Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Mol Cell Biol ; 44(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270191

RESUMO

The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.


Assuntos
Quimiotaxia de Leucócito , Enzimas Desubiquitinantes , Baço , Ubiquitina , Animais , Camundongos , Enzimas Desubiquitinantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Baço/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Cisteína Endopeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Linfócitos B/metabolismo , Quimiotaxia de Leucócito/genética
2.
Eur J Immunol ; 53(2): e2249985, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36427489

RESUMO

Flagellin-induced NAIP/NLRC4 inflammasome activation and pyroptosis are critical events restricting Legionella pneumophila infection. However, the cellular and molecular dynamics of the in vivo responses against this bacterium are still unclear. We have found temporal coordination of two independent innate immunity pathways in controlling Legionella infection, the inflammasome activation and the CCR2-mediated Mo-DC recruitment. Inflammasome activation was an important player at the early stage of infection by lowering the numbers of bacteria for an efficient bacterial clearance conferred by the Mo-DC at the late stage of the infection. Mo-DC emergence highly depended on CCR2-signaling and dispensed inflammasome activation and pyroptosis. Also, Mo-DC compartment did not rely on the inflammasome machinery to deliver proper immune responses and was the most abundant cytokine-producing among the monocyte-derived cells in the infected lung. Importantly, when the CCR2- and NLRC4-dependent axes of response were simultaneously ablated, we observed an aggravated bacterial burden in the lung of infected mice. Taken together, we showed that inflammasome activation and CCR2-mediated immune response interplay in distinct pathways to restrict pulmonary bacterial infection. These findings extend our understanding of the in vivo integration and cooperation of different innate immunity arms in controlling infectious agents.


Assuntos
Células Dendríticas , Inflamassomos , Legionella pneumophila , Doença dos Legionários , Monócitos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Legionella pneumophila/imunologia , Doença dos Legionários/genética , Doença dos Legionários/imunologia , Macrófagos , Camundongos Knockout , Monócitos/metabolismo , Receptores CCR2/metabolismo
3.
Cells ; 11(21)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359773

RESUMO

The aim of the present study was to investigate the levels of YKL-40 during and after coronary artery bypass grafting surgery (CABG) and to establish possible connections between YKL-40 and markers of oxidative stress, inflammation, and myocardial injury. Patients undergoing elective CABG utilizing cardiopulmonary bypass (CPB) were recruited into the study. Blood samples were collected at the onset of anesthesia, during surgery and post-operatively. Levels of YKL-40, 8-isoprostane, interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and troponin T (TnT) were measured by immunoassay. YKL-40 levels increased significantly 24 h after CPB. Positive correlation was seen between post-operative TnT and YKL-40 levels (r = 0.457, p = 0.016) and, interestingly, baseline YKL-40 predicted post-operative TnT increase (r = 0.374, p = 0.050). There was also a clear association between YKL-40 and the chemotactic factors MCP-1 (r = 0.440, p = 0.028) and IL-8 (r = 0.484, p = 0.011) linking YKL-40 to cardiac inflammation and fibrosis following CABG. The present results show, for the first time, that YKL-40 is associated with myocardial injury and leukocyte-activating factors following coronary artery bypass surgery. YKL-40 may be a factor and/or biomarker of myocardial inflammation and injury and subsequent fibrosis following heart surgery.


Assuntos
Quimiotaxia de Leucócito , Proteína 1 Semelhante à Quitinase-3 , Traumatismos Cardíacos , Humanos , Biomarcadores , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/fisiologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Ponte de Artéria Coronária/efeitos adversos , Fibrose , Glicoproteínas , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Inflamação , Interleucina-8 , Projetos Piloto
4.
Cancer Lett ; 529: 112-125, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34999169

