Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Int Immunopharmacol ; 133: 112001, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608443

RESUMO

Acute kidney injury (AKI) is a critical complication known for their extremely high mortality rate and lack of effective clinical therapy. Disorders in mitochondrial dynamics possess a pivotal role in the occurrence and progression of contrast-induced nephropathy (CIN) by activating NLRP3 inflammasome. The activation of dynamin-related protein-1 (Drp1) can trigger mitochondrial dynamic disorders by regulating excessive mitochondrial fission. However, the precise role of Drp1 during CIN has not been clarified. In vivo experiments revealed that inhibiting Drp1 through Mdivi-1 (one selective inhibitor of Drp1) can significantly decrease the expression of p-Drp1 (Ser616), mitochondrial p-Drp1 (Ser616), mitochondrial Bax, mitochondrial reactive oxygen species (mROS), NLRP3, caspase-1, ASC, TNF-α, IL-1ß, interleukin (IL)-18, IL-6, creatinine (Cr), malondialdehyde (MDA), blood urea nitrogen (BUN), and KIM-1. Moreover, Mdivi-1 reduced kidney pathological injury and downregulated the interaction between NLRP3 and thioredoxin-interacting protein (TXNIP), which was accompanied by decreased interactions between TRX and TXNIP. This resulted in increasing superoxide dismutase (SOD) and CAT activity, TRX expression, up-regulating mitochondrial membrane potential, and augmenting ATP contents and p-Drp1 (Ser616) levels in the cytoplasm. However, it did not bring impact on the expression of p-Drp1 (Ser637) and TXNIP. Activating Drp-1though Acetaldehyde abrogated the effects of Mdivi-1. In addition, the results of in vitro studies employing siRNA-Drp1 and plasmid-Drp1 intervention in HK-2 cells treated with iohexol were consistent with the in vivo experiments. Our findings revealed inhibiting Drp1 phosphorylation at Ser616 could ameliorate iohexol -induced acute kidney injury though alleviating the activation of the TXNIP-NLRP3 inflammasome pathway.


Assuntos
Injúria Renal Aguda , Proteínas de Transporte , Meios de Contraste , Dinaminas , Inflamassomos , Dinâmica Mitocondrial , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quinazolinonas , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dinaminas/metabolismo , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/tratamento farmacológico , Dinâmica Mitocondrial/efeitos dos fármacos , Inflamassomos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Masculino , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos , Meios de Contraste/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Linhagem Celular
2.
Am J Hematol ; 99(6): 1192-1195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578022
3.
Turk Neurosurg ; 34(3): 435-440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650558

RESUMO

AIM: To investigate the effectiveness of local halofuginone application for spinal epidural fibrosis (EF) after lumbar laminectomy in rats. MATERIAL AND METHODS: Forty rats were equally divided into four groups (Groups I-IV; 10 rats in each group), and lumbar laminectomy was performed under general anesthesia. After laminectomy, Group I received saline (NaCl 0.9%) locally (control), Group II received spongostan, Group III received 0.5 mL of halofuginone-impregnated spongostan, and Group IV received 0.5 mL of halofuginone. Spongostan was used to prolong the exposure period of halofuginone. All rats were sacrificed after four weeks and evaluated according to histopathological criteria. A p-value of < 0.05 was considered statistically significant. RESULTS: Fibrosis was significantly lower in Group IV than in Group I (p < 0.05). There was no significant difference in fibrosis between Group II/III and Group I. It was observed that spongostan increased fibrosis. CONCLUSION: Halofuginone helps prevent EF after spinal surgery. However, further clinical and experimental studies are needed to assess its safety in humans.


