Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Eur J Med Chem ; 271: 116391, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669909

RESUMO

LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.


Assuntos
Quinases Lim , Inibidores de Proteínas Quinases , Quinases Lim/antagonistas & inibidores , Quinases Lim/metabolismo , Humanos , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Estrutura Molecular , Movimento Celular/efeitos dos fármacos , Modelos Moleculares , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Relação Dose-Resposta a Droga , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química
2.
Bioorg Med Chem Lett ; 61: 128614, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151865

RESUMO

High rates of recurrence and treatment resistance in the most common malignant adult brain cancer, glioblastoma (GBM), suggest that monotherapies are not sufficiently effective. Combination therapies are increasingly pursued, but the possibility of adverse drug-drug interactions may preclude clinical implementation. Developing single molecules with multiple targets is a feasible alternative strategy to identify effective and tolerable pharmacotherapies for GBM. Here, we report the development of a novel, first-in-class, dual aurora and lim kinase inhibitor termed F114. Aurora kinases and lim kinases are involved in neoplastic cell division and cell motility, respectively. Due to the importance of these cellular functions, inhibitors of aurora kinases and lim kinases are being pursued separately as anti-cancer therapies. Using in vitro and ex vivo models of GBM, we found that F114 inhibits GBM proliferation and invasion. These results establish F114 as a promising new scaffold for dual aurora/lim kinase inhibitors that may be used in future drug development efforts for GBM, and potentially other cancers.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Quinases Lim/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Quinases Lim/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Curr Med Chem ; 29(17): 2995-3027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34702151

RESUMO

LIMK1 and LIMK2 are involved in the regulation of cellular functions that depend on the dynamics of actin cytoskeleton. Disregulation of LIM kinases has been associated with diseases, such as tumor progression and metastasis, viral infection, and ocular diseases. Motivated by this, numerous studies have been carried out to discover small organic molecules capable of inhibiting LIM kinase effectively and selectively. In this review, a comprehensive survey of small organic molecules for LIM kinase inhibitors is reported, together with SAR study results, and the synthesis of these inhibitors.


Assuntos
Quinases Lim , Humanos , Quinases Lim/antagonistas & inibidores , Fosforilação
4.
PLoS Comput Biol ; 17(11): e1009171, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843456

RESUMO

Predictive approaches such as virtual screening have been used in drug discovery with the objective of reducing developmental time and costs. Current machine learning and network-based approaches have issues related to generalization, usability, or model interpretability, especially due to the complexity of target proteins' structure/function, and bias in system training datasets. Here, we propose a new method "DRUIDom" (DRUg Interacting Domain prediction) to identify bio-interactions between drug candidate compounds and targets by utilizing the domain modularity of proteins, to overcome problems associated with current approaches. DRUIDom is composed of two methodological steps. First, ligands/compounds are statistically mapped to structural domains of their target proteins, with the aim of identifying their interactions. As such, other proteins containing the same mapped domain or domain pair become new candidate targets for the corresponding compounds. Next, a million-scale dataset of small molecule compounds, including those mapped to domains in the previous step, are clustered based on their molecular similarities, and their domain associations are propagated to other compounds within the same clusters. Experimentally verified bioactivity data points, obtained from public databases, are meticulously filtered to construct datasets of active/interacting and inactive/non-interacting drug/compound-target pairs (~2.9M data points), and used as training data for calculating parameters of compound-domain mappings, which led to 27,032 high-confidence associations between 250 domains and 8,165 compounds, and a finalized output of ~5 million new compound-protein interactions. DRUIDom is experimentally validated by syntheses and bioactivity analyses of compounds predicted to target LIM-kinase proteins, which play critical roles in the regulation of cell motility, cell cycle progression, and differentiation through actin filament dynamics. We showed that LIMK-inhibitor-2 and its derivatives significantly block the cancer cell migration through inhibition of LIMK phosphorylation and the downstream protein cofilin. One of the derivative compounds (LIMKi-2d) was identified as a promising candidate due to its action on resistant Mahlavu liver cancer cells. The results demonstrated that DRUIDom can be exploited to identify drug candidate compounds for intended targets and to predict new target proteins based on the defined compound-domain relationships. Datasets, results, and the source code of DRUIDom are fully-available at: https://github.com/cansyl/DRUIDom.