RESUMO

Though circulating monocytes are the main source of tumour-associated macrophages (TAMs), the regulatory mechanisms of their recruitment to tumours and further differentiation remain unclear. In the present study, we observed a significant decrease in CXCR2 expression in classical circulating monocytes of patients with colorectal cancer (CRC), particularly those in the late TNM stage. The percentage of CXCR2+ monocytes was negatively associated with systemic inflammatory markers and positively associated with intratumoural immunocyte infiltration. The pro-inflammatory cytokine IFN-γ, which was overexpressed in patients with CRC, down-regulated CXCR2 expression of monocytes/TAMs by promoting GRK-2 expression. In vitro, inhibition of CXCR2 signalling in monocytes led to impaired chemotaxis to the tumour cell line supernatant and lower responsiveness to lipopolysaccharide (LPS) stimulation. Finally, monocytes from patients with CRC with decreased CXCR2 expression showed distinct phenotypes and functions after differentiating into CRC cell line-educated TAMs, including expression of co-stimulatory factors and secretion profile, than those from healthy controls. GRK-2 inhibitor altered the functional characteristics of TAMs. In summary, our findings suggest that CXCR2 expression on circulating monocytes reflects CRC stages and is an important factor determining TAM composition in the tumour microenvironment.


Assuntos
Quimiotaxia de Leucócito/genética , Monócitos/metabolismo , Receptores de Interleucina-8B/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/imunologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Estadiamento de Neoplasias , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
5.
Front Immunol ; 12: 775447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858434

RESUMO

CD11d/CD18 is the most recently discovered and least understood ß2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration - two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.


Assuntos
Antígenos CD11/genética , Antígenos CD18/genética , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Regulação da Expressão Gênica , Cadeias alfa de Integrinas/genética , Leucócitos/fisiologia , Animais , Antígenos CD11/química , Antígenos CD11/metabolismo , Antígenos CD18/química , Antígenos CD18/metabolismo , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Humanos , Cadeias alfa de Integrinas/química , Cadeias alfa de Integrinas/metabolismo , Linfopoese/genética , Terapia de Alvo Molecular , Especificidade de Órgãos/genética , Fagocitose/genética , Fagocitose/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade , Fatores de Transcrição
6.
Int J Med Sci ; 18(16): 3631-3643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790035

RESUMO

Background: Acyl-CoA dehydrogenase short-chain (ACADS) is a crucial enzyme in the fatty acid metabolism pathway located in mitochondria. However, the expression level and prognostic value of ACADS in colorectal cancer (CRC) remain unclear. Methods: The mRNA and protein expression data of ACADS was obtained from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Oncomine. Prognostic values of ACADS were calculated using Kaplan-Meier survival analysis. Correlations between ACADS and immune infiltration were estimated using TIMER, CIBERSORT, EPIC, quanTIseq, and xCell. The UALCAN and MEXPRESS databases were utilized for Methylation analysis. The co-expression analysis based on mRNA expression and interaction network of ACADS were performed via several online tools. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on ACADS co-expressed genes were performed using the Metascape. Results: The expression analysis demonstrated that ACADS was down-regulated in CRC tissues compared with paired normal tissue. Expression of ACADS was found to be significantly associated with clinical cancer stages and the consensus molecular subgroups (CMS) constituent ratio in CRC patients. Besides, lower ACADS expression was found to predict poor prognosis and be significantly associated with common immune checkpoint genes and MMR genes in CRC. ACADS expression levels were positively related to B cells, CD4+ T cells, CD8+ T cells, M1 macrophages, neutrophils, and Tregs, while negatively correlated with M0 macrophages, M2 macrophages. The methylation level of ACADS in normal tissues was significantly higher than that in tumor tissues, and several methylation sites were identified. The enrichment analysis suggested the co-expressed genes mainly enriched in cell mitochondrial metabolism. Conclusions: The present study provided multilevel evidences for expression of ACADS in CRC and the function of ACADS in prognostic prediction, immune infiltration, and methylation. ACADS might have the potential as the novel biomarker and therapeutic target in CRC patients.


