Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35011505

RESUMO

Under normal physiological conditions, the kynurenine pathway (KP) plays a critical role in generating cellular energy and catabolizing tryptophan. Under inflammatory conditions, however, there is an upregulation of the KP enzymes, particularly kynurenine 3-monooxygenase (KMO). KMO has garnered much attention due to its production of toxic metabolites that have been implicated in many diseases and disorders. With many of these illnesses having an inadequate or modest treatment, there exists a need to develop KMO inhibitors that reduce the production of these toxic metabolites. Though prior efforts to find an appropriate KMO inhibitor were unpromising, the development of a KMO crystal structure has provided the opportunity for a rational structure-based design in the development of inhibitors. Therefore, the purpose of this review is to describe the kynurenine pathway, the kynurenine 3-monooxygenase enzyme, and KMO inhibitors and their potential candidacy for clinical use.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Quinurenina 3-Mono-Oxigenase , Cinurenina , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Cinurenina/química , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/biossíntese , Quinurenina 3-Mono-Oxigenase/química , Relação Estrutura-Atividade
2.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681715

RESUMO

Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of several diseases. Despite extensive research aimed at clarifying the mechanisms underlying the development and maintenance of neuropathic pain, the roles of KP metabolites in this process are still not fully known. Although the function of the peripheral KP has been known for several years, it has only recently been acknowledged that its metabolites within the central nervous system have remarkable consequences related to physiology and behavior. Both the products and metabolites of the KP are involved in the pathogenesis of pain conditions. Apart from the neuroactive properties of kynurenines, the KP regulates several neurotransmitter systems in direct or indirect ways. Some neuroactive metabolites are known to have neuroprotective properties (kynurenic acid, nicotinamide adenine dinucleotide cofactor), while others are toxic (3-hydroxykynurenine, quinolinic acid). Numerous animal models show that modulation of the KP may turn out to be a viable target for the treatment of diseases. Importantly, some compounds that affect KP enzymes are currently described to possess analgesic properties. Additionally, kynurenine metabolites may be useful for assessing response to therapy or as biomarkers in therapeutic monitoring. The following review describes the molecular site of action and changes in the levels of metabolites of the kynurenine pathway in the pathogenesis of various conditions, with a particular emphasis on their involvement in neuropathy. Moreover, the potential clinical implications of KP modulation in chronic pain therapy as well as the directions of new research initiatives are discussed.


Assuntos
Cinurenina/metabolismo , Neuralgia/patologia , Analgésicos/uso terapêutico , Animais , Biomarcadores/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Redes e Vias Metabólicas/genética , Neuralgia/tratamento farmacológico , Ácido Quinolínico/química , Ácido Quinolínico/metabolismo , Ácido Quinolínico/uso terapêutico , Triptofano/metabolismo
3.
Immunohorizons ; 5(6): 523-534, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183381

RESUMO

Despite advances in our understanding of endotoxic shock, novel therapeutic interventions that can reduce the burden of sepsis remain elusive. Current treatment options are limited, and it is only through refinements in the ways that we deliver supportive care that mortality has fallen over the years. In this study, the role of kynurenine 3-monooxygenase (KMO) in immune regulation was examined in LPS-induced endotoxemia using KMO-/- and KMO+/+ mice treated with the KMO inhibitor Ro61-8048. We showed that LPS-induced or cecal ligation and puncture-induced mortality and hepatic IL-6 production increased in the absence of KMO, possibly involving increased activating transcription factor 4 (ATF4) signaling in hepatic macrophages. Moreover, treatment of septic mice with 3-hydroxykynurenine reduced mortality rates and inflammatory responses regardless of the presence or absence of KMO. According to our results, the administration of 3-hydroxykynurenine as part of the treatment approach for sepsis or as an adjuvant therapy might reduce the overproduction of IL-6, which is responsible for severe endotoxemia, and ultimately improve the survival rates of patients with sepsis.