Assuntos
Espaço Epidural , Fibrose , Laminectomia , Piperidinas , Quinazolinonas , Animais , Fibrose/tratamento farmacológico , Ratos , Piperidinas/administração & dosagem , Laminectomia/efeitos adversos , Quinazolinonas/administração & dosagem , Quinazolinonas/uso terapêutico , Espaço Epidural/patologia , Masculino , Complicações Pós-Operatórias/tratamento farmacológico , Vértebras Lombares/cirurgia , Modelos Animais de Doenças , Ratos Sprague-Dawley
4.
Int Immunopharmacol ; 130: 111790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447417

RESUMO

OBJECTIVE: Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS: In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS: Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION: Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Alcaloides Indólicos , Podócitos , Piroptose , Quinazolinonas , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino
5.
BMC Vet Res ; 20(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172952

RESUMO

BACKGROUND: In this case series abomasitis as a consequence of halofuginone intoxication is suspected. CASE PRESENTATION: Seven Belgian-Blue calves with complaints of anorexia and weight loss were presented to an university clinic. Ultrasonography showed thickening and edema of the abomasal wall in all cases, suggesting abomasitis. Abomasitis was confirmed on necropsy in three cases. Retrospective analysis clarified the uptake of an overdose of halofuginone lactate (348-421 µg/kg/day). Four animals fully recovered after removal of halofuginone lactate administration, therapy for comorbidities (pneumonia, diarrhoea) and supportive therapy. CONCLUSION: To the authors' knowledge, this case series is the first report associating halofuginone lactate use with abomasitis. This was suspected after clinical improvement of four of the presented animals after terminating the administration of a high dose of halofuginone lactate, and exclusion of other possible causes. Underlying mechanisms are still unclear.


Assuntos
Doenças dos Bovinos , Gastrite , Humanos , Animais , Bovinos , Animais Recém-Nascidos , Estudos Retrospectivos , Doenças dos Bovinos/tratamento farmacológico , Quinazolinonas/uso terapêutico , Gastrite/veterinária
6.
Eur J Med Chem ; 257: 115524, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290183

RESUMO

Towards identification of novel therapeutic candidates, a series of quinazolinone-based acetamide derivatives were synthesized and assessed for their anti-leishmanial efficacy. Amongst synthesized derivatives, compounds F12, F27 and F30 demonstrated remarkable activity towards intracellular L. donovani amastigotes in vitro, with IC50 values of 5.76 ± 0.84 µM, 3.39 ± 0.85 µM and 8.26 ± 1.23 µM against promastigotes, and 6.02 µM ± 0.52, 3.55 ± 0.22 µM and 6.23 ± 0.13 µM against amastigotes, respectively. Oral administration of compounds F12 and F27 entailed >85% reduction in organ parasite burden in L. donovani-infected BALB/c mice and hamsters, by promoting host-protective Th1 cytokine response. In host J774 macrophages, mechanistic studies revealed inhibition of PI3K/Akt/CREB axis, resulting in a decrease of IL-10 versus IL-12 release upon F27 treatment. In silico docking studies conducted with lead compound, F27 demonstrated plausible inhibition of Leishmania prolyl-tRNA synthetase, which was validated via detection of decreased proline levels in parasites and induction of amino acid starvation, leading to G1 cell cycle arrest and autophagy-mediated programmed cell death of L. donovani promastigotes. Structure-activity analysis and study of pharmacokinetic and physicochemical parameters suggest oral availability and underscore F27 as a promising lead for anti-leishmanial drug development.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Cricetinae , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Quinazolinonas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Acetamidas/metabolismo , Camundongos Endogâmicos BALB C
7.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768302

RESUMO

Following the glutamatergic theory of schizophrenia and based on our previous study regarding the antipsychotic-like activity of mGlu7 NAMs, we synthesized a new compound library containing 103 members, which were examined for NAM mGlu7 activity in the T-REx 293 cell line expressing a recombinant human mGlu7 receptor. Out of the twenty-two scaffolds examined, active compounds were found only within the quinazolinone chemotype. 2-(2-Chlorophenyl)-6-(2,3-dimethoxyphenyl)-3-methylquinazolin-4(3H)-one (A9-7, ALX-171, mGlu7 IC50 = 6.14 µM) was selective over other group III mGlu receptors (mGlu4 and mGlu8), exhibited satisfactory drug-like properties in preliminary DMPK profiling, and was further tested in animal models of antipsychotic-like activity, assessing the positive, negative, and cognitive symptoms. ALX-171 reversed DOI-induced head twitches and MK-801-induced disruptions of social interactions or cognition in the novel object recognition test and spatial delayed alternation test. On the other hand, the efficacy of the compound was not observed in the MK-801-induced hyperactivity test or prepulse inhibition. In summary, the observed antipsychotic activity profile of ALX-171 justifies the further development of the group of quinazolin-4-one derivatives in the search for a new drug candidate for schizophrenia treatment.


