Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Clin Exp Hypertens ; 46(1): 2323532, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38471134

RESUMO

BACKGROUND: Physical activity has profound benefits on health, especially in patients with cardiovascular and metabolic disease. Exercise training can reduce oxidative stress, improve renal function, and thus lower blood pressure. However, the effect of exercise training on angiotensin II type 1 receptors (AT1R) and endothelin subtype B receptors (ETBR)-mediated diuresis and natriuresis in obese Zucker rats is unclear. METHODS: Lean and obese Zucker rats were exercised or placed on a nonmoving treadmill for 8 weeks. Blood pressure was measured by tail-cuff plethysmography, and functions of AT1R and ETBR in the kidney were measured by natriuresis, respectively. RESULTS: Our data showed that exercise training improved glucose and lipid metabolism, renal function and sodium excretion in obese Zucker rats, accompanied by decreased oxidative stress and GRK4 expression in obese Zucker rats. Moreover, exercise training reduced the Candesartan-induced an increase in diuresis and natriuresis and increased ETBR agonists (BQ3020)-mediated diuresis and natriuresis in obese Zucker rats, which were associated with decreased renal AT1R expression and ETBR phosphorylation levels. CONCLUSIONS: The results demonstrate that exercise training lowers blood pressure via improving renal AT1R and ETBR function through modulating GRK4 expression in Obese Zucker Rats and provides potentially effective targets for obesity-related hypertension.


Assuntos
Hipertensão , Rim , Humanos , Ratos , Animais , Ratos Zucker , Rim/metabolismo , Obesidade/complicações , Pressão Sanguínea , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo
2.
Cell Signal ; 117: 111101, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365112

RESUMO

Breast cancer (BC) is a common cancer whose incidence continues to grow while its medical progress has stagnated. miRNAs are vital messengers that facilitate communications among different cancer cells. This study was to reveal the correlation of miR-122-3p expression with BC metastasis and Adriamycin (ADM) resistance and its mechanism of inhibiting BC metastasis. We found that expression of miR-122-3p is negatively correlated with BC metastasis and is lower in MCF-7/ADR cells. Overexpression of miR-122-3p in MCF-7/ADR cancer cells impairs their ability to migrate, invade, and stimulate blood vessel formation. Further research found that miR-122-3p directly binds to the 3' UTR of GRK4, reducing the phosphorylation of LRP6, which activates the Wnt/ß-catenin signaling pathway, facilitating BC development and metastasis. In addition, we observed that miR-122-3p is present in MCF-7  cells, and treatment of MCF-7/ADR cells with MCF-7-derived exosomes, but not with exosomes from miR-122-3p-deficient MCF-7 cells, has identical effects to miR-122-3p overexpression. Data from xenograft experiments further suggest that excess miR-122-3p and MCF-7-derived exosomes inhibit the growth and metastasis of MCF-7/ADR cancer cells in vivo. In conclusion our data reveal that exosomal miR-122-3p may negatively regulate BC growth and metastasis, potentially serving as a diagnostic and druggable target for BC treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Células MCF-7 , Via de Sinalização Wnt , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo
3.
Yale J Biol Med ; 96(1): 95-105, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009199

RESUMO

Essential hypertension is caused by the interaction of genetic, behavioral, and environmental factors. Abnormalities in the regulation of renal ion transport cause essential hypertension. The renal dopaminergic system, which inhibits sodium transport in all the nephron segments, is responsible for at least 50% of renal sodium excretion under conditions of moderate sodium excess. Dopaminergic signals are transduced by two families of receptors that belong to the G protein-coupled receptor (GPCR) superfamily. D1-like receptors (D1R and D5R) stimulate, while D2-like receptors (D2R, D3R, and D4R) inhibit adenylyl cyclases. The dopamine receptor subtypes, themselves, or by their interactions, regulate renal sodium transport and blood pressure. We review the role of the D1R and D3R and their interaction in the natriuresis associated with volume expansion. The D1R- and D3R-mediated inhibition of renal sodium transport involves PKA and PKC-dependent and -independent mechanisms. The D3R also increases the degradation of NHE3 via USP-mediated ubiquitinylation. Although deletion of Drd1 and Drd3 in mice causes hypertension, DRD1 polymorphisms are not always associated with human essential hypertension and polymorphisms in DRD3 are not associated with human essential hypertension. The impaired D1R and D3R function in hypertension is related to their hyper-phosphorylation; GRK4γ isoforms, R65L, A142V, and A486V, hyper-phosphorylate and desensitize D1R and D3R. The GRK4 locus is linked to and GRK4 variants are associated with high blood pressure in humans. Thus, GRK4, by itself, and by regulating genes related to the control of blood pressure may explain the "apparent" polygenic nature of essential hypertension.


