Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731835

RESUMO

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Assuntos
Leucemia Mieloide Aguda , Biologia de Sistemas , Tretinoína , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Tretinoína/farmacologia , Biologia de Sistemas/métodos , Células HL-60 , Perfilação da Expressão Gênica , Células K562 , Descoberta de Drogas/métodos , Transcriptoma , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
2.
Zhonghua Yi Xue Za Zhi ; 104(17): 1507-1513, 2024 May 07.
Artigo em Chinês | MEDLINE | ID: mdl-38706058

RESUMO

Objective: To evaluate the efficacy of chemotherapy and endocrine therapy combined with targeted drugs after progression on cyclin-dependent kinase 4/6 (CDK4/6) inhibitor treatment in hormone receptor (HR) positive/human epidermal growth factor receptor 2 (HER2)-low metastatic breast cancer. Methods: Patients with metastatic breast cancer diagnosed with HR positive/HER2 low expression at the Fifth Medical Center of PLA General Hospital from October 1, 2018 to September 30, 2023 were retrospectively included. All patients received sequential chemotherapy or sequential endocrine therapy combined with targeted drugs after progression on CDK4/6 inhibitor treatment.The median follow-up was 9 months, and the follow-up ended on October 31, 2023. The patients were divided into chemotherapy group (receiving sequential chemotherapy) and endocrine therapy group (receiving sequential endocrine therapy combined with targeted drugs), according to the treatment plan. Information on demographic data, clinical and pathological diagnosis, treatment regimen, and efficacy evaluation was collected. The basic conditions of patients who may affect the curative effect of different treatment schemes were preset as stratified subgroups, including age, progesterone receptor (PR) status, HER2 status, disease-free survival, number of previous endocrine therapy and chemotherapy, and visceral metastasis. The primary endpoint was progression-free survival (PFS), the secondary endpoints were objective response rate (ORR), clinical benefit rate(CBR) and PFS based on stratification factors. The survival curve was plotted by Kaplan-Meier method, the comparison of PFS between groups was performed by log-rank test, and the comparison of ORR and CBR between groups were performed by χ2 test. Results: A total of 188 patients were included, including 126 patients in the chemotherapy group [all females, aged 29-74 (51±10) years] and 62 patients in the endocrine therapy group [1 male and 61 female, aged 29-77 (51±12) years]. ORR of chemotherapy group was 23.0% (29/126), higher than that of endocrine treatment group [3.2% (2/62)] (P<0.001); The CBR of chemotherapy group and endocrine therapy group were 46.8% (59/126) and 33.9% (21/62), respectively, with no statistical significance (P=0.091). The median PFS of chemotherapy group and endocrine therapy group were 5.0 (95%CI: 4.3-5.7) and 4.0 (95%CI: 1.6-6.4) months, respectively, with no statistical significance (P=0.484). In the preset stratified subgroups, the median PFS of chemotherapy [6.0 (95%CI: 5.4-6.6) months] was longer than that of endocrine combined with targeted therapy [2.0 (95%CI: 1.8-2.2) months] (P<0.001) in PR negative patients; In patients who had progressed on over 2 previous endocrine treatments, the median PFS of chemotherapy [5.0 (95%CI: 3.8-6.2) months] was longer than that of endocrine combined with targeted therapy [2.0 (95%CI: 0.6-3.4) months] (P=0.045). Conclusions: After progression on treatment with CDK4/6 inhibitors for HR-positive/HER2-low expression metastatic breast cancer, both chemotherapy and endocrine therpy combined with targeted drugs are viable treatment options. However, for patients with PR negative or ≥2 lines of endocrine therapy previously, priority should be accorded to chemotherapy.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Receptor ErbB-2 , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Metástase Neoplásica , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo
3.
Science ; 384(6695): eadi2421, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696576