Assuntos
Antipsicóticos , Quinazolinonas , Receptores de Glutamato Metabotrópico , Esquizofrenia , Animais , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Maleato de Dizocilpina , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Desenho de Fármacos
8.
J Med Chem ; 66(3): 1941-1954, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36719971

RESUMO

Long-acting (LA) human immunodeficiency virus-1 (HIV-1) antiretroviral therapy characterized by a ≥1 month dosing interval offers significant advantages over daily oral therapy. However, the criteria for compounds that enter clinical development are high. Exceptional potency and low plasma clearance are required to meet dose size requirements; excellent chemical stability and/or crystalline form stability is required to meet formulation requirements, and new antivirals in HIV-1 therapy need to be largely free of side effects and drug-drug interactions. In view of these challenges, the discovery that capsid inhibitors comprising a quinazolinone core tolerate a wide range of structural modifications while maintaining picomolar potency against HIV-1 infection in vitro, are assembled efficiently in a multi-component reaction, and can be isolated in a stereochemically pure form is reported herein. The detailed characterization of a prototypical compound, GSK878, is presented, including an X-ray co-crystal structure and subcutaneous and intramuscular pharmacokinetic data in rats and dogs.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Ratos , Animais , Cães , Capsídeo , Proteínas do Capsídeo , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Fármacos Anti-HIV/farmacocinética , Infecções por HIV/tratamento farmacológico
9.
Int Immunopharmacol ; 114: 109487, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36493694

RESUMO

Systemic lupus erythematosus (SLE) is a multisystemic, inflammatory autoimmune disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells participated in the pathogenesis of SLE. MDSCs has been considered a potential therapeutic target for lupus. As traditional Chinese medicine, Halofuginone (HF) has the extensive immunomodulatory effects on some autoimmune disorders. Our research was dedicated to discovering therapeutic efficacy of HF for lupus to explore novel mechanisms on MDSCs. We found that HF prominently alleviated the systemic symptoms especially nephritis in Imiquimod-induced lupus mice, and simultaneously repaired the immune system, reflected in the alteration of autoantibodies. HF diminished the quantity of MDSCs in lupus mice, and induced apoptosis of MDSCs. Through RNA sequencing performed on the sorted MDSC from lupus mice and HF-treated lupus mice, B lymphoid tyrosine kinase (Blk, a non-receptor cytoplasmic tyrosine kinase) was screened as the target molecule of HF. It's proven that HF had two independent effects on Blk. On the one hand, HF increased the mRNA expression of Blk in MDSCs by inhibiting the nuclear translocation of p65/p50 heterodimer. On the other hand, HF enhanced the kinase activity of Blk in MDSCs through direct molecular binding. We further investigated that Blk suppressed the phosphorylation of downstream ERK signaling pathway to increase the apoptosis of MDSCs. In conclusion, our study illustrated that HF alleviated the disease progression of lupus mice by targeting Blk to promote the apoptosis of MDSCs, which indicated the immunotherapeutic potential of HF to treat lupus.