Assuntos
Interleucina-6/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Cinurenina/análogos & derivados , Choque Séptico/tratamento farmacológico , Fator 4 Ativador da Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Cinurenina/metabolismo , Cinurenina/uso terapêutico , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/genética , Lipopolissacarídeos/imunologia , Fígado/citologia , Fígado/imunologia , Fígado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Choque Séptico/imunologia , Choque Séptico/patologia , Transdução de Sinais/genética , Sulfonamidas/farmacologia , Tiazóis/farmacologia
4.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073016

RESUMO

The pathogenesis of several neurodegenerative diseases such as Alzheimer's or Huntington's disease has been associated with metabolic dysfunctions caused by imbalances in the brain and cerebral spinal fluid levels of neuroactive metabolites. Kynurenine monooxygenase (KMO) is considered an ideal therapeutic target for the regulation of neuroactive tryptophan metabolites. Despite significant efforts, the known KMO inhibitors lack blood-brain barrier (BBB) permeability and upon the mimicking of the substrate binding mode, are subject to produce reactive oxygen species as a side reaction. The computational drug design is further complicated by the absence of complete crystal structure information for human KMO (hKMO). In the current work, we performed virtual screening of readily available compounds using several protein-ligand complex pharmacophores. Each of the pharmacophores accounts for one of three distinct reported KMO protein-inhibitor binding conformations. As a result, six novel KMO inhibitors were discovered based on an in vitro fluorescence assay. Compounds VS1 and VS6 were predicted to be BBB permeable and avoid the hydrogen peroxide production dilemma, making them valuable, novel hit compounds for further drug property optimization and advancement in the drug design pipeline.


Assuntos
Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Biologia Computacional/métodos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Humanos , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/química , Simulação de Acoplamento Molecular/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Conformação Proteica
5.
Bioorg Med Chem Lett ; 44: 128115, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015507

RESUMO

Kynurenine monooxygenase (KMO) is expected to be a good drug target to treat Huntington's disease (HD). This study presents the structure-activity relationship of pyridazine derivatives to find novel KMO inhibitors. The most promising compound 14 resolved the problematic issues of lead compound 1, i.e., metabolic instability and reactive metabolite-derived side-effects. Compound 14 exhibited high brain permeability and a long-lasting pharmacokinetics profile in monkeys, and neuroprotective kynurenic acid was increased by a single administration of 14 in R6/2 mouse brain. These results demonstrated 14 may be a potential drug candidate to treat HD.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Quinurenina 3-Mono-Oxigenase/metabolismo , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
6.
Drug Discov Today ; 26(6): 1473-1481, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609782

RESUMO

The novel respiratory virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), emerged during late 2019 and spread rapidly across the world. It is now recognised that the nervous system can be affected in COVID-19, with several studies reporting long-term cognitive problems in patients. The metabolic pathway of tryptophan degradation, known as the kynurenine pathway (KP), is significantly activated in patients with COVID-19. KP metabolites have roles in regulating both inflammatory/immune responses and neurological functions. In this review, we speculate on the effects of KP activation in patients with COVID-19, and how modulation of this pathway might impact inflammation and reduce neurological symptoms.


Assuntos
COVID-19 , Cognição , Inflamação/metabolismo , Cinurenina/metabolismo , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Triptofano/metabolismo , Animais , COVID-19/imunologia , COVID-19/psicologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Humanos , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais
7.
Commun Biol ; 4(1): 159, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542467

RESUMO

The structural mechanisms of single-pass transmembrane enzymes remain elusive. Kynurenine 3-monooxygenase (KMO) is a mitochondrial protein involved in the eukaryotic tryptophan catabolic pathway and is linked to various diseases. Here, we report the mammalian full-length structure of KMO in its membrane-embedded form, complexed with compound 3 (identified internally) and compound 4 (identified via DNA-encoded chemical library screening) at 3.0 Å resolution. Despite predictions suggesting that KMO has two transmembrane domains, we show that KMO is actually a single-pass transmembrane protein, with the other transmembrane domain lying laterally along the membrane, where it forms part of the ligand-binding pocket. Further exploration of compound 3 led to identification of the brain-penetrant compound, 5. We show that KMO is dimeric, and that mutations at the dimeric interface abolish its activity. These results will provide insight for the drug discovery of additional blood-brain-barrier molecules, and help illuminate the complex biology behind single-pass transmembrane enzymes.