RESUMO

Cell cycle events are coordinated by cyclin-dependent kinases (CDKs) to ensure robust cell division. CDK4/6 and CDK2 regulate the growth 1 (G1) to synthesis (S) phase transition of the cell cycle by responding to mitogen signaling, promoting E2F transcription and inhibition of the anaphase-promoting complex. We found that this mechanism was still required in G2-arrested cells to prevent cell cycle exit after the S phase. This mechanism revealed a role for CDK4/6 in maintaining the G2 state, challenging the notion that the cell cycle is irreversible and that cells do not require mitogens after passing the restriction point. Exit from G2 occurred during ribotoxic stress and was actively mediated by stress-activated protein kinases. Upon relief of stress, a significant fraction of cells underwent a second round of DNA replication that led to whole-genome doubling.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Replicação do DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Humanos , Estresse Fisiológico , Fase S , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição E2F/genética
4.
Sci Rep ; 14(1): 9032, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641704

RESUMO

CSF1R is a receptor tyrosine kinase responsible for the growth/survival/polarization of macrophages and overexpressed in some AML patients. We hypothesized that a novel multi-kinase inhibitor (TKi), narazaciclib (HX301/ON123300), with high potency against CSF1R (IC50 ~ 0.285 nM), would have anti-AML effects. We tested this by confirming HX301's high potency against CSF1R (IC50 ~ 0.285 nM), as well as other kinases, e.g. FLT3 (IC50 of ~ 19.77 nM) and CDK6 (0.53 nM). An in vitro proliferation assay showed that narazaciclib has a high growth inhibitory effect in cell cultures where CSF1R or mutant FLT3-ITD variants that may be proliferation drivers, including primary macrophages (IC50 of 72.5 nM) and a subset of AML lines (IC50 < 1.5 µM). In vivo pharmacology modeling of narazaciclib using five AML xenografts resulted in: inhibition of MV4-11 (FLT3-ITD) subcutaneous tumor growth and complete suppression of AM7577-PDX (FLT3-ITD/CSF1Rmed) systemic growth, likely due to the suppression of FLT3-ITD activity; complete suppression of AM8096-PDX (CSF1Rhi/wild-type FLT3) growth, likely due to the inhibition of CSF1R ("a putative driver"); and nonresponse of both AM5512-PDX and AM7407-PDX (wild-type FLT3/CSF1Rlo). Significant leukemia load reductions in bone marrow, where disease originated, were also achieved in both responders (AM7577/AM8096), implicating that HX301 might be a potentially more effective therapy than those only affecting peripheral leukemic cells. Altogether, narazaciclib can potentially be a candidate treatment for a subset of AML with CSF1Rhi and/or mutant FLT3-ITD variants, particularly second generation FLT3 inhibitor resistant variants.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador de Colônias/antagonistas & inibidores , Receptores de Fator Estimulador de Colônias/metabolismo , Piridonas/farmacologia , Pirimidinas/farmacologia
5.
J Agric Food Chem ; 72(19): 11094-11110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661523

RESUMO

Research on adipogenesis will help to improve the meat quality of livestock. Long noncoding RNAs (lncRNAs) are involved in mammalian adipogenesis as epigenetic modulators. In this study, we analyzed lncRNA expression during bovine adipogenesis and detected 195 differentially expressed lncRNAs, including lncRNA BlncAD1, which was significantly upregulated in mature bovine adipocytes. Gain- and loss-of-function experiments confirmed that BlncAD1 promoted the proliferation, apoptosis, and differentiation of bovine preadipocytes. RNA pull-down revealed that the nonmuscle myosin 10 (MYH10) is a potential binding protein of BlncAD1. Then, we elucidated that loss of BlncAD1 caused increased ubiquitination of MYH10, which confirmed that BlncAD1 regulates adipogenesis by enhancing the stability of the MYH10 protein. Western blotting was used to demonstrate that BlncAD1 activated the PI3K/Akt signaling pathway. Bioinformatic analysis and dual-luciferase reporter assays indicated that BlncAD1 competitively absorbed miR-27a-5p. The overexpression and interference of miR-27a-5p in bovine preadipocytes displayed that miR-27a-5p inhibited proliferation, apoptosis, and differentiation. Further results suggested that miR-27a-5p targeted the CDK6 gene and that BlncAD1 controlled the proliferation of bovine preadipocytes by modulating the miR-27a-5p/CDK6 axis. This study revealed the complex mechanisms of BlncAD1 underlying bovine adipogenesis for the first time, which would provide useful information for genetics and breeding improvement of Chinese beef cattle.