Assuntos
Lúpus Eritematoso Sistêmico , Células Supressoras Mieloides , Camundongos , Animais , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
10.
Clin Cancer Res ; 28(20): 4444-4455, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35998013

RESUMO

PURPOSE: PI3K inhibitors (PI3Ki) are approved for relapsed chronic lymphocytic leukemia (CLL). Although patients may show an initial response to these therapies, development of treatment intolerance or resistance remain clinical challenges. To overcome these, prediction of individual treatment responses based on actionable biomarkers is needed. Here, we characterized the activity and cellular effects of 10 PI3Ki and investigated whether functional analyses can identify treatment vulnerabilities in PI3Ki-refractory/intolerant CLL and stratify responders to PI3Ki. EXPERIMENTAL DESIGN: Peripheral blood mononuclear cell samples (n = 51 in total) from treatment-naïve and PI3Ki-treated patients with CLL were studied. Cells were profiled against 10 PI3Ki and the Bcl-2 antagonist venetoclax. Cell signaling and immune phenotypes were analyzed by flow cytometry. Cell viability was monitored by detection of cleaved caspase-3 and the CellTiter-Glo assay. RESULTS: pan-PI3Kis were most effective at inhibiting PI3K signaling and cell viability, and showed activity in CLL cells from both treatment-naïve and idelalisib-refractory/intolerant patients. CLL cells from idelalisib-refractory/intolerant patients showed overall reduced protein phosphorylation levels. The pan-PI3Ki copanlisib, but not the p110δ inhibitor idelalisib, inhibited PI3K signaling in CD4+ and CD8+ T cells in addition to CD19+ B cells, but did not significantly affect T-cell numbers. Combination treatment with a PI3Ki and venetoclax resulted in synergistic induction of apoptosis. Analysis of drug sensitivities to 73 drug combinations and profiling of 31 proteins stratified responders to idelalisib and umbralisib, respectively. CONCLUSIONS: Our findings suggest novel treatment vulnerabilities in idelalisib-refractory/intolerant CLL, and indicate that ex vivo functional profiling may stratify PI3Ki responders.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes , Caspase 3 , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-bcl-2/genética , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Sulfonamidas
11.
Eur J Pharmacol ; 929: 175137, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35793726

RESUMO

High-altitude cerebral edema (HACE) is the severe type of acute mountain sickness, which is still lack of effective therapy. This study investigated for the first time the protective effect of mitochondrial division inhibitor-1 (mdivi-1) against cerebral edema induced by simulated high-altitude exposure in mice. It was found that mdivi-1 effectively inhibited phosphorylation of dynamin-related protein-1 (Drp1), reduced expression of AQP4, decreased secretion of IL-6 and TNF-α, and alleviated cerebral edema in mice. In primary cultured astrocytes or microglia, mdivi-1 significantly decreased the hypoxia-induced Drp1 phosphorylation and mitochondrial fragmentation, inhibited the activation of the NF-κB signaling pathway, reduced the secretion of IL-6 and TNF-α. In addition, mdivi-1 inhibited mitochondrial reactive oxygen species (ROS) generation induced by hypoxia in both astrocytes and microglia. When astrocytes were treated with the conditioned medium of microglia exposed to hypoxia (H-MCM), the protein levels of p-Drp1, p-p65, and AQP4 as well as the mRNA levels of IL-6, TNF-α, and IL-1ß in astrocytes were increased. When the mitochondrial components in H-MCM were removed, the influence of microglia on astrocytes under hypoxia was significantly alleviated. Treated with mdivi-1, the integrity of mitochondria released from microglia induced by hypoxia were significantly improved. In conclusion, pharmacological inhibition of mitochondrial division by mdivi-1 alleviated cerebral edema induced by simulated high-altitude exposure in mice. Inhibition of ROS/NF-κB signaling pathway may contribute to the protective effect of mdivi-1. Under hypoxic conditions, mdivi-1 may attenuate the activation of astrocytes by reducing the release of damaged mitochondria from microglia.


