Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.299
Filtrar
1.
Nature ; 627(8003): 424-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418874

RESUMO

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , RNA Bacteriano , Transcriptoma , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/análise , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Transcriptoma/genética , Tuberculose/microbiologia , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sítio de Iniciação de Transcrição , Fator sigma/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
2.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885734

RESUMO

Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.


Assuntos
Anti-Infecciosos/química , Infecções Bacterianas/tratamento farmacológico , DNA Girase/genética , DNA Topoisomerase IV/genética , Quinolonas/química , Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , DNA Girase/efeitos dos fármacos , DNA Topoisomerase IV/antagonistas & inibidores , DNA Bacteriano/biossíntese , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/patogenicidade , Humanos , Quinolonas/uso terapêutico , RNA Bacteriano/biossíntese , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/uso terapêutico
3.
mSphere ; 6(5): e0008521, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468166

RESUMO

The functioning, health, and productivity of soil are intimately tied to a complex network of interactions, particularly in plant root-associated rhizosphere soil. We conducted a stable-isotope-informed, genome-resolved metagenomic study to trace carbon from Avena fatua grown in a 13CO2 atmosphere into soil. We collected paired rhizosphere and nonrhizosphere soil at 6 and 9 weeks of plant growth and extracted DNA that was then separated by density using ultracentrifugation. Thirty-two fractions from each of five samples were grouped by density, sequenced, assembled, and binned to generate 55 unique bacterial genomes that were ≥70% complete. We also identified complete 18S rRNA sequences of several 13C-enriched microeukaryotic bacterivores and fungi. We generated 10 circularized bacteriophage (phage) genomes, some of which were the most labeled entities in the rhizosphere, suggesting that phage may be important agents of turnover of plant-derived C in soil. CRISPR locus targeting connected one of these phage to a Burkholderiales host predicted to be a plant pathogen. Another highly labeled phage is predicted to replicate in a Catenulispora sp., a possible plant growth-promoting bacterium. We searched the genome bins for traits known to be used in interactions involving bacteria, microeukaryotes, and plant roots and found DNA from heavily 13C-labeled bacterial genes thought to be involved in modulating plant signaling hormones, plant pathogenicity, and defense against microeukaryote grazing. Stable-isotope-informed, genome-resolved metagenomics indicated that phage can be important agents of turnover of plant-derived carbon in soil. IMPORTANCE Plants grow in intimate association with soil microbial communities; these microbes can facilitate the availability of essential resources to plants. Thus, plant productivity commonly depends on interactions with rhizosphere bacteria, viruses, and eukaryotes. Our work is significant because we identified the organisms that took up plant-derived organic C in rhizosphere soil and determined that many of the active bacteria are plant pathogens or can impact plant growth via hormone modulation. Further, by showing that bacteriophage accumulate CO2-derived carbon, we demonstrated their vital roles in redistribution of plant-derived C into the soil environment through bacterial cell lysis. The use of stable-isotope probing (SIP) to identify consumption (or lack thereof) of root-derived C by key microbial community members within highly complex microbial communities opens the way for assessing manipulations of bacteria and phage with potentially beneficial and detrimental traits, ultimately providing a path to improved plant health and soil carbon storage.


Assuntos
Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/biossíntese , Genoma Bacteriano/genética , RNA Bacteriano/biossíntese , Bactérias/classificação , Carbono/metabolismo , DNA Bacteriano/genética , Marcação por Isótopo , Metagenômica , Filogenia , Raízes de Plantas/microbiologia , RNA Bacteriano/genética , Rizosfera , Microbiologia do Solo
4.
Sci Rep ; 11(1): 16604, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400661

RESUMO

Host-specific legume-rhizobium symbiosis is strictly controlled by rhizobial type III effectors (T3Es) in some cases. Here, we demonstrated that the symbiosis of Vigna radiata (mung bean) with Bradyrhizobium diazoefficiens USDA110 is determined by NopE, and this symbiosis is highly dependent on host genotype. NopE specifically triggered incompatibility with V. radiata cv. KPS2, but it promoted nodulation in other varieties of V. radiata, including KPS1. Interestingly, NopE1 and its paralogue NopE2, which exhibits calcium-dependent autocleavage, yield similar results in modulating KPS1 nodulation. Furthermore, NopE is required for early infection and nodule organogenesis in compatible plants. Evolutionary analysis revealed that NopE is highly conserved among bradyrhizobia and plant-associated endophytic and pathogenic bacteria. Our findings suggest that V. radiata and B. diazoefficiens USDA110 may use NopE to optimize their symbiotic interactions by reducing phytohormone-mediated ETI-type (PmETI) responses via salicylic acid (SA) biosynthesis suppression.