Assuntos
Quinases Lim/antagonistas & inibidores , Quinases Lim/química , Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Biologia Computacional , Simulação por Computador , Desenvolvimento de Medicamentos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Humanos , Técnicas In Vitro , Ligantes , Quinases Lim/metabolismo , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Invasividade Neoplásica/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Farmacologia em Rede/estatística & dados numéricos , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Interface Usuário-Computador
5.
J Cell Mol Med ; 25(12): 5560-5571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33982869

RESUMO

Lung cancer is the leading cause of cancer-related deaths. LIM domain kinase (LIMK) 1 is a member of serine/threonine kinase family and highly expressed in various cancers. Luteolin, a polyphenolic plant flavonoid, has been reported to suppress tumour proliferation through inducing apoptosis and autophagy via MAPK activation in glioma. However, the mechanism of luteolin on suppressing lung cancer growth is still unclear. We found that luteolin targeted LIMK1 from the in silico screening and significantly inhibited the LIMK1 kinase activity, which was confirmed with pull-down binding assay and computational docking models. Treatment with luteolin inhibited lung cancer cells anchorage-independent colony growth and induced apoptosis and cell cycle arrest at G1 phase. Luteolin also decreased the expression of cyclin D1 and increased the levels of cleaved caspase-3 by down-regulating LIMK1 signalling related targets, including p-LIMK and p-cofilin. Furthermore, luteolin suppressed the lung cancer patient-derived xenograft tumour growth by decreasing Ki-67, p-LIMK and p-cofilin expression in vivo. Taken together, these results provide insight into the mechanism that underlies the anticancer effects of luteolin on lung cancer, which involved in down-regulation of LIMK1 and its interaction with cofilin. It also provides valuable evidence for translation towards lung cancer clinical trials with luteolin.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinases Lim/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Luteolina/farmacologia , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Quinases Lim/genética , Quinases Lim/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncogene ; 40(19): 3422-3433, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33883692

RESUMO

Peritoneal metastasis is a common form of metastasis among advanced gastric cancer patients. In this study, we reported the identification of LIM domain kinase 1 (LIMK1) as a promoter of gastric cancer peritoneal metastasis, and its potential to be a therapeutic target of dabrafenib (DAB). Using transcriptomic sequencing of paired gastric cancer peritoneal metastasis, primary tumors, and normal gastric tissues, we first unveiled that LIMK1 is selectively up-regulated in metastatic tumors. Increased LIMK1 in gastric cancer peritoneal metastasis was validated by immunohistochemistry analysis of an independent patient cohort. In vitro functional studies demonstrated that LIMK1 knockout or knockdown significantly inhibited cell migration and invasion of gastric cancer cells. LIMK1 knockout also abrogated peritoneal and liver metastases of gastric cancer cells in nude mice in vivo. Dabrafenib, a small molecule targeting LIMK1, was found to decrease cell migration and invasion of gastric cancer cells in vitro and abolish peritoneal and liver metastasis formation in vivo. Mechanistically, either LIMK1 knockout or Dabrafenib inhibited LIMK1 expression and phosphorylation of its downstream target cofilin. Taken together, our results demonstrated that LIMK1 functions as a metastasis promoter in gastric cancer by inhibiting LIMK1-p-cofilin and that Dabrafenib has the potential to serve as a novel treatment for gastric cancer peritoneal metastasis.


Assuntos
Quinases Lim/metabolismo , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imidazóis/farmacologia , Quinases Lim/antagonistas & inibidores , Quinases Lim/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Metástase Neoplásica , Oximas/farmacologia , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Análise de Sequência de RNA , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Brain Inj ; 35(4): 490-500, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33523710

RESUMO

Primary Objective: In an ischemic stroke, the damage spreads from the infarction core to surrounding tissues. The present work was aimed at the search of effective neuroprotectors that restrict injury propagation. Research Design: We studied possible protective effects of inhibitors of protein kinases LIMK2 (T56-LIMKi), DYRK1A (harmine), and tryptophan hydroxylase (4-chlorophenylalanine) on infarction size and morphology of peri-infarct area after photothrombotic stroke (a model of ischemic stroke) in mouse brain. Methods and Procedures: Photothrombotic stroke was induced by laser irradiation of mouse cortex after administration of photosensitizer Bengal Rose, which does not penetrate cells and remains in blood vessels. Under light exposure, it induces vessel occlusion. Infarct volume and histological changes in the cerebral cortex were evaluated 3, 7 and 14 days after photothrombotic impact. Main Outcomes and Results: Harmine and 4-chlorophenylalanine did not influence infarct volume and morphology of peri-infarct area in the mouse brain cortex after photothrombotic stroke. However, LIMK2 inhibitor T56-LIMKi significantly reduced infarct volume 7 and 14 days after photothrombotic stroke. It also increased the percent of normochromic neurons and decreased the fraction of altered cortical cells (hypochromic, hyperchromic and pyknotic neurons). Conclusions: T56-LIMK2i may be considered as a promising anti-stroke agent.