Assuntos
Doença da Altitude , Edema Encefálico , Altitude , Doença da Altitude/tratamento farmacológico , Animais , Edema Encefálico/tratamento farmacológico , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Microglia , NF-kappa B/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Espécies Reativas de Oxigênio , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
12.
Eur J Med Chem ; 240: 114602, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35858522

RESUMO

A fragment recruitment process was conducted to pinpoint a suitable fragment for installation in the HDAC inhibitory template to furnish agents endowed with the potential to treat lung cancer. Resultantly, Ring C expanded deoxyvasicinone was selected as an appropriate surface recognition part that was accommodated in the HDAC three-component model. Delightfully, fused quinazolinone 6 demonstrating a magnificent anticancer profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80-0.96 µM) was identified. Results of the mechanistic studies confirmed that the cell growth inhibitory effects of compound 6 stems for HDAC6 (IC50 = 12.9 nM), HDAC1 (IC50 = 49.9 nM) and HDAC3 inhibition (IC50 = 68.5 nM), respectively. Compound 6 also suppressed the colony formation ability of A549 cells, induced apoptosis, and increased autophagic flux. Key interactions of HDAC inhibitor 6 within the active site of HDAC isoforms were figured out through molecular modeling studies. Furthermore, a pH-responsive nanocarrier (Hyaluronic acid - fused quinazolinone 6 nanoparticles) was designed and assessed using a dialysis bag approach under both normal and acidic circumstances that confirmed the pH-sensitive nature of NPs. Delightfully, the nanoparticles demonstrated selective cell viability reduction potential towards the lung cancer cell lines (A549 lung cancer cell lines) and were found to be largely devoid of cell growth inhibitory effects under normal settings (L929, mouse fibroblast cells).


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Histona Desacetilases/química , Concentração de Íons de Hidrogênio , Neoplasias Pulmonares/metabolismo , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Quinazolinas , Quinazolinonas/administração & dosagem , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
13.
Acta Trop ; 231: 106440, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35378058

RESUMO

Acanthamoeba spp. are free living amoebae which can give rise to Acanthamoeba keratitis and granulomatous amoebic encephalitis. The surface of Acanthamoeba contains ergosterol which is an important target for drug development against eukaryotic microorganisms. A library of ten functionally diverse quinazolinone derivatives (Q1-Q10) were synthesised to assess their activity against Acanthamoeba castellanii T4. The in-vitro effectiveness of these quinazolinones were investigated against Acanthamoeba castellanii by amoebicidal, excystation, host cell cytopathogenicity, and NADPH-cytochrome c reductase assays. Furthermore, wound healing capability was assessed at different time durations. Maximum inhibition at 50 µg/mL was recorded for compounds Q5, Q6 and Q8, while the compound Q3 did not exhibit amoebicidal effects at tested concentrations. Moreover, LDH assay was conducted to assess the cytotoxicity of quinazolinones against HaCaT cell line. The results of wound healing assay revealed that all compounds are not cytotoxic and are likely to promote wound healing at 10 µg/mL. The excystation assays revealed that these compounds significantly inhibit the morphological transformation of A. castellanii. Compound Q3, Q7 and Q8 elevated the level of NADPH-cytochrome c reductase up to five folds. Sterol 14alpha-demethylase (CYP51) a reference enzyme in ergosterol pathway was used as a potential target for anti-amoebic drugs. In this study using i-Tasser, the protein structure of Acanthamoeba castellanii (AcCYP51) was developed in comparison with Naegleria fowleri protein (NfCYP51) structure. The sequence alignment of both proteins has shown 42.72% identity. Compounds Q1-Q10 were then molecularly docked with the predicted AcCYP51. Out of ten quinazolinones, three compounds (Q3, Q7 and Q8) showed good binding activity within 3 Å of TYR 114. The in-silico study confirmed that these compounds are the inhibitor of CYP51 target site. This report presents several potential lead compounds belonging to quinazolinone derivatives for drug discovery against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Amebíase , Amebicidas , Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Ergosterol/metabolismo , Humanos , NADP/metabolismo , NADP/farmacologia , NADP/uso terapêutico , Oxirredutases/metabolismo , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
14.
Bioorg Med Chem Lett ; 68: 128718, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378251