Assuntos
Bradyrhizobium/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Nodulação/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Vigna/microbiologia , Sequência de Bases , Bradyrhizobium/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Mutação , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Ácido Salicílico/metabolismo , Simbiose , Transcriptoma
5.
ACS Synth Biol ; 10(8): 1847-1858, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34283568

RESUMO

Regulatory RNA-based interactions are critical for coordinating gene expression and are increasingly being targeted in synthetic biology, antimicrobial, and therapeutic fields. Bacterial trans-encoded small RNAs (sRNAs) regulate the translation and/or stability of mRNA targets through base-pairing interactions. These interactions are often integral to complex gene circuits which coordinate critical bacterial processes. The ability to predictably modulate these gene circuits has potential for reprogramming gene expression for synthetic biology and antibacterial purposes. Here, we present a novel pipeline for targeting such RNA-based interactions with antisense oligonucleotides (ASOs) in order to reprogram gene expression. As proof-of-concept, we selected sRNA-mRNA interactions that are central to the Vibrio cholerae quorum sensing pathway, required for V. cholerae pathogenesis, as a regulatory RNA-based interaction input. We rationally designed anti-sRNA ASOs to target the sRNAs and synthesized them as peptide nucleic acids (PNAs). Next, we devised an RNA array-based interaction assay to allow screening of the anti-sRNA ASOs in vitro. Finally, an Escherichia coli-based gene expression reporter assay was developed and used to validate anti-sRNA ASO regulatory activity in a cellular environment. The output from the pipeline was an anti-sRNA ASO that targets sRNAs to inhibit sRNA-mRNA interactions and modulate gene expression. This anti-sRNA ASO has potential for reprogramming gene expression for synthetic biology and/or antibacterial purposes. We anticipate that this pipeline will find widespread use in fields targeting RNA-based interactions as modulators of gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Oligodesoxirribonucleotídeos Antissenso/química , Ácidos Nucleicos Peptídicos/química , RNA Bacteriano/biossíntese , Vibrio cholerae , RNA Bacteriano/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
6.
Int J Biol Macromol ; 187: 1-8, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34293357

RESUMO

The combined catalysis of glucose isomerase (GI) and D-psicose 3-epimerase (DPEase) provided a convenient route for the direct synthesis of D-allulose from d-glucose, whose cost is lower than d-fructose. In the present research, the weak activity of DPEase was the key rate-limiting step and resulted in the accumulation of d-fructose in engineered Bacillus subtilis. Then, the 5'-untranslated region (5'-UTR) structure of the mRNA translational initiation region was optimized for the precise control of DPEase expression. The manipulation of the 5'-UTR region promoted the accessibility to ribosome binding and the stability of mRNA, resulting in a maximum of 1.73- and 1.98-fold increase in DPEase activity and intracellular mRNA amount, respectively. Under the optimal catalytic conditions of 75 °C, pH 6.5, 110 g/L d-glucose, and 1 mmol/L Co2+, the reaction equilibrium time was reduced from 7.6 h to 6.1 h. We hope that our results could provide a facilitated strategy for large-scale production of D-allulose at low-cost.


Assuntos
Regiões 5' não Traduzidas , Bacillus subtilis , Proteínas de Bactérias , Carboidratos Epimerases , Frutose , Biossíntese de Proteínas/genética , RNA Bacteriano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/genética , Frutose/biossíntese , Frutose/genética , RNA Bacteriano/biossíntese , RNA Bacteriano/genética
7.
Methods Mol Biol ; 2323: 249-265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086286

RESUMO

Research on RNA function and therapeutic potential is dominated by the use of chemoengineered RNA mimics. Recent efforts have led to the establishment of novel technologies for the production of recombinant or bioengineered RNA molecules, which should better recapitulate the structures, functions and safety profiles of natural RNAs because both are produced and folded in living cells. Herein, we describe a robust approach for reproducible fermentation production of bioengineered RNA agents (BERAs) carrying warhead miRNAs, siRNAs, aptamers, or other forms of small RNAs, based upon an optimal hybrid tRNA/pre-miRNA carrier. Target BERA/sRNAs are readily purified by fast protein liquid chromatography (FPLC) to a high degree of homogeneity (>97%). This approach offers a consistent high-level expression (>30% of total bacterial RNAs) and large-scale production of ready-to-use BERAs (multiple to tens milligrams from 1 L bacterial culture).