Assuntos
Adipócitos , Adipogenia , Quinase 6 Dependente de Ciclina , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Animais , Bovinos/genética , Bovinos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipogenia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Adipócitos/metabolismo , Adipócitos/citologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Diferenciação Celular , Proliferação de Células , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Apoptose
6.
PLoS One ; 19(4): e0298947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626179

RESUMO

Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/patologia , RNA Circular/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Exp Mol Med ; 56(4): 987-1000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622197

RESUMO

Transcriptional programs governed by YAP play key roles in conferring resistance to various molecular-targeted anticancer agents. Strategies aimed at inhibiting YAP activity have garnered substantial interest as a means to overcome drug resistance. However, despite extensive research into the canonical Hippo-YAP pathway, few clinical agents are currently available to counteract YAP-associated drug resistance. Here, we present a novel mechanism of YAP stability regulation by MAP3K3 that is independent of Hippo kinases. Furthermore, we identified MAP3K3 as a target for overcoming anticancer drug resistance. Depletion of MAP3K3 led to a substantial reduction in the YAP protein level in melanoma and breast cancer cells. Mass spectrometry analysis revealed that MAP3K3 phosphorylates YAP at serine 405. This MAP3K3-mediated phosphorylation event hindered the binding of the E3 ubiquitin ligase FBXW7 to YAP, thereby preventing its p62-mediated lysosomal degradation. Robust YAP activation was observed in CDK4/6 inhibitor-resistant luminal breast cancer cells. Knockdown or pharmacological inhibition of MAP3K3 effectively suppressed YAP activity and restored CDK4/6 inhibitor sensitivity. Similarly, elevated MAP3K3 expression supported the prosurvival activity of YAP in BRAF inhibitor-resistant melanoma cells. Inhibition of MAP3K3 decreased YAP-dependent cell proliferation and successfully restored BRAF inhibitor sensitivity. In conclusion, our study reveals a previously unrecognized mechanism for the regulation of YAP stability, suggesting MAP3K3 inhibition as a promising strategy for overcoming resistance to CDK4/6 and BRAF inhibitors in cancer treatment.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Lisossomos , Proteólise , Proteínas Proto-Oncogênicas B-raf , Proteínas de Sinalização YAP , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Lisossomos/metabolismo , Linhagem Celular Tumoral , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosforilação , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Antineoplásicos/farmacologia
8.
Nat Commun ; 15(1): 2287, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480701

RESUMO

CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Through a genome-wide CRISPR screen, we identify protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout breast cancer cells. Inhibition of PRMT5 blocks the G1-to-S transition in the cell cycle independent of RB, leading to growth arrest in RB1-knockout cells. Proteomics analysis uncovers fused in sarcoma (FUS) as a downstream effector of PRMT5. Inhibition of PRMT5 results in dissociation of FUS from RNA polymerase II, leading to hyperphosphorylation of serine 2 in RNA polymerase II, intron retention, and subsequent downregulation of proteins involved in DNA synthesis. Furthermore, treatment with the PRMT5 inhibitor pemrametostat and a selective ER degrader fulvestrant synergistically inhibits growth of ER+/RB-deficient cell-derived and patient-derived xenografts. These findings highlight dual ER and PRMT5 blockade as a potential therapeutic strategy to overcome resistance to CDK4/6i in ER+/RB-deficient breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , RNA Polimerase II , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
9.
Nucleic Acids Res ; 52(6): 3069-3087, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38321933

RESUMO

Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Metilação de DNA , Fígado , Peixe-Zebra , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , DNA/metabolismo , Replicação do DNA/genética , Embrião não Mamífero , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fase S , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ativação Enzimática/genética
10.
Immunol Invest ; 53(3): 437-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38314676