RESUMO

The C797S mutation confers resistance to covalent EGFR inhibitors used in the treatment of lung tumors with the activating L858R mutation. Isoindolinones such as JBJ-4-125-02 bind in an allosteric pocket and are active against this mutation, with high selectivity over wild-type EGFR. The most potent examples we developed from that series have a potential chemical instability risk from the combination of the amide and phenol groups. We explored a scaffold hopping approach to identify new series of allosteric EGFR inhibitors that retained good potency in the absence of the phenol group. The 5-F quinazolinone 34 demonstrated tumor regression in an H1975 efficacy model upon once daily oral dosing at 25 mg/kg.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Fenóis , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
15.
Thorac Cancer ; 13(10): 1471-1478, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415873

RESUMO

BACKGROUND: Dacomitinib is the second-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) for mutant non-small cell lung cancer (NSCLC). EGFR-TKIs are often re-administered in Japan after the disease progression prior EGFR-TKI. There is little evidence of dacomitinib in rechallenge setting. This study evaluated clinical outcomes of dacomitinib in rechallenge setting. METHODS: Patients who received dacomitinib for advanced EGFR-mutant NSCLC who had progressed after EGFR-TKI in nine institutions in Japan were included in the analyses. RESULTS: In total, 43 patients were analyzed. The median progression-free survival (PFS) was 4.3 months (95% confidence interval [CI], 2.5-5.6). The overall survival (OS) was 10.5 months (95% CI, 7.4-not reached). The overall response rate was 25.5% (95% CI, 13.1-33.7). Subset analysis indicated that patients with EGFR exon 21 L858R showed longer PFS than those with EGFR exon 19 deletion (5.8 vs. 4.1 months) (p = 0.018). The most common adverse events leading to dose modification were diarrhea, paronychia, rash, and oral mucositis. CONCLUSION: In the real practice in Japan, dacomitinib showed a worthwhile treatment option for NSCLC patients with EGFR mutation after failure of previous EGFR-TKI. The benefit was especially pronounced in patients with the exon 21 mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinazolinonas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/uso terapêutico , Resultado do Tratamento
16.
Drug Dev Res ; 83(4): 859-890, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297084

RESUMO

Cancer is one of the leading causes of death. Globally a huge number of deaths and new incidences are reported annually. Heterocyclic compounds have been proved to be very effective in the treatment of different types of cancer. Among different heterocyclic scaffolds, quinazoline and quinazolinone core were found versatile and interesting with many biological activities. In the discovery of novel anticancer agents, the Quinazoline core is very effective. The FDA has approved more than 20 drugs as an anticancer bearing quinazoline or quinazolinone core in the last two decades. One prime example is Dacomitinib, which was newly approved for non-small-cell lung carcinoma treatment in 2018. These drugs work by different pathways to prevent the spread of cancer cell progression, including inhibition of different kinases, tubulin, kinesin spindle protein, and so forth. This review presented recent developments of quinazoline/quinazolinone scaffold bearing derivatives as anticancer agents acting as epidermal growth factor receptor (EGFR) vascular endothelial growth factor receptor (VEGFR), and dual EGFR/VEGFR inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Receptores de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular
17.
Curr Top Med Chem ; 22(12): 1035-1044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35255796

RESUMO

Bacterial infections cause substantial morbidity and mortality across the world and pose serious threats to humankind. Drug resistance, especially multidrug resistance resulting from different defensive mechanisms in bacteria, is the leading cause of the failure of chemotherapy, making it an urgent need to develop more effective antibacterials. Quinazoline and quinazolinone frameworks have received considerable attention due to their diversified therapeutic potential. In particular, quinazoline/quinazolinone hybrids can exert antibacterial activity through various mechanisms and are useful scaffolds for the discovery of novel antibacterials. This review principally emphasizes the antibacterial potential, structure-activity relationships (SARs), and mechanism of action of quinazoline and quinazolinone hybrids, covering articles published between 2017 and 2021.