Assuntos
Bioengenharia/métodos , MicroRNAs/isolamento & purificação , RNA Bacteriano/isolamento & purificação , RNA de Transferência/isolamento & purificação , RNA não Traduzido/isolamento & purificação , RNA/isolamento & purificação , Sequência de Bases , Cromatografia por Troca Iônica/métodos , Clonagem Molecular/métodos , Contaminação de Medicamentos , Eletroforese em Gel de Poliacrilamida , Endotoxinas/análise , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fermentação , MicroRNAs/biossíntese , MicroRNAs/genética , Desnaturação de Ácido Nucleico , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , RNA/biossíntese , RNA/genética , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA de Transferência/biossíntese , RNA de Transferência/genética , RNA não Traduzido/genética
8.
Transfusion ; 61(7): 2146-2158, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33904608

RESUMO

BACKGROUND: Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS: Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS: A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION: Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients.


Assuntos
Bacteriemia/microbiologia , Biofilmes/crescimento & desenvolvimento , Plaquetas/microbiologia , Regulação Bacteriana da Expressão Gênica , Staphylococcus epidermidis/genética , Sequência de Bases , Preservação de Sangue , Resistência Microbiana a Medicamentos/genética , Ontologia Genética , Humanos , RNA Bacteriano/biossíntese , RNA Bacteriano/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/isolamento & purificação , Transcriptoma
9.
Mol Microbiol ; 116(1): 126-139, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33560537

RESUMO

Small RNAs (sRNAs) are universal posttranscriptional regulators of gene expression and hundreds of sRNAs are frequently found in each and every bacterium. In order to coordinate cellular processes in response to ambient conditions, many sRNAs are differentially expressed. Here, we asked how these small regulators are regulated using Agrobacterium tumefaciens as a model system. Among the best-studied sRNAs in this plant pathogen are AbcR1 regulating numerous ABC transporters and PmaR, a regulator of peptidoglycan biosynthesis, motility, and ampicillin resistance. We report that the LysR-type regulator VtlR (also known as LsrB) controls expression of AbcR1 and PmaR. A vtlR/lsrB deletion strain showed growth defects, was sensitive to antibiotics and severely compromised in plant tumor formation. Transcriptome profiling by RNA-sequencing revealed more than 1,200 genes with altered expression in the mutant. Consistent with the function of VtlR/LsrB as regulator of AbcR1, many ABC transporter genes were affected. Interestingly, the transcription factor did not only control the expression of AbcR1 and PmaR. In the mutant, 102 sRNA genes were significantly up- or downregulated. Thus, our study uncovered VtlR/LsrB as the master regulator of numerous sRNAs. Thereby, the transcriptional regulator harnesses the regulatory power of sRNAs to orchestrate the expression of distinct sub-regulons.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/biossíntese , Pequeno RNA não Traduzido/biossíntese , Fatores de Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Agrobacterium tumefaciens/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Deleção de Genes , Peptidoglicano/biossíntese , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética
10.
Nucleic Acids Res ; 49(1): 15-24, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330935

RESUMO

RNA polymerase pausing during elongation is an important mechanism in the regulation of gene expression. Pausing along DNA templates is thought to be induced by distinct signals encoded in the nucleic acid sequence and halt elongation complexes to allow time for necessary co-transcriptional events. Pausing signals have been classified as those producing short-lived elemental, long-lived backtracked, or hairpin-stabilized pauses. In recent years, structural microbiology and single-molecule studies have significantly advanced our understanding of the paused states, but the dynamics of these states are still uncertain, although several models have been proposed to explain the experimentally observed pausing behaviors. This review summarizes present knowledge about the paused states, discusses key discrepancies among the kinetic models and their basic assumptions, and highlights the importance and challenges in constructing theoretical models that may further our biochemical understanding of transcriptional pausing.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Genéticos , RNA Bacteriano/biossíntese , Elongação da Transcrição Genética , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/genética , Thermus thermophilus/genética , Fatores de Tempo
11.
J Biochem ; 169(4): 485-489, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33169170

RESUMO

Deleting the gene for small RNA GcvB in Escherichia coli was found to increase the sensitivity to several aminoglycoside antibiotics, such as neomycin, streptomycin, kanamycin, kasugamycin and spectinomycin, at low concentrations. GcvB, conserved in gram-negative enteric bacteria, is known to negatively control the expression of many genes for amino acid incorporation systems, especially the periplasmic ABC-transporter proteins. Deletions of several amino acid transporter genes in ΔgcvB cells decreased the antibiotic sensitivity to the wild-type level, suggesting that those genes are involved in uptake of aminoglycosides into the cell. Since GcvB is constitutively synthesized in growing cells, repressing synthesis of amino acid transporters, it contributes to the intrinsic resistance to several aminoglycoside antibiotics.