Assuntos
Benzamidas/farmacologia , Isquemia Encefálica , Isoxazóis/farmacologia , Quinases Lim/antagonistas & inibidores , Acidente Vascular Cerebral , Animais , Encéfalo , Modelos Animais de Doenças , Camundongos , Acidente Vascular Cerebral/tratamento farmacológico
8.
Leuk Res ; 100: 106490, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373830

RESUMO

Patients with FLT3-ITD mutated (FLT3-ITD+) Acute Myeloid Leukemia (AML), have frequently relapsed or refractory disease and FLT3-ITD+ inhibitors have limited efficacy. Rho kinases (ROCK) are constitutively activated by FLT3-ITD+ in AML via PI3 kinase and Rho GTPase. Upon activation by ROCK, LIM kinases (LIMK) inactivate cofilin by phosphorylation which affects cytoskeleton dynamics, cell growth and apoptosis. LIMK inhibition leads to cofilin activation via dephosphorylation and activated cofilin localizes to mitochondria inducing apoptosis. Thus, we investigated the therapeutic potential of the LIMK1/2 inhibitor CEL_Amide (LIMKi) in FLT3-ITD+ AML. Expression of LIMK1/2 in FLT3-ITD+ cell lines MOLM-13 and MV-4-11 cells could be detected by RT-qPCR and at the protein level. IC50 after LIMKi monotherapy was 440 nM in MOLM-13 cells and 420 nM in MV4-11 cells. Treatment with LIMKi decreased LIMK1 protein levels and repression of inactivating phosphorylation of cofilin in FLT3-ITD+ cells. Combination experiments with LIMKi and FLT3 inhibitors including midostaurin, crenolanib and gilteritinib were synergistic for treatment of MOLM-13 cells while combinations with quizartinib were additive. Combinations of LIMKi and the hypomethylating agent azacitidine or the ROCK inhibitor fasudil were additive. In NOD-SCID mice engrafted with MOLM13-LUC cells, the FLT3 inhibitor midostaurin and LIMKi delayed MOLM13-LUC engraftment as detected by in vivo bioluminescence imaging and the LIMKi and midostaurin combination prolonged significantly survival of leukemic mice. LIMK1/2 inhibition by the small molecule CEL_Amide seems to have promising activity in combination with FLT3 inhibitors in vitro as well as in vivo and may constitute a novel treatment strategy for FLT3-ITD+ AML.


Assuntos
Sinergismo Farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Quinases Lim/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Amidas/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genética
9.
Int J Neuropsychopharmacol ; 23(12): 821-836, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-32827213

RESUMO

BACKGROUND: Depression is one of the most common forms of mental illness and also a leading cause of disability worldwide. Developing novel antidepressant targets beyond the monoaminergic systems is now popular and necessary. LIM kinases, including LIM domain kinase 1 and 2 (LIMK1/2), play a key role in actin and microtubule dynamics through phosphorylating cofilin. Since depression is associated with atrophy of neurons and reduced connectivity, here we speculate that LIMK1/2 may play a role in the pathogenesis of depression. METHODS: In this study, the chronic unpredictable mild stress (CUMS), chronic restraint stress (CRS), and chronic social defeat stress (CSDS) models of depression, various behavioral tests, stereotactic injection, western blotting, and immunofluorescence methods were adopted. RESULTS: CUMS, CRS, and CSDS all significantly enhanced the phosphorylation levels of LIMK1 and LIMK2 in the medial prefrontal cortex (mPFC) but not the hippocampus of mice. Administration of fluoxetine, the most commonly used selective serotonin reuptake inhibitor in clinical practice, fully reversed the effects of CUMS, CRS, and CSDS on LIMK1 and LIMK2 in the mPFC. Moreover, pharmacological inhibition of LIMK1 and LIMK2 in the mPFC by LIMKi 3 infusions notably prevented the pro-depressant effects of CUMS, CRS, and CSDS in mice. CONCLUSIONS: In summary, these results suggest that LIMK1/2 in the mPFC has a role in chronic stress-induced depressive-like effects in mice and could be a novel pharmacological target for developing antidepressants.