RESUMO

Cancer is an abnormal proliferation of cells that is stimulated by cyclin-dependent kinases (CDKs) and defective cell cycle regulation. The essential agent that drive the cell cycle, CDK4/6, would be activated by proliferative signals. Activated CDK4/6 results in the phosphorylation of the neuroblastoma protein (RB) and the release of the transcription factor E2F, which promotes the cell cycle progression. CDK4/6 inhibitor (CDK4/6i) has been currently a research focus, which inhibits the CDK4/6-RB-E2F axis, thereby reducing the cell cycle transition from G1 to S phase and mediating the cell cycle arrest. This action helps achieve an anti-tumor effect. Recent research has demonstrated that CDK4/6i, in addition to contributing to cell cycle arrest, is also essential for the interaction between the tumor cells and the host immune system, i.e., activating the immune system, strengthening the tumor antigen presentation, and reducing the number of regulatory T cells (Treg). Additionally, CDK4/6i would elevate the level of PD-L1, an immunosuppressive factor, in tumor cells, and CDK4/6i in combination with anti-PD-L1 therapy would more effectively reduce the tumor growth. Our results showed that CDK4/6i caused autophagy and senescence in tumor cells. Herein, the impact of CDK4/6i on the immune microenvironment of malignant tumors was mainly focused, as well as their interaction with immune checkpoint inhibitors in affecting anti-tumor immunity.


Assuntos
Quinase 6 Dependente de Ciclina , Neoplasias , Humanos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/farmacologia , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/farmacologia , Fosforilação , Pontos de Checagem do Ciclo Celular , Ciclo Celular , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral
11.
Proc Natl Acad Sci U S A ; 121(7): e2309261121, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324568

RESUMO

The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor-positive, human epidermal growth factor 2 receptor-negative (ER+/HER2-) breast tumor cells. Despite the drug's success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib-a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle "paths" that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes.


Assuntos
Neoplasias da Mama , Piperazinas , Piridinas , Humanos , Feminino , Ciclo Celular , Divisão Celular , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/farmacologia
12.
Nat Commun ; 15(1): 1091, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316780

RESUMO

Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice. Mechanistically, CDK6 phosphorylates AMP-activated protein kinase, leading to phosphorylation and inactivation of acetyl-CoA carboxylase, a key enzyme in DNL. CDK6 also phosphorylates CHREBP thus preventing its entry into the nucleus. Ablation of runt related transcription factor 1 in K43M mature adipocytes reverses most of the phenotypes observed in K43M mice. These results demonstrate a role of CDK6 in DNL and a strategy to alleviate metabolic syndromes.


Assuntos
Quinase 6 Dependente de Ciclina , Lipogênese , Animais , Camundongos , Tecido Adiposo Branco/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Lipogênese/genética , Fígado/metabolismo , Fatores de Transcrição/metabolismo
13.
Methods Cell Biol ; 181: 197-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302240

RESUMO

Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (i.e., palbociclib, abemaciclib, and ribociclib) are well known for their capacity to mediate cytostatic effects by promoting cell cycle arrest in the G1 phase, thus inhibiting cancer cell proliferation. Cytostatic effects induced by CDK4/6 inhibitors can be transient or lead to a permanent state of cell cycle arrest, commonly defined as cellular senescence. Induction of senescence is often associated to metabolic modifications and to the acquisition of a senescence-associated secretory phenotype (SASP) by cancer cells, which in turn can promote or limit antitumor immunity (and thus the efficacy of CDK4/6 inhibitors) depending on SASP components. Thus, although accumulating evidence suggests that anti-cancer effects of CDK4/6 inhibitors also depend on the promotion of antitumor immune responses, assessing cell cycle arrest and progression in cells treated with palbociclib remains a key approach for investigating the efficacy of CDK4/6 inhibitors. Here, we describe a method to assess cell cycle distribution simultaneously with active DNA replication by flow cytometry in cultured hormone receptor-positive breast cancer MCF7 cells.


Assuntos
Neoplasias da Mama , Citostáticos , Humanos , Feminino , Citostáticos/farmacologia , Citometria de Fluxo , Inibidores de Proteínas Quinases/farmacologia , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/farmacologia , Pontos de Checagem do Ciclo Celular , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ciclo Celular
14.
Funct Integr Genomics ; 23(4): 332, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950078