Assuntos
Hipertensão , Humanos , Camundongos , Animais , Hipertensão/genética , Rim/metabolismo , Pressão Sanguínea , Dopamina/metabolismo , Hipertensão Essencial/genética , Hipertensão Essencial/complicações , Hipertensão Essencial/metabolismo , Sódio/metabolismo , Quinase 4 de Receptor Acoplado a Proteína G/genética , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo
4.
Clin Sci (Lond) ; 136(12): 989-1003, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35695067

RESUMO

Activation of the angiotensin II type 2 receptor (AT2R) induces diuresis and natriuresis. Increased expression or/and activity of G-protein-coupled receptor kinase 4 (GRK4) or genetic variants (e.g., GRK4γ142V) cause sodium retention and hypertension. Whether GRK4 plays a role in the regulation of AT2R in the kidney remains unknown. In the present study, we found that spontaneously hypertensive rats (SHRs) had increased AT2R phosphorylation and impaired AT2R-mediated diuretic and natriuretic effects, as compared with normotensive Wistar-Kyoto (WKY) rats. The regulation by GRK4 of renal AT2R phosphorylation and function was studied in human (h) GRK4γ transgenic mice. hGRK4γ142V transgenic mice had increased renal AT2R phosphorylation and impaired AT2R-mediated natriuresis, relative to hGRK4γ wild-type (WT) littermates. These were confirmed in vitro; AT2R phosphorylation was increased and AT2R-mediated inhibition of Na+-K+-ATPase activity was decreased in hGRK4γ142V, relative to hGRK4γ WT-transfected renal proximal tubule (RPT) cells. There was a direct physical interaction between renal GRK4 and AT2R that was increased in SHRs, relative to WKY rats. Ultrasound-targeted microbubble destruction of renal GRK4 decreased the renal AT2R phosphorylation and restored the impaired AT2R-mediated diuresis and natriuresis in SHRs. In vitro studies showed that GRK4 siRNA reduced AT2R phosphorylation and reversed the impaired AT2R-mediated inhibition of Na+-K+-ATPase activity in SHR RPT cells. Our present study shows that GRK4, at least in part, impairs renal AT2R-mediated diuresis and natriuresis by increasing its phosphorylation; inhibition of GRK4 expression and/or activity may be a potential strategy to improve the renal function of AT2R.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G , Hipertensão , Adenosina Trifosfatases/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Quinase 4 de Receptor Acoplado a Proteína G/genética , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Camundongos , Fosforilação , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo
5.
Pharmacol Ther ; 239: 108194, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35487286

RESUMO

G protein-coupled receptors (GPCRs) mediate cellular responses to diverse extracellular stimuli that play vital roles in the regulation of biology, including behavior. Abnormal G protein-coupled receptor kinase (GRK)-mediated regulation of GPCR function is involved in the pathogenesis of hypertension. Among the seven GRK subtypes, GRK4 has attracted attention because of its constitutive activity and tissue-specific expression. Increasing number of studies show that GRK4 affects blood pressure by GPCR-mediated regulation of renal and arterial function. The target receptor of GRK4 is confined not only to GPCRs, but also to other blood pressure-regulating receptors, such as the adiponectin receptor. Genetic studies in humans show that in several ethnic groups, GRK4 gene variants (R65L, A142V, and A486V) are associated with salt-sensitive or salt-resistant essential hypertension and blood pressure responses to antihypertensive medicines. In this article, we present a comprehensive overview of GRK-mediated regulation of blood pressure, focusing on the latest research progress on GRK4 and hypertension and highlighting potential and novel strategies for the prevention and treatment of hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G , Hipertensão , Humanos , Quinase 4 de Receptor Acoplado a Proteína G/genética , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/genética , Pressão Sanguínea , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Rim/metabolismo
6.
Clin Sci (Lond) ; 135(22): 2575-2588, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34779863

RESUMO

Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.