Assuntos
Aminoglicosídeos , Farmacorresistência Bacteriana , Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA não Traduzido/biossíntese , RNA não Traduzido/genética
12.
Nature ; 585(7823): 124-128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848247

RESUMO

Tight coupling of transcription and translation is considered a defining feature of bacterial gene expression1,2. The pioneering ribosome can both physically associate and kinetically coordinate with RNA polymerase (RNAP)3-11, forming a signal-integration hub for co-transcriptional regulation that includes translation-based attenuation12,13 and RNA quality control2. However, it remains unclear whether transcription-translation coupling-together with its broad functional consequences-is indeed a fundamental characteristic of bacteria other than Escherichia coli. Here we show that RNAPs outpace pioneering ribosomes in the Gram-positive model bacterium Bacillus subtilis, and that this 'runaway transcription' creates alternative rules for both global RNA surveillance and translational control of nascent RNA. In particular, uncoupled RNAPs in B. subtilis explain the diminished role of Rho-dependent transcription termination, as well as the prevalence of mRNA leaders that use riboswitches and RNA-binding proteins. More broadly, we identified widespread genomic signatures of runaway transcription in distinct phyla across the bacterial domain. Our results show that coupled RNAP-ribosome movement is not a general hallmark of bacteria. Instead, translation-coupled transcription and runaway transcription constitute two principal modes of gene expression that determine genome-specific regulatory mechanisms in prokaryotes.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Filogenia , RNA Bacteriano/biossíntese , RNA Bacteriano/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator Rho/metabolismo , Ribossomos/metabolismo , Riboswitch/genética
13.
PLoS One ; 15(7): e0233945, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701964

RESUMO

The survival of Listeria (L.) monocytogenes in foods and food production environments (FPE) is dependent on several genes that increase tolerance to stressors; this includes competing with intrinsic bacteria. We aimed to uncover genes that are differentially expressed (DE) in L. monocytogenes sequence type (ST) 121 strain 6179 when co-cultured with cheese rind bacteria. L. monocytogenes was cultivated in broth or on plates with either a Psychrobacter or Brevibacterium isolate from cheese rinds. RNA was extracted from co-cultures in broth after two or 12 hours and from plates after 24 and 72 hours. Broth co-cultivations with Brevibacterium or Psychrobacter yielded up to 392 and 601 DE genes, while plate co-cultivations significantly affected the expression of up to 190 and 485 L. monocytogenes genes, respectively. Notably, the transcription of virulence genes encoding the Listeria adhesion protein and Listeriolysin O were induced during plate and broth co-cultivations. The expression of several systems under the control of the global stress gene regulator, σB, increased during co-cultivation. A cobalamin-dependent gene cluster, responsible for the catabolism of ethanolamine and 1,2-propanediol, was upregulated in both broth and plate co-cultures conditions. Finally, a small non-coding (nc)RNA, Rli47, was induced after 72 hours of co-cultivation on plates and accounted for 50-90% of the total reads mapped to L. monocytogenes. A recent study has shown that Rli47 may contribute to L. monocytogenes stress survival by slowing growth during stress conditions through the suppression of branch-chained amino acid biosynthesis. We hypothesize that Rli47 may have an impactful role in the response of L. monocytogenes to co-cultivation by regulating a complex network of metabolic and virulence mechanisms.


Assuntos
Brevibacterium/metabolismo , Queijo/microbiologia , Etanolamina/metabolismo , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Propilenoglicol/metabolismo , Psychrobacter/metabolismo , Transcriptoma , Aclimatação , Ágar , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Técnicas de Cocultura , Meios de Cultura , Transporte de Elétrons/genética , Fermentação/genética , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Plasmídeos , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética , Virulência/genética
14.
J Biol Chem ; 295(28): 9583-9595, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32439804

RESUMO

DNA lesions can severely compromise transcription and block RNA synthesis by RNA polymerase (RNAP), leading to subsequent recruitment of DNA repair factors to the stalled transcription complex. Recent structural studies have uncovered molecular interactions of several DNA lesions within the transcription elongation complex. However, little is known about the role of key elements of the RNAP active site in translesion transcription. Here, using recombinantly expressed proteins, in vitro transcription, kinetic analyses, and in vivo cell viability assays, we report that point amino acid substitutions in the trigger loop, a flexible element of the active site involved in nucleotide addition, can stimulate translesion RNA synthesis by Escherichia coli RNAP without altering the fidelity of nucleotide incorporation. We show that these substitutions also decrease transcriptional pausing and strongly affect the nucleotide addition cycle of RNAP by increasing the rate of nucleotide addition but also decreasing the rate of translocation. The secondary channel factors DksA and GreA modulated translesion transcription by RNAP, depending on changes in the trigger loop structure. We observed that although the mutant RNAPs stimulate translesion synthesis, their expression is toxic in vivo, especially under stress conditions. We conclude that the efficiency of translesion transcription can be significantly modulated by mutations affecting the conformational dynamics of the active site of RNAP, with potential effects on cellular stress responses and survival.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/biossíntese , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética
15.
Metab Eng ; 61: 58-68, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32413407