Assuntos
Membrana Celular/enzimologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Animais , Sítios de Ligação , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Quinurenina 3-Mono-Oxigenase/química , Quinurenina 3-Mono-Oxigenase/genética , Ligantes , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Ratos , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 33: 127753, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359168

RESUMO

Huntington's disease (HD) is one of the serious neurodegenerative diseases and no disease modifiers are available to date. The correction of unbalanced kynurenine pathway metabolites may be useful to treat disease progression and kynurenine monooxygenase (KMO) is considered an ideal drug target. A couple of KMO inhibitors have been reported, but their brain permeability was very poor. We found pyridazinylsulfonamide as a novel lead compound, and it was optimized to the brain-permeable and highly potent KMO inhibitor 12, which was equipotent with CHDI-340246 and superior to CHDI-340246 in terms of brain penetration. Compound 12 was effective in R6/2 mice (HD model mice), i.e. neuroprotective kynurenic acid was increased, whereas neurotoxic 3-hydroxykynurenine was suppressed. In addition, impaired cognitive function was improved. Therefore, the brain-permeable KMO inhibitor was considered to be a disease modifier for HD treatment.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Sulfonamidas/farmacologia , Administração Oral , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Quinurenina 3-Mono-Oxigenase/metabolismo , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/química , Benzenossulfonamidas
9.
Arch Biochem Biophys ; 697: 108702, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275878

RESUMO

Kynurenine-3-monooxygenase (KMO) is an important therapeutic target for several brain disorders that has been extensively studied in recent years. Potent inhibitors towards KMO have been developed and tested within different disease models, showing great therapeutic potential, especially in models of neurodegenerative disease. The inhibition of KMO reduces the production of downstream toxic kynurenine pathway metabolites and shifts the flux to the formation of the neuroprotectant kynurenic acid. However, the efficacy of KMO inhibitors in neurodegenerative disease has been limited by their poor brain permeability. Combined with virtual screening and prodrug strategies, a novel brain penetrating KMO inhibitor has been developed which dramatically decreases neurotoxic metabolites. This review highlights the importance of KMO as a drug target in neurological disease and the benefits of brain permeable inhibitors in modulating kynurenine pathway metabolites in the central nervous system.


Assuntos
Encéfalo/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/uso terapêutico , Humanos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/metabolismo
10.
Commun Biol ; 2: 271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372510

RESUMO

Dysregulation of the kynurenine pathway (KP) leads to imbalances in neuroactive metabolites associated with the pathogenesis of several neurodegenerative disorders, including Huntington's disease (HD). Inhibition of the enzyme kynurenine 3-monooxygenase (KMO) in the KP normalises these metabolic imbalances and ameliorates neurodegeneration and related phenotypes in several neurodegenerative disease models. KMO is thus a promising candidate drug target for these disorders, but known inhibitors are not brain permeable. Here, 19 new KMO inhibitors have been identified. One of these (1) is neuroprotective in a Drosophila HD model but is minimally brain penetrant in mice. The prodrug variant (1b) crosses the blood-brain barrier, releases 1 in the brain, thereby lowering levels of 3-hydroxykynurenine, a toxic KP metabolite linked to neurodegeneration. Prodrug 1b will advance development of targeted therapies against multiple neurodegenerative and neuroinflammatory diseases in which KP likely plays a role, including HD, Alzheimer's disease, and Parkinson's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Quinurenina 3-Mono-Oxigenase/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Camundongos , Doenças Neurodegenerativas/enzimologia
11.
J Immunol ; 203(4): 899-910, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31285277