Assuntos
Depressão/metabolismo , Fluoxetina/farmacologia , Quinases Lim/metabolismo , Córtex Pré-Frontal/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/metabolismo , Tiazóis/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Doença Crônica , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/prevenção & controle , Modelos Animais de Doenças , Fluoxetina/administração & dosagem , Quinases Lim/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/administração & dosagem , Restrição Física , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Derrota Social , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Tiazóis/administração & dosagem
10.
Cancer Lett ; 493: 120-127, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32829006

RESUMO

LIM kinase 1 (LIMK1) and p21-activated kinase 4 (PAK4) are often over-expressed in breast tumors, which causes aggressive cancer phenotypes and unfavorable clinical outcomes. In addition to the well-defined role in regulating cell division, proliferation and invasion, the two kinases promote activation of the MAPK pathway and cause endocrine resistance through phosphorylating estrogen receptor alpha (ERα). PAK4 specifically phosphorylates LIMK1 and its functional partners, indicating possible value of suppressing both kinases in cancers that over-express PAK4 and/or LIMK1. Here, for the first time, we assessed the impact of combining LIMK1 inhibitor LIMKi 3 and PAK4 inhibitor PF-3758309 in preclinical breast cancer models. LIMK1 and PAK4 pharmacological inhibition synergistically reduced the survival of various cancer cell lines, exhibiting specific efficacy in luminal and HER2-enriched models, and suppressed development and ERα-driven signals in a BT474 xenograft model. In silico analysis demonstrated the cell lines with reliance on LIMK1 were the most prone to be susceptible to PAK4 inhibition. Double LIMK1 and PAK4 targeting therapy can be a successful therapeutic strategy for breast cancer, with a unique efficiency in the subtypes of luminal and HER2-enriched tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quinases Lim/metabolismo , Pirazóis/administração & dosagem , Pirróis/administração & dosagem , Tiazóis/administração & dosagem , Quinases Ativadas por p21/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinases Lim/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirróis/farmacologia , Tiazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/antagonistas & inibidores
11.
Hypertension ; 76(2): 393-403, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594801

RESUMO

Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.


Assuntos
Artérias/efeitos dos fármacos , Quinases Lim/antagonistas & inibidores , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Rigidez Vascular/fisiologia , Vasoconstrição/efeitos dos fármacos , Adulto , Animais , Artérias/fisiologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Feminino , Humanos , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Vasoconstrição/fisiologia
12.
Toxicol Appl Pharmacol ; 391: 114912, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32014540

RESUMO

Arsenic, an environmental contaminant in drinking water worldwide is well-established to increase cardiovascular diseases (CVDs) in humans. Of these, thrombotic events represent a major adverse effect associated with arsenic exposure, for which an abundance of epidemiological evidence exists. Platelet aggregation constitutes a pivotal step in thrombosis but arsenic alone doesn't induce aggregation and the mechanism underlying arsenic-induced thrombosis still remains unclear. Here we demonstrated that arsenic induces morphological changes of platelets, i.e., contraction and pseudopod projection, the primal events of platelet activation, which can increase platelet reactivity. Arsenite induced prominent platelet shape changes in a dose-dependent manner in freshly isolated human platelets. Of note, arsenite suppressed focal adhesion kinase (FAK) activity, which in turn activated RhoA, leading to altered actin assembly through LIMK activation, and subsequent cofilin inactivation. Arsenic-induced platelet shape change appeared to increase the sensitivity to thrombin and ADP-induced aggregation. Supporting this, latrunculin A, an inhibitor of actin-dynamics abolished it. Taken together, we demonstrated that arsenic induces cytoskeletal changes and shape changes of platelets through FAK-mediated alteration of actin dynamics, which renders platelets reactive to activating stimuli, ultimately contributing to increased thrombosis.