Assuntos
Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Neoplasias Colorretais/diagnóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/diagnóstico , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/mortalidade , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Valor Preditivo dos Testes , Prognóstico , Proteômica , Análise de Sobrevida , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Front Immunol ; 12: 716314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804009

RESUMO

Structural changes in the spleen have been reported in several infectious diseases. In visceral leishmaniasis (VL), a severe parasitic disease caused by Leishmania spp., the loss of white pulp accompanies a severe clinical presentation. Hamster model reproduces aspects of human VL progression. In the early stages, a transcriptomic signature of leukocyte recruitment was associated with white pulp hyperplasia. Subsequently, impaired leukocyte chemotaxis with loss of T lymphocytes in the periarteriolar lymphoid sheath occurred. This differential gene expression was subsequently corroborated by transcriptomic profiling of spleens in severe human VL. At the latest stage, spleen disorganization was associated with increasing clinical signs of VL. White pulp disruption was accompanied by decreased DLK1 expression. The expression of CXCL13, CCR5, CCL19, CCR6, CCR7 and LTA decreased, likely regulated by CDKN2A overexpression. Our findings enlighten a pathway implying cell cycle arrest and decreased gene expression involved in spleen organization.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Quimiotaxia de Leucócito/genética , Leishmaniose Visceral/imunologia , Baço/imunologia , Baço/parasitologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cricetinae , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Hiperplasia/patologia , Leishmaniose Visceral/patologia , Leucócitos/parasitologia , Leucócitos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Baço/patologia , Transcriptoma
8.
Comput Math Methods Med ; 2021: 1808361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630628

RESUMO

Inflammatory reaction of pulp tissue plays a role in the pathogen elimination and tissue repair. The evaluation of severity of pulpitis can serve an instructive function in therapeutic scheme. However, there are many limitations in the traditional evaluation methods for the severity of pulpitis. Based on the Gene Expression Omnibus (GEO) database, our study discovered 843 differentially expressed genes (DEGs) related to pulpitis. Afterwards, we constructed a protein-protein interaction (PPI) network of DEGs and used MCODE plugin to determine the key functional subset. Meanwhile, genes in the key functional subset were subjected to GO and KEGG enrichment analyses. The result showed that genes were mainly enriched in inflammatory reaction-related functions. Next, we screened out intersections of PPI network nodes and pulpitis-related genes. Then, 20 genes were obtained as seed genes. In the PPI network, 50 genes that had the highest correlation with seed genes were screened out using random walk with restart (RWR). Furthermore, 4 pulpitis-related hub genes were obtained from the intersection of the top 50 genes and genes in the key functional subset. Finally, GeneMANIA was utilized to predict genes coexpressed with hub genes, and expression levels of the 4 hub genes in normal and pulpitis groups were analyzed based on GEO data. The result demonstrated that the 4 hub genes were mainly coexpressed with chemokine-related genes and were remarkably upregulated in the pulpitis group. In short, we eventually determined 4 potential biomarkers of pulpitis.


Assuntos
Pulpite/genética , Algoritmos , Biomarcadores/metabolismo , Estudos de Casos e Controles , Quimiotaxia de Leucócito/genética , Biologia Computacional , Citocinas/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Marcadores Genéticos , Humanos , Mapas de Interação de Proteínas/genética , Pulpite/imunologia , Pulpite/metabolismo
9.
Mucosal Immunol ; 14(6): 1271-1281, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341502

RESUMO

Expression of Ikaros family transcription factor IKZF3 (Aiolos) increases during murine eosinophil lineage commitment and maturation. Herein, we investigated Aiolos expression and function in mature human and murine eosinophils. Murine eosinophils deficient in Aiolos demonstrated gene expression changes in pathways associated with granulocyte-mediated immunity, chemotaxis, degranulation, ERK/MAPK signaling, and extracellular matrix organization; these genes had ATAC peaks within 1 kB of the TSS that were enriched for Aiolos-binding motifs. Global Aiolos deficiency reduced eosinophil frequency within peripheral tissues during homeostasis; a chimeric mouse model demonstrated dependence on intrinsic Aiolos expression by eosinophils. Aiolos deficiency reduced eosinophil CCR3 surface expression, intracellular ERK1/2 signaling, and CCL11-induced actin polymerization, emphasizing an impaired functional response. Aiolos-deficient eosinophils had reduced tissue accumulation in chemokine-, antigen-, and IL-13-driven inflammatory experimental models, all of which at least partially depend on CCR3 signaling. Human Aiolos expression was associated with active chromatin marks enriched for IKZF3, PU.1, and GATA-1-binding motifs within eosinophil-specific histone ChIP-seq peaks. Furthermore, treating the EOL-1 human eosinophilic cell line with lenalidomide yielded a dose-dependent decrease in Aiolos. These collective data indicate that eosinophil homing during homeostatic and inflammatory allergic states is Aiolos-dependent, identifying Aiolos as a potential therapeutic target for eosinophilic disease.