RESUMO

The roles of cyclin-dependent kinase 6 (CDK6) in various cancers, including small cell lung carcinoma (SCLC), remain unclear. Here, 111,54 multi-center samples were investigated to determine the expression, clinical significance, and underlying mechanisms of CDK6 in 34 cancers. The area under the curve (AUC), Cox regression analysis, and the Kaplan-Meier curves were used to explore the clinical value of CDK6 in cancers. Gene set enrichment analysis and correlation analysis were performed to detect potential CDK6 mechanisms. CDK6 expression was essential in 24 cancer cell types. Abnormal CDK6 expression was observed in 14 cancer types (e.g., downregulated in breast invasive carcinoma; p < 0.05). CDK6 allowed six cancers to be distinguished from their controls (AUC > 0.750). CDK6 expression was a prognosis marker for 13 cancers (e.g., adrenocortical carcinoma; p < 0.05). CDK6 was correlated with several immune-related signaling pathways and the infiltration levels of certain immune cells (e.g., CD8+ T cells; p < 0.05). Downregulated CDK6 mRNA and protein levels were observed in SCLC (p < 0.05, SMD = - 0.90). CDK6 allowed the identification of SCLC status (AUC = 0.91) and predicted a favorable prognosis for SCLC patients (p < 0.05). CDK6 may be a novel biomarker for the prediction and prognosis of several cancers, including SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Neoplasias Pulmonares/patologia
15.
Commun Biol ; 6(1): 1041, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833461

RESUMO

CDK4/6 are important regulators of cell cycle and their inhibitors have been approved as anti-cancer drugs. Here, we report a STING-dependent anti-tumor immune mechanism responsible for tumor suppression by CDK4/6 blockade. Clinical datasets show that in human tissues, CDK4 and CDK6 are over-expressed and their expressions are negatively correlated with patients' overall survival and T cell infiltration. Deletion of Cdk4 or Cdk6 in tumor cells significantly reduce tumor growth. Mechanistically, we find that Cdk4 or Cdk6 deficiency contributes to an increased level of endogenous DNA damage, which triggers the cGAS-STING signaling pathway to activate type I interferon response. Knockout of Sting is sufficient to reverse and partially reverse the anti-tumor effect of Cdk4 and Cdk6 deficiency respectively. Therefore, our findings suggest that CDK4/6 inhibitors may enhance anti-tumor immunity through the STING-dependent type I interferon response.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Interferon Tipo I , Neoplasias , Humanos , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Imunidade , Interferon Tipo I/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
16.
Nat Commun ; 14(1): 6699, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872167

RESUMO

Increasing evidence has demonstrated that drug resistance can be acquired in cancer cells by kinase rewiring, which is an obstacle for efficient cancer therapy. However, it is technically challenging to measure the expression of protein kinases on large scale due to their dynamic range in human proteome. We employ a lysine-targeted sulfonyl fluoride probe, named XO44, which binds to 133 endogenous kinases in intact lenvatinib-resistant hepatocellular carcinoma (HCC) cells. This analysis reveals cyclin-dependent kinase 6 (CDK6) upregulation, which is mediated by ERK/YAP1 signaling cascade. Functional analyses show that CDK6 is crucial in regulation of acquired lenvatinib resistance in HCC via augmentation of liver cancer stem cells with clinical significance. We identify a noncanonical pathway of CDK6 in which it binds and regulates the activity of GSK3ß, leading to activation of Wnt/ß-catenin signaling. Consistently, CDK6 inhibition by palbociclib or degradation by proteolysis targeting chimeras (PROTACs) is highly synergistic with lenvatinib in vitro. Interestingly, palbociclib not only exerts maximal growth suppressive effect with lenvatinib in lenvatinib-resistant HCC models but also reshapes the tumor immune microenvironment. Together, we unveil CDK6 as a druggable target in lenvatinib-resistant HCC and highlight the use of a chemical biology approach to understand nongenetic resistance mechanisms in cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regulação para Cima , Quinase 6 Dependente de Ciclina/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
17.
Cell Rep ; 42(11): 113198, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37865915

RESUMO

Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) are key therapeutic agents in the management of metastatic hormone-receptor-positive breast cancer. However, the emergence of drug resistance limits their long-term efficacy. Here, we show that breast cancer cells develop CDK4/6i resistance via a sequential two-step process of E2F activation. This process entails retinoblastoma (Rb)-protein degradation, followed by c-Myc-mediated amplification of E2F transcriptional activity. CDK4/6i treatment halts cell proliferation in an Rb-dependent manner but dramatically reduces Rb-protein levels. However, this reduction in Rb levels insufficiently induces E2F activity. To develop CDK4/6i resistance, upregulation or activating mutations in mitogenic or hormone signaling are required to stabilize c-Myc levels, thereby augmenting E2F activity. Our analysis of pre-treatment tumor samples reveals a strong correlation between c-Myc levels, rather than Rb levels, and poor therapeutic outcomes after CDK4/6i treatment. Moreover, we propose that proteasome inhibitors can potentially reverse CDK4/6i resistance by restoring Rb levels.