Assuntos
Actinas/metabolismo , Arsenitos/toxicidade , Plaquetas/patologia , Plaquetas/ultraestrutura , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Compostos de Sódio/toxicidade , Difosfato de Adenosina/farmacologia , Adolescente , Adulto , Humanos , Técnicas In Vitro , Quinases Lim/antagonistas & inibidores , Masculino , Selectina-P/biossíntese , Agregação Plaquetária/efeitos dos fármacos , Adulto Jovem , Proteína rhoA de Ligação ao GTP
13.
Cell Death Differ ; 27(1): 102-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043701

RESUMO

Many cell types are known to undergo a series of morphological changes during the progression of apoptosis, leading to their disassembly into smaller membrane-bound vesicles known as apoptotic bodies (ApoBDs). In particular, the formation of circular bulges called membrane blebs on the surface of apoptotic cells is a key morphological step required for a number of cell types to generate ApoBDs. Although apoptotic membrane blebbing is thought to be regulated by kinases including ROCK1, PAK2 and LIMK1, it is unclear whether these kinases exhibit overlapping roles in the disassembly of apoptotic cells. Utilising both pharmacological and CRISPR/Cas9 gene editing based approaches, we identified ROCK1 but not PAK2 or LIMK1 as a key non-redundant positive regulator of apoptotic membrane blebbing as well as ApoBD formation. Functionally, we have established an experimental system to either inhibit or enhance ApoBD formation and demonstrated the importance of apoptotic cell disassembly in the efficient uptake of apoptotic materials by various phagocytes. Unexpectedly, we also noted that ROCK1 could play a role in regulating the onset of secondary necrosis. Together, these data shed light on both the mechanism and function of cell disassembly during apoptosis.


Assuntos
Apoptose , Membrana Celular/ultraestrutura , Quinases Lim/fisiologia , Quinases Ativadas por p21/fisiologia , Quinases Associadas a rho/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cricetinae , Inibidores Enzimáticos/farmacologia , Humanos , Células Jurkat , Quinases Lim/antagonistas & inibidores , Necrose , Células THP-1 , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores
14.
Biochem J ; 476(21): 3197-3209, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31652302

RESUMO

LIM domain kinase 1 (LIMK1) is a key regulator of actin dynamics. It is thereby a potential therapeutic target for the prevention of fragile X syndrome and amyotrophic lateral sclerosis. Herein, we use X-ray crystallography and activity assays to describe how LIMK1 accomplishes substrate specificity, to suggest a unique 'rock-and-poke' mechanism of catalysis and to explore the regulation of the kinase by activation loop phosphorylation. Based on these findings, a differential scanning fluorimetry assay and a RapidFire mass spectrometry activity assay were established, leading to the discovery and confirmation of a set of small-molecule LIMK1 inhibitors. Interestingly, several of the inhibitors were inactive towards the closely related isoform LIMK2. Finally, crystal structures of the LIMK1 kinase domain in complex with inhibitors (PF-477736 and staurosporine, respectively) are presented, providing insights into LIMK1 plasticity upon inhibitor binding.


Assuntos
Quinases Lim/metabolismo , Inibidores de Proteínas Quinases/química , Catálise , Cristalografia , Desenho de Fármacos , Humanos , Quinases Lim/antagonistas & inibidores , Quinases Lim/química , Modelos Moleculares , Fosforilação , Especificidade por Substrato
15.
Biochem Biophys Res Commun ; 516(3): 976-982, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31277940

RESUMO

Actin is a highly abundant cytoskeletal protein that is essential for all eukaryotic cells and participates in many structural and functional roles. It has long been noted that estrogen affects cellular morphology. However, recent studies observed that both estrogen and tamoxifen induce a remarkable cytoskeletal remodeling independent of ER. In addition to ER, G protein-coupled estrogen receptor 1 (GPER, also known as GPR30) also binds to estrogen with high affinity and mediates intracellular estrogenic signaling. Here, we show that activation of GPER by its specific agonist G-1 induces re-organization of F-actin cytoskeleton. We further demonstrate that GPER acts through PLCß-PKC and Rho/ROCK-LIMK-Cofilin pathway, which are upstream regulators of F-actin cytoskeleton assembly, thereby enhancing TAZ nuclear localization and activation. Furthermore, we find that LIMK1/2 is critical for GPER activation-induced breast cancer cell migration. Together, our results suggest that GPER mediates G-1-induced cytoskeleton assembly and GPER promotes breast cancer cell migration via PLCß-PKC and Rho/ROCK-LIMK-Cofilin pathway.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Regulação Neoplásica da Expressão Gênica , Quinases Lim/genética , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclopentanos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Quinases Lim/antagonistas & inibidores , Quinases Lim/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
16.
Sci Signal ; 12(587)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239325