Assuntos
Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Eosinófilos/imunologia , Eosinófilos/metabolismo , Fator de Transcrição Ikaros/genética , Alérgenos/imunologia , Animais , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Granulócitos/imunologia , Granulócitos/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Receptores CCR3/genética , Receptores CCR3/metabolismo , Transdução de Sinais
10.
BMC Cancer ; 21(1): 922, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391381

RESUMO

OBJECTIVE: Tongue and mouth floor squamous cell carcinoma (T/MF SCC) exhibits a high rate of local recurrence and cervical lymph node metastasis. The effect of the tumor microenvironment on T/MF SCC remains unclear. MATERIALS AND METHODS: Transcriptome and somatic mutation data of patients with T/MF SCC were obtained from HNSC projects of the Cancer Genome Atlas. Immune infiltration quantification in early- (clinical stage I-II) and advanced-stage (clinical stage III-IV) T/MF SCC was performed using single sample Gene Set Enrichment Analysis and MCPcounter. Differentially expressed gene data were filtered, and their function was assessed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Kaplan-Meier survival curve analysis and Cox regression model were conducted to evaluate the survival of patients with the CCL22 signature. Maftools was used to present the overview of somatic mutations. RESULTS: In T/MF SCC, T helper (Th)2 cell counts were significantly increased in patients with early-stage disease compared to those with advanced-stage disease. Expression of the Th2 cell-related chemokine, CCL22, was downregulated in patients with advanced-stage T/MF SCC. Univariate and multivariate Cox analyses revealed that CCL22 was a good prognostic factor in T/MF SCC. A nomogram based on the expression of CCL22 was constructed to serve as a prognostic indicator for T/MF SCC. NOTCH1 mutations were found at a higher rate in patients with advanced-stage T/MF SCC than in those with early-stage T/MF SCC, resulting in the inhibition of the activation of the NOTCH1-Th2 cell differentiation pathway. The expression levels of CCL22, GATA-3, and IL4 were higher in patients with early-stage T/MF SCC than in those with advanced-stage T/MF SCC. CONCLUSION: In T/MF SCC, high expression of CCL22 may promote the recruitment of Th2 cells and help predict a better survival. Mutations in NOTCH1 inhibit the differentiation of Th2 cells, facilitating tumor progression through a decrease in Th2 cell recruitment and differentiation.


Assuntos
Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Quimiocina CCL22/genética , Neoplasias Bucais/etiologia , Neoplasias Bucais/metabolismo , Receptor Notch1/genética , Células Th2/imunologia , Células Th2/metabolismo , Adulto , Idoso , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Biologia Computacional/métodos , Feminino , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Contagem de Linfócitos , Linfócitos do Interstício Tumoral , Masculino , Pessoa de Meia-Idade , Soalho Bucal/metabolismo , Soalho Bucal/patologia , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Mutação , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais
11.
Sci Rep ; 11(1): 14047, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234274

RESUMO

The Apelin/APJ signalling pathway, involved in multiple physiological and pathological processes, has been attracting increasing interest recently. In our previous study, Apelin overexpression in colon26 tumor cells suppressed tumor growth by inducing vascular maturation. Here, we found that MC38 and LLC tumor growth were greater in the absence of Apelin than in wild-type (WT) mice, suggesting that Apelin acts as a tumor suppressor. Consistent with this, treating WT mice with [Pyr1]Apelin-13 inhibited tumor growth. In MC38 tumors, only endothelial cells (ECs) strongly express APJ, a cognate receptor for Apelin, indicating that EC-derived Apelin might regulate tumor formation in an autocrine manner. Comparing with WT mice, larger numbers of vessels with narrower diameters were observed in tumors of Apelin knockout mice and lack of Apelin enhanced tumor hypoxia. Investigating immune cells in the tumor revealed that [Pyr1]Apelin-13 infusion induced the accumulation of CD8+ and CD4+ T cells in central areas. Moreover, RNA-sequencing analysis showed that Apelin induces chemokine CCL8 expression in ECs. Thus, enhancing anti-tumor immunity might be one of the mechanisms by which Apelin is involved in tumor growth. Our result indicated that increased CCL8 expression might induce CD8 + T cells infiltration into tumor and tumor inhibition.