RESUMO

The kynurenine pathway (KP) is a key regulator of many important physiological processes and plays a harmful role in cancer, many neurologic conditions, and chronic viral infections. In HIV infection, KP activity is consistently associated with reduced CD4 T cell counts and elevated levels of T cell activation and viral load; it also independently predicts mortality and morbidity from non-AIDS events. Kynurenine 3-monooxygenase (KMO) is a therapeutically important target in the KP. Using the nonhuman primate model of SIV infection in rhesus macaques, we investigated whether KMO inhibition could slow the course of disease progression. We used a KMO inhibitor, CHDI-340246, to perturb the KP during early acute infection and followed the animals for 1 y to assess clinical outcomes and immune phenotype and function during pre-combination antiretroviral therapy acute infection and combination antiretroviral therapy-treated chronic infection. Inhibition of KMO in acute SIV infection disrupted the KP and prevented SIV-induced increases in downstream metabolites, improving clinical outcome as measured by both increased CD4+ T cell counts and body weight. KMO inhibition increased naive T cell frequency and lowered PD-1 expression in naive and memory T cell subsets. Importantly, early PD-1 expression during acute SIV infection predicted clinical outcomes of body weight and CD4+ T cell counts. Our data indicate that KMO inhibition in early acute SIV infection provides clinical benefit and suggest a rationale for testing KMO inhibition as an adjunctive treatment in SIV/HIV infection to slow the progression of the disease and improve immune reconstitution.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Receptor de Morte Celular Programada 1/biossíntese , Pirimidinas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Antirretrovirais/farmacologia , Peso Corporal/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Macaca mulatta , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo
12.
J Biol Chem ; 294(28): 11047-11053, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31177094

RESUMO

A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.


Assuntos
Caenorhabditis elegans/metabolismo , Cinurenina/metabolismo , Ubiquinona/análogos & derivados , Animais , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografia Líquida de Alta Pressão , Hidrolases/antagonistas & inibidores , Hidrolases/genética , Hidrolases/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Espectrometria de Massas , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Tela Subcutânea/metabolismo , Ubiquinona/análise , Ubiquinona/biossíntese , Ubiquinona/metabolismo
13.
Methods Mol Biol ; 1780: 397-413, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856028

RESUMO

The link between disturbances in kynurenine pathway (KP) metabolism and Huntington's disease (HD) pathogenesis has been explored for a number of years. Several novel genetic and pharmacological tools have recently been developed to modulate key regulatory steps in the KP such as the reaction catalyzed by the enzyme kynurenine 3-monooxygenase (KMO). This insight has offered new options for exploring the mechanistic link between this metabolic pathway and HD, and provided novel opportunities for the development of candidate drug-like compounds. Here, we present an overview of the field, focusing on some novel approaches for interrogating the pathway experimentally.


Assuntos
Encéfalo/patologia , Doença de Huntington/patologia , Quinurenina 3-Mono-Oxigenase/metabolismo , Cinurenina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Idoso , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Triptofano/metabolismo
14.
Neuropharmacology ; 135: 581-591, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29705534

RESUMO

Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 µg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Cinurenina/metabolismo , Núcleo Accumbens/metabolismo , Acetaldeído/sangue , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Etanol/administração & dosagem , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Receptores Colinérgicos/metabolismo , Sulfonamidas/farmacologia , Tiazóis/farmacologia
15.
Cell Chem Biol ; 25(4): 426-438.e4, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29429898

RESUMO

Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Pseudomonas fluorescens/enzimologia , Saccharomyces cerevisiae/enzimologia , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Sequência de Aminoácidos , Animais , Flavinas/metabolismo , Humanos , Quinurenina 3-Mono-Oxigenase/química , Simulação de Acoplamento Molecular , Oxirredução/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Pseudomonas fluorescens/química , Saccharomyces cerevisiae/química , Alinhamento de Sequência
16.
SLAS Discov ; 23(6): 554-560, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420107

RESUMO

Kynurenine 3-monooxygenase (KMO) is a well-validated therapeutic target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). This work reports a facile fluorescence-based KMO assay optimized for high-throughput screening (HTS) that achieves a throughput approximately 20-fold higher than the fastest KMO assay currently reported. The screen was run with excellent performance (average Z' value of 0.80) from 110,000 compounds across 341 plates and exceeded all statistical parameters used to describe a robust HTS assay. A subset of molecules was selected for validation by ultra-high-performance liquid chromatography, resulting in the confirmation of a novel hit with an IC50 comparable to that of the well-described KMO inhibitor Ro-61-8048. A medicinal chemistry program is currently underway to further develop our novel KMO inhibitor scaffolds.