RESUMO

Alzheimer's disease (AD) therapies predominantly focus on ß-amyloid (Aß), but Aß effects may be maximal before clinical symptoms appear. Downstream of Aß, dendritic spine loss correlates most strongly with cognitive decline in AD. Rho-associated kinases (ROCK1 and ROCK2) regulate the actin cytoskeleton, and ROCK1 and ROCK2 protein abundances are increased in early AD. Here, we found that the increased abundance of ROCK1 in cultured primary rat hippocampal neurons reduced dendritic spine length through a myosin-based pathway, whereas the increased abundance of ROCK2 induced spine loss through the serine and threonine kinase LIMK1. Aß42 oligomers can activate ROCKs. Here, using static imaging studies combined with multielectrode array analyses, we found that the ROCK2-LIMK1 pathway mediated Aß42-induced spine degeneration and neuronal hyperexcitability. Live-cell microscopy revealed that pharmacologic inhibition of LIMK1 rendered dendritic spines resilient to Aß42 oligomers. Treatment of hAPP mice with a LIMK1 inhibitor rescued Aß-induced hippocampal spine loss and morphologic aberrations. Our data suggest that therapeutically targeting LIMK1 may provide dendritic spine resilience to Aß and therefore may benefit cognitively normal patients that are at high risk for developing dementia.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Espinhas Dendríticas/enzimologia , Quinases Lim/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Humanos , Quinases Lim/genética , Quinases Lim/metabolismo , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Ratos , Ratos Sprague-Dawley , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
17.
Urology ; 131: 136-143, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202856

RESUMO

OBJECTIVE: To determine if combined administration of LIMK2 and JNK inhibitors in a rat model of erectile dysfunction induced by cavernosal nerve (CN) injury could restore erectile function by suppressing both cavernosal apoptosis and fibrosis via rectification of molecular pathways related to the structural alterations. METHODS: Sixty 12-week-old male Sprague-Dawley rats were categorized into 4 groups: (1) Sham-surgery (Sham) group, (2) CN-crush-injury (CNCI), (3) CNCI group (CNCI+L+1.0J) treated with a combination of 10.0 mg/kg LIMK2-inhibitors and low-dose (1.0 mg/kg) JNK-inhibitors, and (4) CNCI group (CNCI+L+10.0J) treated with a combination of 10.0 mg/kg LIMK2-inhibitors and a high dose (10.0 mg/kg) of JNK-inhibitors. Ten days after surgery, erectile response, histological-studies, and Western-blot was investigated. RESULTS: The CNCI group showed a reduced maximal ICP/MAP or AUC/MAP, decreased immunohistochemical-staining of α-SMA, decreased SM/collagen ratio, increased phospho-cJun-positive apoptotic cells, increased phospho-LIMK2-positive fibroblasts, increased cJun-phosphorylation, increased LIMK2/Cofilin-phosphorylation, decreased Bcl-2/Bax ratio, and increased protein-expression of fibronectin, compared to the Sham group. Both the CNCI+L+1.0J and CNCI+L+10.0J groups showed improvements in erectile-responses, content of cavernosal α-SMA, number of phospho-cJun-positive apoptotic cells, Bcl-2/Bax ratio and cJun phosphorylation. Their improvements in the CNCI+L+10.0J group showed a tendency to be greater than those in the CNCI+L+1.0J group. Also, in the 2 treatment groups, rectification of SM/collagen ratio, number of phospho-LIMK2-positive fibroblasts, LIMK2/Cofilin-phosphorylation, and protein-expression of fibronectin was observed. CONCLUSION: This study suggests that combined inhibition of JNK and LIMK2 may improve erectile function by suppressing cavernosal apoptosis and fibrosis via restoration of cJun/Bcl-2/Bax and LIMK2/Cofilin pathways at 10 days after CN injury.