Assuntos
Apelina/metabolismo , Quimiotaxia de Leucócito/genética , Células Endoteliais/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Apelina/genética , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CCL8/biossíntese , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Knockout , Neoplasias/patologia , Ligação Proteica , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Microambiente Tumoral
12.
Sci Rep ; 11(1): 15313, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321516

RESUMO

Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.


Assuntos
Inibidores da Angiogênese/farmacologia , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Retina/efeitos dos fármacos , Vasos Retinianos , Inibidores da Angiogênese/uso terapêutico , Animais , Quimiotaxia de Leucócito/genética , Retinopatia Diabética , Modelos Animais de Doenças , Metabolismo Energético/genética , Proteínas do Olho/genética , Ontologia Genética , Redes Reguladoras de Genes , Isquemia/genética , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Oxigênio/metabolismo , Oxigênio/toxicidade , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Retina/metabolismo , Retinopatia da Prematuridade , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/fisiologia
13.
Front Immunol ; 12: 679856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135907

RESUMO

Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαißγ signaling, whose magnitude and kinetics are governed by RGS protein/Gαi interactions. RGS proteins typically limit Gαi signaling by reducing the duration that Gαi subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear. Here, we show that C57Bl/6 mouse neutrophils containing a genomic knock-in of a mutation that disables all RGS protein-Gαi2 interactions (G184S) cannot properly balance chemoattractant receptor signaling, nor appropriately respond to inflammatory insults. Mutant neutrophils accumulate in mouse bone marrow, spleen, lung, and liver; despite neutropenia and an intrinsic inability to properly mobilize from the bone marrow. In vitro they rapidly adhere to ICAM-1 coated plates, but in vivo they poorly adhere to blood vessel endothelium. Those few neutrophils that cross blood vessels and enter tissues migrate haphazardly. Following Concanavalin-A administration fragmented G184S neutrophils accumulate in liver sinusoids leading to thrombo-inflammation and perivasculitis. Thus, neutrophil Gαi2/RGS protein interactions both limit and facilitate Gαi2 signaling thereby promoting normal neutrophil trafficking, aging, and clearance.


Assuntos
Senescência Celular , Quimiotaxia de Leucócito , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Senescência Celular/genética , Senescência Celular/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Humanos , Imunofenotipagem , Masculino , Camundongos , Neutropenia/etiologia , Neutrófilos/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo
14.
Front Immunol ; 12: 664202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163473

RESUMO

Innate immune cells are key contributors to kidney inflammation and fibrosis. Infiltration of the renal parenchyma by innate immune cells is governed by multiple signalling pathways. Since the discovery of the chemokine fractalkine (CX3CL1) and its receptor, CX3CR1 over twenty years ago, a wealth of evidence has emerged linking CX3CL1-CX3CR1 signalling to renal pathologies in both acute and chronic kidney diseases (CKD). However, despite the extent of data indicating a pathogenic role for this pathway in kidney disease and its complications, no human trials of targeted therapeutic agents have been reported. Although acute autoimmune kidney disease is often successfully treated with immunomodulatory medications, there is a notable lack of treatment options for patients with progressive fibrotic CKD. In this article we revisit the CX3CL1-CX3CR1 axis and its functional roles. Furthermore we review the accumulating evidence that CX3CL1-CX3CR1 interactions mediate important events in the intra-renal pathophysiology of CKD progression, particularly via recruitment of innate immune cells into the kidney. We also consider the role that systemic activation of the CX3CL1-CX3CR1 axis in renal disease contributes to CKD-associated cardiovascular disease. Based on this evidence, we highlight the potential for therapies targeting CX3CL1 or CX3CR1 to benefit people living with CKD.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Animais , Biomarcadores , Receptor 1 de Quimiocina CX3C/genética , Adesão Celular , Quimiocina CX3CL1/genética , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrose , Regulação da Expressão Gênica , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/terapia , Transdução de Sinais
15.
Front Immunol ; 12: 654259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959129