Assuntos
Hipertensão/etiologia , Material Particulado/efeitos adversos , Exposição Paterna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Receptor Tipo 1 de Angiotensina/metabolismo , Animais , Pressão Sanguínea , Feminino , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/metabolismo , Masculino , Estresse Oxidativo , Gravidez , Ratos Sprague-Dawley , Sódio/urina
7.
PLoS One ; 16(7): e0255311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34297769

RESUMO

Essential hypertension is a common cardiovascular disease with complex etiology, closely related to genetic and environmental factors. The pathogenesis of hypertension involves alteration in vascular resistance caused by sympathetic nervous system (SNS) and renin angiotensin system (RAS). Susceptibility factors of hypertension vary with regions and ethnicities. In this study, we conducted target capture sequencing on 54 genes related to SNS and RAS derived from a collection of Han nationality, consisting of 151 hypertension patients and 65 normal subjects in Xinjiang, China. Six non-synonymous mutations related to hypertension were identified, including GRK4 rs1644731 and RDH8 rs1801058, Mutations are predicted to affect 3D conformation, force field, transmembrane domain and RNA secondary structure of corresponding genes. Based on protein interaction network and pathway enrichment, GRK4 is predicted to participate in hypertension by acting on dopaminergic synapse, together with interacting components. RDH8 is involved in vitamin A (retinol) metabolism and consequent biological processes related to hypertension. Thus, GRK4 and RDH8 may serve as susceptibility genes for hypertension. This finding provides new genetic evidence for elucidating risk factors of hypertension in Han nationality in Xinjiang, which in turn, enriches genetic resource bank of hypertension susceptibility genes.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/genética , Hipertensão/genética , Polimorfismo de Nucleotídeo Único , China , Quinase 4 de Receptor Acoplado a Proteína G/química , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Mapas de Interação de Proteínas
8.
Clin Sci (Lond) ; 134(18): 2453-2467, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940654

RESUMO

Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Receptores de Adiponectina/metabolismo , Sódio/metabolismo , Adiponectina/metabolismo , Animais , Pressão Sanguínea , Linhagem Celular , Diurese , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/fisiopatologia , Camundongos Transgênicos , Mutação/genética , Natriurese , Fosforilação , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
9.
FASEB J ; 34(9): 11594-11604, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687659

RESUMO

The endothelin receptor type B (ETBR) regulates water and electrolyte balance and blood pressure, in part, by inhibiting renal sodium transport. Our preliminary study found that the ETBR-mediated diuresis and natriuresis are impaired in hypertension with unknown mechanism. Persistently increased activity of G protein-coupled receptor kinase 4 (GRK4), caused by increased expression or genetic variants (eg, GRKγ142V), impairs the ability of the kidney to excrete a sodium load, in part, by impairing renal dopamine D1 receptor function through persistent phosphorylation. Our present study found that although renal ETBR expression was not different between Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs), renal ETBR phosphorylation was higher in SHRs. The role of hyper-phosphorylation in impaired ETBR-function was supported by results in human (h) GRK4γ transgenic mice. Stimulation of ETBR by BQ3020-induced natriuresis in human (h) GRK4γ wild-type (WT) mice. However, in hGRK4γ 142V transgenic mice, the renal ETBR was hyperphosphorylated and ETBR-mediated natriuresis and diuresis were not evident. There were co-localization and co-immunoprecipitation of ETBR and GRK4 in renal proximal tubule (RPT) cells from both WKY and SHRs but was greater in the latter than the former group. SiRNA-mediated downregulation of GRK4 expression, recovered the impaired inhibitory effect of ETBR on Na+ -K+ -ATPase activity in RPT cells from SHR. In vivo downregulation of renal GRK4 expression, via ultrasound-targeted microbubble destruction, decreased ETBR phosphorylation and restored ETBR-mediated natriuresis and diuresis in SHRs. This study provides a mechanism by which GRK4, via regulation of renal ETBR function, participates in the pathogenesis of hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Receptor de Endotelina B/metabolismo , Animais , Células Cultivadas , Feminino , Quinase 4 de Receptor Acoplado a Proteína G/genética , Hipertensão/genética , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Transgênicos , Fosforilação , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor de Endotelina B/genética , Sódio/metabolismo , Especificidade da Espécie
10.
Clin Exp Hypertens ; 42(2): 99-104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30698033