Assuntos
Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Quinases Lim/antagonistas & inibidores , Pênis/lesões , Pênis/inervação , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
Exp Cell Res ; 382(2): 111458, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185194

RESUMO

Actin is highly abundant in platelets, and its function is dependent on its structure. Actin filaments (F-actin) are dynamic structures involved in many cellular processes including platelet shape changes and adhesion. The actin cytoskeleton is tightly regulated by actin-binding proteins, which include members of the actin depolymerising factor (ADF)/cofilin family. LIM kinase (LIMK) and its phosphatase slingshot (SSH-1L) regulate actin dynamics by controlling the binding affinity of ADF/cofilin towards actin. We hypothesised that the inhibition of LIMK activity may prevent the changes in platelet shape and their function during activation by controlling the dynamics of F-actin. Our results demonstrate that in platelet, inhibition of LIMK by small LIMK inhibitors controls the level of filamentous actin leading to decreased platelet adhesion and aggregation. These findings encourage further studies on controlling platelet function via the cytoskeleton.


Assuntos
Plaquetas/metabolismo , Quinases Lim/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Terapia Trombolítica , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Cofilina 1/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação para Baixo/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Humanos , Quinases Lim/metabolismo , Camundongos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Cauda , Trombose/tratamento farmacológico , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
19.
Invest Ophthalmol Vis Sci ; 60(6): 2274-2285, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31112612

RESUMO

Purpose: Retraction of the axon terminals of rod photoreceptors after retinal detachment breaks the first synapse in the visual pathway, resulting in visual impairment. Previous work showed that the mechanism of axonal retraction involves RhoA signaling and its downstream effector LIM Kinase (LIMK) activation. We examined the response of the downstream component cofilin, a direct binding protein of actin filaments, as well as the regulation by RhoA-LIMK-Cofilin signaling of actin assembly/disassembly, in the presynaptic ribbon terminal of injured rod cells. Methods: Injury was produced by retinal detachment or rod cell isolation. Detached porcine retina was probed for levels and localization of phosphorylated cofilin with Western blots and confocal microscopy, whereas rod cell cultures of dissociated salamander retina were examined for filamentous actin assembly/disassembly with a barbed end assay and phalloidin staining. Results: A detachment increased phosphorylation of cofilin in retinal explants; phosphorylation occurred in rod terminals in sections of detached retina. Isolation of rod cells resulted in axon retraction accompanied by an increase in actin barbed ends and a decrease in net filament labeling. All changes were significantly reduced by either Rho kinase (ROCK) or LIMK inhibition, using Y27632 or BMS-5, respectively. Cytochalasin D also reduced retraction and stabilized filaments in isolated rod cells. Conclusions: These results indicate that actin depolymerization via activation of RhoA downstream kinases and cofilin contributes to axon retraction. Preventing depolymerization, in addition to actomyosin contraction, may stabilize ribbon synapses after trauma.


Assuntos
Actinas/metabolismo , Cofilina 1/metabolismo , Retina/lesões , Descolamento Retiniano/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Amidas/farmacologia , Animais , Axônios/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Quinases Lim/antagonistas & inibidores , Plasticidade Neuronal/fisiologia , Piridinas/farmacologia , Suínos , Quinases Associadas a rho/farmacologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
20.
Arch Pharm Res ; 42(6): 481-491, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31030376

RESUMO

Rho-associated coiled-coil-containing protein kinase (ROCK)/Lin11, Isl-1 and Mec-3 kinase (LIMK)/cofilin-signaling cascades are stimulated by receptor tyrosine kinases, G protein-coupled receptors, integrins and its ligands, growth factors, hormones, fibronectin, collagen, and laminin. Activated signaling cascades can cause transit from normal cells to cancer cells by modulating actin/filament dynamics. In various cancers including breast, prostate, and colorectal cancers, high expression or activity of each cascade protein is significantly associated with poor survival rate of patients as well as aggressive metastasis. Silencing ROCK, LIMK, or cofilin can abrogate their activities and inhibit cancer cell growth, invasion, and metastasis. Therefore ROCK/LIMK/cofilin signaling proteins might be good candidates to develop cancer prevention strategies or therapeutics. Currently, netarsudil, a ROCK inhibitor, is only used in clinical patients for glaucoma or ocular hypertension, but not for cancer. In this review, we will discuss comprehensive ROCK/LIMK/cofilin signaling pathway in cancers and its inhibitors for developing cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Despolimerização de Actina/antagonistas & inibidores , Fatores de Despolimerização de Actina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Quinases Lim/antagonistas & inibidores , Quinases Lim/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...