimiocinas CXC/biossíntese , Sistema de Sinalização das MAP Quinases/fisiologia , Comunicação Parácrina/fisiologia , Células 3T3-L1 , Adipocinas/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Quimiocinas CXC/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
18.
Clin Transplant ; 30(9): 1115-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27352120

RESUMO

Differentiating acute pyelonephritis (APN) from acute rejection (AR) in renal allograft biopsies can sometimes be difficult because of overlapping clinical and histologic features, lack of positive urine cultures,and variable response to antibiotics. We wanted to study differential gene expression between AR and APN using biopsy tissue. Thirty-three biopsies were analyzed using NanoString multiplex platform and PCR (6 transplant baseline biopsies, 8 AR, 15 APN [8 culture positive, 7 culture negative], and 4 native pyelonephritis [NP]). Additional 22 biopsies were tested by PCR to validate the results. CXCL9, CXCL10, CXCL11, and IDO1 were the top differentially expressed genes, upregulated in AR. Lactoferrin (LTF) and CXCL1 were higher in APN and NP. No statistically significant difference in transcript levels was seen between culture-positive and culture-negative APN biopsies. Comparing the overall mRNA signature using Ingenuity pathway analysis, interferon-gamma emerged as the dominant upstream regulator in AR and allograft APN, but not in NP (which clustered separately). Our study suggests that chemokine pathways in graft APN may differ from NP and in fact resemble AR, due to a component of alloreactivity, resulting in variable response to antibiotic treatment. Therefore, cautious addition of steroids might help in resistant cases of graft APN.


Assuntos
Biópsia/métodos , Quimiocinas CXC/genética , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Transplante de Rim/efeitos adversos , Rim/patologia , Pielonefrite/genética , Adulto , Idoso , Aloenxertos , Quimiocinas CXC/biossíntese , Feminino , Seguimentos , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Pielonefrite/metabolismo , Pielonefrite/patologia , RNA/genética , Estudos Retrospectivos , Adulto Jovem
19.
Oncol Rep ; 35(3): 1557-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26707275

RESUMO

Chemokine (C-X-C motif) ligand 16 (CXCL16) is a new angiogenic factor inducing angiogenesis via extracellular signal-regulated kinases pathway. To further understand the molecular mechanism underlying CXCL16­induced angiogenesis, we explored involvement of other relevant pathways in CXCL16-induced angiogenesis. In the present study, we investigated the mechanisms underlying CXCL16-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). CXCL16 promoted HUVEC proliferation, tube formation and migration. Enzyme-linked immunosorbent assay revealed that CXCL16 induced vascular endothelial growth factor secretion from HUVECs. Western blot analysis showed that CXCL16 increased the level of hypoxia­inducible factor 1α, p-extracellular signal-regulated kinases (ERK), p-p38 and p-Akt dose- and time-dependently. ERK-, p38- and Akt-selective inhibitors significantly suppressed HUVEC proliferation, migration, tube formation and hypoxia-inducible factor 1α (HIF-1α) expression induced by CXCL16. Furthermore, CXCL16 peptides induced CXCL16 secretion via ERK, p38 and Akt pathways, which was suppressed by HIF-1α-selective inhibitor PX12. Our data suggest that CXCL16 induces angiogenesis in autocrine manner via ERK, Akt, p38 pathways and HIF-1α modulation.


Assuntos
Comunicação Autócrina/genética , Quimiocinas CXC/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Neovascularização Patológica/genética , Receptores Depuradores/biossíntese , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CXCL16 , Quimiocinas CXC/genética , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Sistema de Sinalização das MAP Quinases/genética , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Depuradores/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
20.
J Cell Physiol ; 231(2): 370-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26089223

RESUMO

Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis.


Assuntos
Plaquetas/imunologia , Quimiocina CCL5/sangue , Quimiocinas CXC/biossíntese , Colite/imunologia , Infiltração de Neutrófilos/imunologia , Doença Aguda , Animais , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Ativação Plaquetária , Fator Plaquetário 4/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...