RESUMO
Codon optimization of the Bos taurus Chymosin gene (CYM) for its expression in Pichia pastoris was performed in this study. A synthetic CYM gene was designed in silico by replacing codons rarely used by P. pastoris with equivalent nucleotide combinations that codify for the same amino acid but that are more frequently encountered in the genome of P. pastoris. A total of 332 nucleotides were modified to optimize 289 codons. The synthetic CYM gene was cloned into the expression vector pPICZαA and transformed into P. pastoris. The transformed strains were grown in artificial media supplemented with glycerol as a carbon source to increase biomass and then cultured in a similar medium replacing glycerol with methanol as a carbon source to initiate gene induction. Raw extracts of the growth media exhibited milk-clotting activity of 146.11 SU/mL. Produced recombinant chymosin showed coagulant activity from 25 to 50 °C, and within a pH range of 5-6.9, having optimum activity at 35-40 °C, and pH 5.0. These results show that codon optimization is a viable strategy to improve CYM gene expression levels in P. pastoris for the production of recombinant chymosin.
Assuntos
Quimosina/genética , Quimosina/metabolismo , Pichia/genética , Análise de Sequência de DNA/métodos , Animais , Bovinos , Códon , Meios de Cultura/química , Genes Sintéticos , Proteínas Recombinantes/metabolismo , Transformação GenéticaRESUMO
Bovine chymosin is an important milk-clotting agent used in the manufacturing of cheeses. Currently, the production of recombinant proteins by genetically modified organisms is widespread, leading to greatly reduced costs. Lactococcus (L.) lactis, the model lactic acid bacterium, was considered a good candidate for heterologous chymosin production for the following reasons: (1) it is considered to be a GRAS (generally regarded as safe) microorganism, (2) only one protease is present on its surface, (3) it can secrete proteins of different sizes, and (4) it allows for the direct production of protein in fermented food products. Thus, three genetically modified L. lactis strains were constructed to produce and target the three different forms of bovine chymosin, prochymosin B, chymosin A and chymosin B to the extracellular medium. Although all three proteins were stably produced in L. lactis, none of the forms were detected in the extracellular medium or showed clotting activity in milk. Our hypothesis is that this secretion deficiency and lack of clotting activity can be explained by the recombinant protein being attached to the cell envelope. Thus, the development of other strategies is necessary to achieve both production and targeting of chymosin in L. lactis, which could facilitate the downstream processing and recovery of this industrially important protein.
Assuntos
Quimosina/metabolismo , Precursores Enzimáticos/metabolismo , Lactococcus lactis/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Bovinos , Quimosina/genética , Precursores Enzimáticos/genética , Proteínas Recombinantes/genéticaRESUMO
The codon sequence optimized bovine prochymosin B gene was cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9K and integrated into the genome of the methylotrophic yeast Pichia (Komagataella) pastoris (P. pastoris) strain GS115. A transformant clone that showed resistance to over 4 mg G418/ml and displayed the highest milk-clotting activity was selected. Cell growth and recombinant bovine chymosin production were optimized in flask cultures during methanol induction phase achieving the highest coagulant activity with low pH values, a temperature of 25°C and with the addition of sorbitol and ascorbic acid at the beginning of this period. The scaling up of the fermentation process to lab-scale stirred bioreactor using optimized conditions, allowed to reach 240 g DCW/L of biomass level and 96 IMCU/ml of milk-clotting activity. The enzyme activity corresponded to 53 mg/L of recombinant bovine chymosin production after 120 h of methanol induction. Western blot analysis of the culture supernatant showed that recombinant chymosin did not suffer degradation during the protein production phase. By a procedure that included high performance gel filtration chromatography and 3 kDa fast ultrafiltration, the recombinant bovine chymosin was purified and concentrated from fermentation cultures, generating a specific activity of 800 IMCU/Total Abs(280 nm) and a total activity recovery of 56%. This study indicated that P. pastoris is a suitable expression system for bioreactor based fed-batch fermentation process for the efficient production of recombinant bovine chymosin under methanol-inducible AOX1 promoter.
Assuntos
Aldeído Oxidase/genética , Quimosina/metabolismo , Pichia/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo , Animais , Ácido Ascórbico/metabolismo , Reatores Biológicos , Bovinos , Quimosina/análise , Quimosina/química , Quimosina/genética , Meios de Cultura , Fermentação , Concentração de Íons de Hidrogênio , Pichia/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sorbitol/metabolismo , TemperaturaRESUMO
The aspartic proteinase gene of Mucor pusillus rennin expressed in Pichia pastoris was characterized in terms of structural and conformational stability induced by temperature. This enzyme is 12% glycosylated, with a similar specific activity to the native fungal enzyme. The secondary structure determined by CD is mainly due to beta-sheet structures with an important contribution of aromatic components. The calorimetric studies were carried out in the temperature range in which the enzyme is most stable. The enzyme undergoes an irreversible, highly scan-rate-dependent thermal denaturation under all the experimental conditions investigated. Between pH 3.0 and 7.0, only one endotherm characterized the thermal denaturation of enzyme. At pH 5.0, the most stable condition found, the denaturation can be fitted to the two-state irreversible model. Thus the kinetic constant and activation parameters of the denaturation process could be obtained. Upon reaching pH 7.5, the denaturation is characterized by two endotherms. This evidence indicates the complex tridimensional structure of this enzyme. Finally, taking into account the conservative tertiary structure of the aspartic proteinase family we comment on our results with reference to the crystallographic structure of M. pusillus pepsin [Newman, Watson, Roychowdhury, Badasso, Cleasby, Wood, Tickle and Blundell (1993) J. Mol. Biol. 221, 1295-1309].
Assuntos
Quimosina/química , Mucor/enzimologia , Biotecnologia , Varredura Diferencial de Calorimetria , Quimosina/genética , Quimosina/metabolismo , Dicroísmo Circular , Estabilidade Enzimática , Expressão Gênica , Genes Fúngicos , Glicosilação , Concentração de Íons de Hidrogênio , Peso Molecular , Mucor/genética , Pichia/genética , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , TemperaturaRESUMO
En este trabajo se describe la clonación y la expresión en E. coli del gen de la quimosina, enzima de importancia industrial para la producción de quesos. Los clones se identificaron analizando una genoteca de ADN complementario al ARN poli (A) proveniente del estómago de ternero, utilizando como sonda dos oligonucléotidos sintéticos. La región del gen, codificante a la proquimosina, fue expresada bajo el control del promotor triptófano. Se alcanzó una expresión equivalente al 10
de la proteína total. La proteína fue detectada insoluble y formando cuerpos de inclusión. La enzima producida demostró tener propiedades semejantes a la natural.
Assuntos
Quimosina/genética , Expressão Gênica , Clonagem Molecular , Biblioteca Gênica , RNA Polimerases Dirigidas por DNA , DNA RecombinanteRESUMO
En este trabajo se describe la clonación y la expresión en E. coli del gen de la quimosina, enzima de importancia industrial para la producción de quesos. Los clones se identificaron analizando una genoteca de ADN complementario al ARN poli (A) proveniente del estómago de ternero, utilizando como sonda dos oligonucléotidos sintéticos. La región del gen, codificante a la proquimosina, fue expresada bajo el control del promotor triptófano. Se alcanzó una expresión equivalente al 10 % de la proteína total. La proteína fue detectada insoluble y formando cuerpos de inclusión. La enzima producida demostró tener propiedades semejantes a la natural.