RESUMO

Objective:Environmental cold stress is an important factor that leads to hypertension. The role and the mechanisms of in-utero cold stress in hypertension in adult offspring remain unknown.Methods: The pregnant rats were housed in cold (4°C) rooms from 14 to 21 days of gestation for prenatal cold exposure. The blood pressure and vascular response offspring of control and cold exposure were measured. And the receptor expression, phosphorylation and internalization were checked by immunoblotting or immunoprecipitation.Results: In the present study, we report that prenatal cold stress elevated the blood pressure via decreasing D1 receptor-associated vasodilation, which is ascribed to decreased D1 receptor expression and function. Moreover, the artery G protein-coupled receptor kinase 4 (GRK4) expression has been found to be higher in the prenatal cold stress treated offspring than the controls, which could cause the increased phosphorylation and internalization of D1 receptor in mesenteric artery from prenatal cold stress treated offspring, and led to receptor desensitization and vascular dysfunction.Conclusion: The results illustrate a new paradigm for the developmental origins of hypertension and imply that GRK4 and dopamine D1 receptor may be crucial determinants for the maternal hypertension.


Assuntos
Resposta ao Choque Frio/fisiologia , Dopamina/fisiologia , Hipertensão/prevenção & controle , Complicações Cardiovasculares na Gravidez/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Feminino , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/fisiopatologia , Artérias Mesentéricas/fisiologia , Fosforilação/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Vasodilatação/fisiologia
11.
J Proteomics ; 207: 103445, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31349021

RESUMO

G protein-coupled receptor kinases (GRKs) are involved in a wide range of cellular physiology and pathological activities by specifically phosphorylating activated G protein-coupled receptors (GPCRs) to terminate GPCR signaling, or through regulating non-GPCR substrates. We recently reported that overexpression of GRK4 halts cell proliferation and induces cellular senescent phenotype in HEK293 cells. In this study, a quantitative proteomic assay was performed to analyze the protein profiles between HEK293 cells expressing and not expressing GRK4. Results revealed 39 upregulated and 59 downregulated differently expressed proteins (DEPs) in a total of 4124 identified proteins. Gene ontology (GO) annotation and functional enrichment revealed that the DEPs were related to metabolic processes regulated by the binding of these RNA/proteins under the biological processes. The Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis showed pathways of cell development, division, proliferation, apoptosis, aging, autophagy, cell death and cell cycle progression are involved in. Immunoblotting validation of expression of six key target proteins, CALM1, STAT3, CDK1, CDK6, TOP2A, and GRK4, which speculatively maintain abnormal activity in the above pathways, was consistent with the results of proteomics analysis. Lastly, a biological phenotype assay confirmed that GRK4 promoted HEK293 cell growth blockage and G1/0 arrest. Taken together, this study identified some novel molecules that involve in GRK4 signaling and provided valuable information for further studying the mechanisms underlying GRK4-induced proliferative inhibition. SIGNIFICANCE: A quantitative proteomic assay was performed in HEK293 cells expressing and not expressing GRK4 39 upregulated and 59 downregulated differently expressed proteins (DEPs)were identified. DEPs involved in pathways of cell development, division, proliferation, apoptosis, aging, autophagy, cell death and cell cycle progression. Biological phenotype assay confirmed that GRK4 prompted HEK293 cell growth blockage and G1/0 arrest.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação da Expressão Gênica , Proteômica , Fase de Repouso do Ciclo Celular , Transdução de Sinais , Células HEK293 , Humanos
12.
J Am Heart Assoc ; 7(1)2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-29307864

RESUMO

BACKGROUND: Epidemiological evidence supports an important association between air pollution exposure and hypertension. However, the mechanisms are not clear. METHODS AND RESULTS: Our present study found that long-term exposure to fine particulate matter (PM2.5) causes hypertension and impairs renal sodium excretion, which might be ascribed to lower D1 receptor expression and higher D1 receptor phosphorylation, accompanied with a higher G-protein-coupled receptor kinase type 4 (GRK4) expression. The in vivo results were confirmed in in vitro studies (ie, PM2.5 increased basal and decreased D1 receptor mediated inhibitory effect on Na+-K+ ATPase activity, decreased D1 receptor expression, and increased D1 receptor phosphorylation in renal proximal tubule cells). The downregulation of D1 receptor expression and function might be attributable to a higher GRK4 expression after the exposure of renal proximal tubule cells to PM2.5, because downregulation of GRK4 by small-interfering RNA reversed the D1 receptor expression and function. Because of the role of reactive oxygen species on D1 receptor dysfunction and its relationship with air pollution exposure, we determined plasma reactive oxygen species and found the levels higher in PM2.5-treated Sprague-Dawley rats. Inhibition of reactive oxygen species by tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) reduced blood pressure and increased sodium excretion in PM2.5-treated Sprague-Dawley rats, accompanied by an increase in the low D1 receptor expression, and decreased the hyperphosphorylated D1 receptor and GRK4 expression. CONCLUSIONS: Our present study indicated that long-term exposure of PM2.5 increases blood pressure by decreasing D1 receptor expression and function; reactive oxygen species, via regulation of GRK4 expression, plays an important role in the pathogenesis of PM2.5-induced hypertension.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Material Particulado/toxicidade , Receptores de Dopamina D1/efeitos dos fármacos , Eliminação Renal/efeitos dos fármacos , Sódio/urina , Animais , Linhagem Celular , Quinase 4 de Receptor Acoplado a Proteína G/genética , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Hipertensão/urina , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/fisiopatologia , Masculino , Tamanho da Partícula , Fosforilação , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de Dopamina D1/metabolismo , Medição de Risco , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima
13.
J Am Heart Assoc ; 5(10)2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27792639