Assuntos
Neoplasias da Mama , Neoplasias da Retina , Retinoblastoma , Humanos , Feminino , Quinase 4 Dependente de Ciclina/metabolismo , Neoplasias da Mama/patologia , Quinase 6 Dependente de Ciclina/metabolismo , Proteína do Retinoblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
18.
Food Funct ; 14(18): 8201-8216, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37551935

RESUMO

Activation of adipose tissue thermogenesis is a promising strategy in the treatment of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a predominant dietary flavonoid with multiple pharmacological properties, such as anti-inflammatory and antioxidant activities. In this study, we sought to characterize the role of KPF in adipocyte thermogenesis. We demonstrated that KPF-treated mice were protected from diet-induced obesity, glucose tolerance, and insulin resistance, accompanied by markedly increased energy expenditure, ex vivo oxygen consumption of white fat, and increased expression of proteins related to adaptive thermogenesis. KPF-promoted beige cell formation is a cell-autonomous effect, since the overexpression of cyclin-dependent kinase 6 (CDK6) in preadipocytes partially reversed browning phenotypes observed in KPF-treated cells. Overall, these data implicate that KPF is involved in promoting beige cell formation by suppressing CDK6 protein expression. This study provides evidence that KPF is a promising natural product for obesity treatment by boosting energy expenditure.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Quinase 6 Dependente de Ciclina , Animais , Camundongos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/farmacologia , Quinase 6 Dependente de Ciclina/uso terapêutico , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Tecido Adiposo Marrom/metabolismo , Quempferóis/farmacologia , Adipócitos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais , Termogênese , Camundongos Endogâmicos C57BL , Metabolismo Energético
19.
Nature ; 619(7969): 363-370, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407814

RESUMO

In mammalian cells, the decision to proliferate is thought to be irreversibly made at the restriction point of the cell cycle1,2, when mitogen signalling engages a positive feedback loop between cyclin A2/cyclin-dependent kinase 2 (CDK2) and the retinoblastoma protein3-5. Contrary to this textbook model, here we show that the decision to proliferate is actually fully reversible. Instead, we find that all cycling cells will exit the cell cycle in the absence of mitogens unless they make it to mitosis and divide first. This temporal competition between two fates, mitosis and cell cycle exit, arises because cyclin A2/CDK2 activity depends upon CDK4/6 activity throughout the cell cycle, not just in G1 phase. Without mitogens, mitosis is only observed when the half-life of cyclin A2 protein is long enough to sustain CDK2 activity throughout G2/M. Thus, cells are dependent on mitogens and CDK4/6 activity to maintain CDK2 activity and retinoblastoma protein phosphorylation throughout interphase. Consequently, even a 2-h delay in a cell's progression towards mitosis can induce cell cycle exit if mitogen signalling is lost. Our results uncover the molecular mechanism underlying the restriction point phenomenon, reveal an unexpected role for CDK4/6 activity in S and G2 phases and explain the behaviour of all cells following loss of mitogen signalling.


Assuntos
Ciclo Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Fase G2 , Fase S , Animais , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/deficiência , Quinase 4 Dependente de Ciclina/metabolismo , Mitógenos/deficiência , Mitógenos/metabolismo , Mitose , Fosforilação , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Quinase 6 Dependente de Ciclina/deficiência , Quinase 6 Dependente de Ciclina/metabolismo , Fase G1
20.
Cancer Discov ; 13(9): 1955, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37489846

RESUMO

The use of CDK4/6 inhibitors, such as palbociclib, has shown promise in treating breast cancer. Data suggest these drugs reverse cell replication farther along in the cell cycle than previously thought-with expanded clinical benefits. Yet, more research is needed to prove that a CDK4/6 inhibitor plus chemotherapy provides irreversible cell senescence because unstable treated cells could replicate and increase risk of disease recurrence.


Assuntos
Neoplasias da Mama , Recidiva Local de Neoplasia , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ciclo Celular , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...