RESUMO

Neutrophil (PMN) recruitment to sites of insult is critical for host defense, however excessive PMN activity and tissue accumulation can lead to exacerbated inflammation and injury. Myeloperoxidase (MPO) is a PMN azurophilic granule enzyme, which together with H2O2, forms a powerful antimicrobial system designed to kill ingested bacteria. Intriguingly, in addition to intracellular killing of invading microorganisms and extracellular tissue damage due generation of ROS, soluble MPO has been directly implicated in modulating cellular responses and tissue homeostasis. In the current work, we used several models of inflammation, murine and human PMNs and state-of-the-art intravital microscopy to examine the effect of MPO on PMN migration and tissue accumulation. We found that in the absence of functional MPO (MPO knockout, KO mice) inflammatory PMN tissue accumulation was significantly enhanced. We determined that the elevated numbers of PMNs in MPO knockout mice was not due to enhanced viability, but due to increased migratory ability. Acute PMN migration in models of zymosan-induced peritonitis or ligated intestinal loops induced by intraluminal administration of PMN-chemokine CXCL1 was increased over 2-fold in MPO KO compared to wild type (WT) mice. Using real-time intravital imaging of inflamed mouse cremaster muscle and ex vivo PMN co-culture with inflamed endothelial cells (ECs) we demonstrate that elevated migration of MPO KO mice was due to enhanced adhesive interactions. In contrast, addition of soluble recombinant MPO both in vivo and ex vivo diminished PMN adhesion and migration. Although MPO has been previously suggested to bind CD11b, we found no significant difference in CD11b expression in either resting or activated PMNs and further showed that the MPO binding to the PMN surface is not specific to CD11b. As such, our data identify MPO as a novel regulator of PMN trafficking in inflammation.


Assuntos
Quimiotaxia de Leucócito/imunologia , Inflamação/etiologia , Inflamação/metabolismo , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/metabolismo , Animais , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Expressão Gênica , Inflamação/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Peroxidase/genética
16.
Front Immunol ; 12: 655499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040606

RESUMO

The presence of regulatory T cells (Tregs) in skin is important in controlling inflammatory responses in this peripheral tissue. Uninflamed skin contains a population of relatively immotile Tregs often located in clusters around hair follicles. Inflammation induces a significant increase both in the abundance of Tregs within the dermis, and in the proportion of Tregs that are highly migratory. The molecular mechanisms underpinning Treg migration in the dermis are unclear. In this study we used multiphoton intravital microscopy to examine the role of RGD-binding integrins and signalling through phosphoinositide 3-kinase P110δ (PI3K p110δ) in intradermal Treg migration in resting and inflamed skin. We found that inflammation induced Treg migration was dependent on RGD-binding integrins in a context-dependent manner. αv integrin was important for Treg migration 24 hours after induction of inflammation, but contributed to Treg retention at 48 hours, while ß1 integrin played a role in Treg retention at the later time point but not during the peak of inflammation. In contrast, inhibition of signalling through PI3K p110δ reduced Treg migration throughout the entire inflammatory response, and also in the absence of inflammation. Together these observations demonstrate that the molecular mechanisms controlling intradermal Treg migration vary markedly according to the phase of the inflammatory response.


Assuntos
Quimiotaxia de Leucócito/imunologia , Dermatite/genética , Dermatite/metabolismo , Suscetibilidade a Doenças , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Quimiotaxia de Leucócito/genética , Dermatite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Imunofluorescência/métodos , Humanos , Imunofenotipagem , Integrina alfaV/metabolismo , Integrina beta1/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Imagem Molecular/métodos , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Front Immunol ; 12: 656039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790916

RESUMO

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. During the development and progression of sepsis, polymorphonuclear neutrophils (PMNs) are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. PMN reverse migration (rM) describes the phenomenon in which PMNs migrate away from the inflammatory site back into the vasculature following the initial PMN infiltration. The functional role of PMN rM within inflammatory scenarios requires further exploration. Current evidence suggests that depending on the context, PMN rM can be both a protective response, by facilitating an efficient resolution to innate immune reaction, and also a tissue-damaging event. In this review, we provide an overview of current advancements in understanding the mechanism and roles of PMN rM in inflammation and sepsis. A comprehensive understanding of PMN rM may allow for the development of novel prophylactic and therapeutic strategies for sepsis.