RESUMO

BACKGROUND: G protein-coupled receptor kinase type 4 (GRK4) plays a vital role in the long-term control of blood pressure (BP) and sodium excretion by regulating renal G protein-coupled receptor phosphorylation, including dopamine type 1 receptor (D1R). Ultrasound-targeted microbubble destruction (UTMD) is a promising method for gene delivery. Whether this method can deliver GRK4 small interfering RNA (siRNA) and lower BP is not known. METHODS AND RESULTS: BP, 24-hour sodium excretion, and urine volume were measured after UTMD-targeted GRK4 siRNA delivery to the kidney in spontaneously hypertensive rats. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. The present study revealed that UTMD-mediated renal GRK4 siRNA delivery efficiently reduced GRK4 expression and lowered BP in spontaneously hypertensive rats, accompanied by increased sodium excretion. The increased sodium excretion might be accounted for by the UTMD regulation of D1R phosphorylation and function in spontaneously hypertensive rats. Further analysis showed that, although UTMD had no effect on D1R expression, it reduced D1R phosphorylation in spontaneously hypertensive rats kidneys and consequently increased D1R-mediated natriuresis and diuresis. CONCLUSIONS: Taken together, these study results indicate that UTMD-targeted GRK4 siRNA delivery to the kidney effectively reduces D1R phosphorylation by inhibiting renal GRK4 expression, improving D1R-mediated natriuresis and diuresis, and lowering BP, which may provide a promising novel strategy for gene therapy for hypertension.


Assuntos
Pressão Sanguínea/genética , Quinase 4 de Receptor Acoplado a Proteína G/genética , Técnicas de Silenciamento de Genes/métodos , Técnicas de Transferência de Genes , Receptores de Dopamina D1/metabolismo , Ondas Ultrassônicas , Animais , Regulação para Baixo , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Rim , Masculino , Microbolhas , RNA Interferente Pequeno , Ratos , Ratos Endogâmicos SHR , Sódio/urina
14.
Biochem Biophys Res Commun ; 470(4): 894-9, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26820533

RESUMO

Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [(125)I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or ß2-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449-453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM1 receptor and further determined the region of the CLR C-tail responsible for this GRK function.


Assuntos
Membrana Celular/metabolismo , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Regulação para Baixo/fisiologia , Células HEK293 , Humanos
15.
Nucleic Acids Res ; 43(17): 8540-50, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26250109

RESUMO

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.


Assuntos
Cerebelo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Quinase 4 de Receptor Acoplado a Proteína G/genética , RNA Mensageiro/metabolismo , Animais , Sítios de Ligação , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/genética , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/química
16.
J Biol Chem ; 290(33): 20360-73, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134571

RESUMO

G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl ß,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/química , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Quinase 4 de Receptor Acoplado a Proteína G/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Int J Mol Sci ; 16(3): 5741-9, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25775155