Assuntos
Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala/métodos , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão/métodos , Fluorescência
17.
FASEB J ; 32(4): 2036-2045, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29208702

RESUMO

The human kynurenine 3-monooxygenase (hKMO) is a potential therapeutic target for neurodegenerative and neurologic disorders. Inhibition of KMO by Ro 61-8048, a potent, selective, and the most widely used inhibitor of KMO, was shown effective in various models of neurodegenerative or neurologic disorders. However, the molecular basis of hKMO inhibition by Ro 61-8048 is not clearly understood. Here, we report biochemistry studies on hKMO and crystal structures of an hKMO homolog, pfKMO from Pseudomonas fluorescens, in complex with the substrate l-kynurenine and Ro 61-8048. We found that the C-terminal ∼110 aa are essential for the enzymatic activity of hKMO and the homologous C-terminal region of pfKMO folds into a distinct, all-α-helical domain, which associates with the N-terminal catalytic domain to form a unique tunnel in proximity to the substrate-binding pocket. The tunnel binds the Ro 61-8048 molecule, which fills most of the tunnel, and Ro 61-8048 is hydrogen bonded with several completely conserved residues, including an essential catalytic residue. Modification of Ro 61-8048 and biochemical studies of the modified Ro 61-8048 derivatives suggested that Ro 61-8048 inhibits the enzyme in an allosteric manner by affecting the conformation of the essential catalytic residue and by blocking entry of the substrate or product release. The unique binding sites distinguish Ro 61-8048 as a noncompetitive and highly selective inhibitor from other competitive inhibitors, which should facilitate further optimization of Ro 61-8048 and the development of new inhibitory drugs to hKMO.-Gao, J., Yao, L., Xia, T., Liao, X., Zhu, D., Xiang, Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.


Assuntos
Sítio Alostérico , Proteínas de Bactérias/química , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/química , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Regulação Alostérica , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Ligação Proteica , Pseudomonas fluorescens/enzimologia , Sulfonamidas/química , Tiazóis/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-29030243

RESUMO

Evidence has shown that the kynurenine pathway (KP) plays a role in the onset of oxidative stress and also in the pathophysiology of schizophrenia. The aim of this study was to use a pharmacological animal model of schizophrenia induced by ketamine to investigate if KP inhibitors could protect the brains of Wistar rats against oxidative stress and behavioral changes. Ketamine, injected at the dose of 25mg/kg, increased spontaneous locomotor activity. However, the inhibitors of tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase (IDO) and kynurenine-3-monooxygenase (KMO) were able to reverse these changes. In addition, the IDO inhibitor prevented lipid peroxidation, and decreased the levels of protein carbonyl in the prefrontal cortex (PFC), hippocampus and striatum. It also increased the activity of superoxide dismutase (SOD) in the hippocampus, as well as increasing the levels of catalase activity in the PFC and hippocampus. The TDO inhibitor prevented lipid damage in the striatum and reduced the levels of protein carbonyl in the hippocampus and striatum. Also, the TDO inhibitor increased the levels of SOD activity in the striatum and CAT activity in the hippocampus of ketamine-induced pro-oxidant effects. Lipid damage was not reversed by the KMO inhibitor. The KMO inhibitor increased the levels of SOD activity in the hippocampus, and reduced the levels of protein carbonyl while elevating the levels of CAT activity in the striatum of rats that had been injected with ketamine. Our findings revealed that the KP pathway could be a potential mechanism by which a schizophrenia animal model induced by ketamine could cause interference by producing behavioral disturbance and inducing oxidative stress in the brain, suggesting that the inhibition of the KP pathway could be a potential target in treating schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Cinurenina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ketamina , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Estresse Oxidativo/fisiologia , Ratos Wistar , Esquizofrenia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo
19.
Methods Appl Fluoresc ; 6(1): 015002, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28901950

RESUMO

The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.


Assuntos
Bioensaio/métodos , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase , Citometria de Fluxo , Fluorescência , Células HEK293 , Humanos , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Espectrometria de Massas
20.
Nat Commun ; 8: 15827, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604669

RESUMO

Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.


Assuntos
Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/metabolismo , Pancreatite/metabolismo , Animais , Inibidores Enzimáticos/química , Escherichia coli/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Quinurenina 3-Mono-Oxigenase/química , Quinurenina 3-Mono-Oxigenase/metabolismo , Modelos Moleculares , Domínios Proteicos , Células Sf9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...