Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 34(6): 874-887.e6, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504291

RESUMO

The tumor microenvironment (TME) contains a rich source of nutrients that sustains cell growth and facilitate tumor development. Glucose and glutamine in the TME are essential for the development and activation of effector T cells that exert antitumor function. Immunotherapy unleashes T cell antitumor function, and although many solid tumors respond well, a significant proportion of patients do not benefit. In patients with KRAS-mutant lung adenocarcinoma, KEAP1 and STK11/Lkb1 co-mutations are associated with impaired response to immunotherapy. To investigate the metabolic and immune microenvironment of KRAS-mutant lung adenocarcinoma, we generated murine models that reflect the KEAP1 and STK11/Lkb1 mutational landscape in these patients. Here, we show increased glutamate abundance in the Lkb1-deficient TME associated with CD8 T cell activation in response to anti-PD1. Combination treatment with the glutaminase inhibitor CB-839 inhibited clonal expansion and activation of CD8 T cells. Thus, glutaminase inhibition negatively impacts CD8 T cells activated by anti-PD1 immunotherapy.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma de Pulmão , Linfócitos T CD8-Positivos , Glutaminase , Neoplasias Pulmonares , Quinases Proteína-Quinases Ativadas por AMP/deficiência , Quinases Proteína-Quinases Ativadas por AMP/imunologia , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Glutaminase/antagonistas & inibidores , Glutaminase/imunologia , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Ativação Linfocitária , Camundongos , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
2.
Cancer Res ; 81(12): 3295-3308, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33853830

RESUMO

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/deficiência , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Granulócitos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células Supressoras Mieloides/imunologia , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Treat Res Commun ; 26: 100286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33338855

RESUMO

Nearly 1/3 of lung adenocarcinomas have loss of STK11 (LKB1) function. Herein, a bioinformatics approach was used to determine how accurately preclinical model systems reflect the in vivo biology of STK11 loss in human patients. Hierarchical and K-mean clustering, principle component, and gene set enrichment analyses were employed to model gene expression due to STK11 loss in patient cohorts representing nearly 1000 lung adenocarcinoma patients. K-means clustering classified STK11 loss patient tumors into three distinct sub-groups; positive (54%), neuroendocrine (NE) (35%) and negative (11%). The positive and NE groups are both defined by the expression of NKX2-1. In addition to NKX2-1, NE patients express neuroendocrine markers such as ASCL1 and CALCA. In contrast, the negative group does not express NKX2-1 (or neuroendocrine markers) and is characterized by significantly reduced survival relative to the two other groups. Two gene expression signatures were derived to explain both neuroendocrine features and differentiation (NKX2-1 loss) and were validated through two public datasets involving chemical differentiation (DCI) and NKX2-1 reconstitution. Patients results were then compared with established cell lines, transgenic mice, and patient-derived xenograft models of STK11 loss. Interestingly, all cell line and PDX models cluster and show expression patterns similar with the NKX2-1 negative subset of STK11-loss human tumors. Surprisingly, even mouse models of STK11 loss do not resemble patient tumors based on gene expression patterns. Results suggest pre-clinical models of STK11 loss are pronounced by marked elimination of type II pneumocyte identity, opposite of most in vivo human tumors.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Adenocarcinoma de Pulmão/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Fator Nuclear 1 de Tireoide/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/deficiência , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Fator Nuclear 1 de Tireoide/análise , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...