Assuntos
Infecções Bacterianas , Quinazolinonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Humanos , Quinazolinas/farmacologia , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Relação Estrutura-Atividade
18.
Arch Biochem Biophys ; 718: 109147, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35143784

RESUMO

Mitochondrial division inhibitor 1(Mdivi-1) has been shown to play a beneficial role in a variety of diseases, mainly by inhibiting Drp1-mediated mitochondrial fission. The effects of Mdivi-1 on cardiac fibrosis at infarcted border zone area and its possible mechanism remain unclear. This study aimed to investigate the effects of Mdivi-1 on reactive cardiac fibrosis and cardiac function post myocardial infarction and its potential mechanisms. Mice were randomly divided into six groups (n = 9 for each group): Sham; Mdivi-1; MI 7d; MI 14d; MI 28d; MI 28d + Mdivi-1. The MI model was induced by ligation of LAD coronary artery. Mdivi-1 (1 mg/kg) was administered to mice every other day at a time from the second day until the sacrifice of the mice (total 14 injection of Mdivi-1). In vitro experiments, the effect of Mdivi-1 on TGF-ß1-induced fibrosis-related pathophysiological changes of fibroblasts was examined in NIH3T3 cells. We found that Mdivi-1 significantly attenuated fibroblast activation, collagen production and fibrosis at infarcted border zone after MI, improved impaired heart function. Mechanistically, we observed that Mdivi-1 reduced the protein expression of P-Drp1-S616 and abnormal mitochondrial fission of cardiac fibroblasts in the infarcted border zone area. In addition, we found that the effects of Mdivi-1 partially relied on increasing the expression of Hmox1 and inhibiting oxidative stress. In conclusion, Mdivi-1 could attenuate cardiac fibrosis at infarcted border zone and improve impaired heart function partially through attenuation of Drp1-mediated mitochondrial fission. Moreover, inhibition of oxidative stress, which is possible due to the up-regulation of Hmox1, may be another potential mechanism of action of Mdivi-1.


Assuntos
Dinâmica Mitocondrial , Infarto do Miocárdio , Animais , Dinaminas/metabolismo , Fibrose , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Células NIH 3T3 , Estresse Oxidativo , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
19.
Br J Haematol ; 197(2): 207-211, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170759

RESUMO

Phosphatidylinositol 3 kinase (PI3K) inhibitors such as idelalisib have been associated with potentially severe autoimmune toxicity. In the present study, we demonstrate that relapsed refractory patients with chronic lymphocytic leukaemia treated with idelalisib rituximab on the phase III registration trial show uniform decrease in regulatory T cells (Tregs) and increase in CD8 T cells with treatment. Patients who do not develop toxicity show enrichment for T cells expressing multiple chemokine receptors, while those who do develop toxicity have an activated CD8 T cell population with T helper 17 cell differentiation at baseline, which then increases, leading to an increased CD8:Treg ratio that likely triggers autoimmune toxicity.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfócitos T Reguladores , Diferenciação Celular , Ensaios Clínicos Fase III como Assunto , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Purinas , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
20.
Histol Histopathol ; 37(6): 505-512, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35199329

RESUMO

Mitochondria are energy-producing organelles, and neurons are high energy consumption cells. Therefore, mitochondrial dysfunction is a critical factor in neurodegenerative processes. Mitochondrial division inhibitor-1 (Mdivi-1) is a small chemical inhibitor of mitochondrial division dynamin, which plays multiple roles in mitochondrial dynamics, mitochondrial autophagy, ATP production, the immune response, and Ca²âº homeostasis. Mdivi-1 inhibition of excessive mitochondrial fission exerted cytoprotective effects in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Mdivi-1 changed the mRNA expression of the electron transport chain (ETC) and reduced Ca²âº overload against neuronal injury. Elucidation of the molecular mechanism of Mdivi-1 in neurodegenerative diseases will help evaluate its therapeutic potential and promote its application in clinical studies. The present article focused on the multiple effects of Mdivi-1 on mitochondrial function and its potential therapeutic effects in neurodegenerative diseases.


Assuntos
Dinâmica Mitocondrial , Doenças Neurodegenerativas , Humanos , Cálcio , Dinaminas/metabolismo , Dinaminas/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...