Assuntos
Quimiotaxia de Leucócito/imunologia , Suscetibilidade a Doenças , Neutrófilos/imunologia , Neutrófilos/metabolismo , Sepse/etiologia , Sepse/metabolismo , Animais , Biomarcadores , Quimiotaxia de Leucócito/genética , Progressão da Doença , Suscetibilidade a Doenças/imunologia , Humanos , Infiltração de Neutrófilos/imunologia
18.
J Autoimmun ; 119: 102610, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621930

RESUMO

CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Quimiotaxia de Leucócito/imunologia , Histona Desacetilase 1/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Animais , Biomarcadores , Adesão Celular , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Imuno-Histoquímica , Inflamação/diagnóstico , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout
19.
Mucosal Immunol ; 14(1): 209-218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152414

RESUMO

Severe influenza A virus infection typically triggers excessive and detrimental lung inflammation with massive cell infiltration and hyper-production of cytokines and chemokines. We identified a novel function for nuclear matrix protein 4 (NMP4), a zinc-finger-containing transcription factor playing roles in bone formation and spermatogenesis, in regulating antiviral immune response and immunopathology. Nmp4-deficient mice are protected from H1N1 influenza infection, losing only 5% body weight compared to a 20% weight loss in wild type mice. While having no effects on viral clearance or CD8/CD4 T cell or humoral responses, deficiency of Nmp4 in either lung structural cells or hematopoietic cells significantly reduces the recruitment of monocytes and neutrophils to the lungs. Consistent with fewer innate cells in the airways, influenza-infected Nmp4-deficient mice have significantly decreased expression of chemokine genes Ccl2, Ccl7 and Cxcl1 as well as pro-inflammatory cytokine genes Il1b and Il6. Furthermore, NMP4 binds to the promoters and/or conserved non-coding sequences of the chemokine genes and regulates their expression in mouse lung epithelial cells and macrophages. Our data suggest that NMP4 functions to promote monocyte- and neutrophil-attracting chemokine expression upon influenza A infection, resulting in exaggerated innate inflammation and lung tissue damage.


Assuntos
Imunidade Inata , Imunomodulação , Vírus da Influenza A/imunologia , Proteínas Associadas à Matriz Nuclear/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Fatores de Transcrição/genética , Imunidade Adaptativa , Animais , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação/genética , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Fatores de Transcrição/metabolismo
20.
Mucosal Immunol ; 14(1): 219-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32346082

RESUMO

Gut CD4+ T cells are incompletely restored in most HIV-1-infected individuals on antiretroviral therapy, notably Th17 cells, a key subset in mucosal homeostasis. By contrast, gut Th22 cells are usually restored at normal frequencies. Th22 cells display a CCR6+CCR10+ phenotype and could thus respond to CCL20- and CCL28-mediated chemotaxis, while Th17 cells, which express CCR6 but not CCR10, depend on CCL20. Herein, we found that CCL28 is normally expressed by duodenal enterocytes of treated HIV-1-infected individuals, while CCL20 expression is blunted. Ex vivo, we showed that Th22 cells contribute to the reduction of CCL20 production by enterocytes through an IL-22- and IL-18-dependent mechanism. Th22 cells preferentially migrate via CCL20- rather than CCL28-mediated chemotaxis when both chemokines are available in the microenvironment. However, when the CCL20/CCL28 ratio drops, as in treated HIV-1-infected individuals, Th22 cells can migrate via the CCR10-CCL28 axis, as an alternative to CCR6-CCL20. This could explain the better reconstitution of gut Th22 compared with Th17 cells on antiretroviral therapy. Lastly, we assessed the relationships between the frequencies of gut Th17 and Th22 cells and inflammatory markers related to microbial translocation, and showed that Th22 cells do not compensate for the loss of Th17 cells in treated HIV-1-infected individuals.


Assuntos
Quimiocina CCL20/metabolismo , Quimiocinas CC/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...