RESUMO

Salt sensitivity is probably caused by either a hereditary or acquired defect of salt excretion by the kidney, and it is reasonable to consider that this is the basis for differences in hypertension between black and white people. Dopamine acts in an autocrine/paracrine fashion to promote natriuresis in the proximal tubule and thick ascending loop of Henle. G-protein receptor kinases (or GRKs) are serine and threonine kinases that phosphorylate G protein-coupled receptors in response to agonist stimulation and uncouple the dopamine receptor from its G protein. This results in a desensitisation process that protects the cell from repeated agonist exposure. GRK4 activity is increased in spontaneously hypertensive rats, and infusion of GRK4 antisense oligonucleotides attenuates the increase in blood pressure (BP). This functional defect is replicated in the proximal tubule by expression of GRK4 variants namely p.Arg65Leu, p.Ala142Val and p.Val486Ala, in cell lines, with the p.Ala142Val showing the most activity. In humans, GRK4 polymorphisms were shown to be associated with essential hypertension in Australia, BP regulation in young adults, low renin hypertension in Japan and impaired stress-induced Na excretion in normotensive black men. In South Africa, GRK4 polymorphisms are more common in people of African descent, associated with impaired Na excretion in normotensive African people, and predict blood pressure response to Na restriction in African patients with mild to moderate essential hypertension. The therapeutic importance of the GRK4 single nucleotide polymorphisms (SNPs) was emphasised in the African American Study of Kidney Disease (AASK) where African-Americans with hypertensive nephrosclerosis were randomised to receive amlodipine, ramipril or metoprolol. Men with the p.Ala142Val genotype were less likely to respond to metoprolol, especially if they also had the p.Arg65Leu variant. Furthermore, in the analysis of response to treatment in two major hypertension studies, the 65Leu/142Val heterozygote predicted a significantly decreased response to atenolol treatment, and the 65Leu/142Val heterozygote and 486Val homozygote were associated in an additive fashion with adverse cardiovascular outcomes, independent of BP. In conclusion, there is considerable evidence that GRK4 variants are linked to impaired Na excretion, hypertension in animal models and humans, therapeutic response to dietary Na restriction and response to antihypertensive drugs. It may also underlie the difference in hypertension between different geographically derived population groups, and form a basis for pharmacogenomic approaches to treatment of hypertension.


Assuntos
Anti-Hipertensivos/uso terapêutico , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/tratamento farmacológico , Animais , Modelos Animais de Doenças , Quinase 4 de Receptor Acoplado a Proteína G/genética , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Polimorfismo de Nucleotídeo Único , Sódio/metabolismo
19.
PLoS One ; 10(3): e0120111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25768006

RESUMO

BACKGROUND: High sodium intake is associated with the development of chronic diseases such as obesity. Although its role in obesity remains controversial, there may be a correlation between salt sensitivity and the early onset of chronic diseases in obese children. METHODS: In all, 2,163 Korean children (1,106 boys and 1,057 girls) aged 8-9 years were recruited from seven elementary schools in Seoul. To evaluate whether obesity risk was modulated by the salt sensitivity, 11 SNPs related to salt sensitive genes (SSG) became the target of sodium intakes in obese children. RESULTS: BP, HOMA-IR, LDLc, TG, and the girls' sodium intake significantly increased, but HDLc significantly decreased with increase in BMI. Regardless of sex, the obesity risk was 5.27-fold (CI; 1.320-27.560) higher in the Q2 to Q5 of sodium intake adjusted by energy (4044.9-5058.9 mg/day) than in the lowest Q1 level (2287.6 mg/day) in obese children. BP was sensitively dependent on insulin resistance and lipid accumulation in all subjects; however, sodium intake may be an independent risk factor of obesity without increasing BP in girls. GRK4 A486V mutant homozygote was highly distributed in the obese group, but other SNPs had no impact. The obesity risk increased 7.06, 16.8, and 46.09-fold more in boys with GRK4 A486V, ACE, and SLC12A3 mutants as sodium intake increased. Among girls, the obesity risk increased in GRK4 A486V heterozygote and CYP11ß-2 mutant homozygote although sodium intake was relatively lower, implying that ACE, SLC12A, CYP11ß-2, and GRK4 A486V polymorphisms showed gender-based differences with regard to interaction between sodium intake and obesity. CONCLUSION: A high sodium intake markedly increased the obesity risk in variants of GRK4 A486V regardless of sex. The obesity risk increased with GRK4 A486V, ACE, and SLC12A3 variants in boys, whereas it increased with GRK4 A486V and CYP11B2 variants in girls as sodium intake increased. Obese children with the specific gene variants are recommended to reduce their sodium intake.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/genética , Obesidade/genética , Peptidil Dipeptidase A/genética , Análise de Variância , Antropometria , Pressão Sanguínea , Criança , LDL-Colesterol/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Resistência à Insulina , Masculino , Peptidil Dipeptidase A/metabolismo , República da Coreia , Fatores Sexuais , Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
20.
J Biol Chem ; 290(17): 10775-90, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25770216

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including ß2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive ß2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Arrestinas/metabolismo , Bovinos , Quinase 4 de Receptor Acoplado a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/genética , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...