RESUMO

Many metabolic pathways in bacteria are regulated by metabolite sensing riboswitches that exert their control at the level of transcription employing a termination-antitermination mechanism. These riboswitches represent engineering targets to modulate expression of genes and operons relevant for the biotechnological production of commercially relevant compounds. We show that removal of the transcriptional riboswitches that control purine biosynthesis and riboflavin biosynthesis in Bacillus subtilis leads to auxotrophic strains. As an alternative, we report a rational approach for engineering transcriptional riboswitches independently from the availability of structural data. This approach consists in the identification and deletion of a key nucleotide sequence exclusively involved in transcription termination without affecting formation of other secondary and tertiary structures, which can be involved in other functions. To demonstrate the efficacy of our approach, we tested it with regard to deregulation of the purine and the riboflavin biosynthetic pathways in B. subtilis. Following validation of the engineered transcriptional riboswitches using specialized reporter strains, our approach was implemented into a B. subtilis wild-type strain employing CRISPR-Cas9 genome editing. The resulting purine and riboflavin production strains were characterized at the level of gene expression, metabolite synthesis and growth, and a substantial enhancement was measured at each level. Moreover, applying our approach to deregulate the purine pathway of an industrial riboflavin overproducing strain with impaired growth led to an increase in biomass by 53%, which resulted in an enhanced total production of riboflavin in the culture.


Assuntos
Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Purinas/biossíntese , RNA Bacteriano , Riboflavina/biossíntese , Riboswitch , Transcrição Gênica , Bacillus subtilis/genética , RNA Bacteriano/biossíntese , RNA Bacteriano/genética
16.
J Infect Chemother ; 26(7): 685-692, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32224190

RESUMO

Clostridioides difficile infection results from a disturbance of the normal microbial flora of the colon, allowing proliferation of C. difficile and toxin production by toxigenic strains. Fidaxomicin, a macrocyclic antibiotic that prevents RNA synthesis in C. difficile and inhibits spore formation, toxin production, and cell proliferation, is clinically effective in treating C. difficile infection. As recent studies have suggested that biofilm formation influences C. difficile colonization and infection in the colon, we undertook the present study to determine the effects of fidaxomicin on C. difficile biofilm formation. Sub-minimum inhibitory concentrations (MICs) of fidaxomicin inhibited biofilm formation by C. difficile UK027 and delayed planktonic growth. Sub-MICs of vancomycin did not inhibit biofilm formation or affect planktonic growth. In C. difficile UK027 exposed to sub-MICs of fidaxomicin, mRNA expression of biofilm-related flagellin gene fliC was slightly increased compared with that of other biofilm-related genes (pilA1, cwp84, luxS, dccA, and spo0A). In conclusion, this study indicates that sub-MICs of fidaxomicin inhibit C. difficile UK027 biofilm formation by influencing cell growth and fliC transcription.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Fidaxomicina/farmacologia , Antibacterianos/uso terapêutico , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Fidaxomicina/uso terapêutico , Flagelina/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , RNA Bacteriano/biossíntese , RNA Bacteriano/isolamento & purificação , RNA Mensageiro/biossíntese , RNA Mensageiro/isolamento & purificação , Transcrição Gênica/efeitos dos fármacos
17.
PLoS Pathog ; 16(3): e1008344, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150575

RESUMO

A recent genome-wide screen identified ~300 essential or growth-supporting genes in the dental caries pathogen Streptococcus mutans. To be able to study these genes, we built a CRISPR interference tool around the Cas9 nuclease (Cas9Smu) encoded in the S. mutans UA159 genome. Using a xylose-inducible dead Cas9Smu with a constitutively active single-guide RNA (sgRNA), we observed titratable repression of GFP fluorescence that compared favorably to that of Streptococcus pyogenes dCas9 (Cas9Spy). We then investigated sgRNA specificity and proto-spacer adjacent motif (PAM) requirements. Interference by sgRNAs did not occur with double or triple base-pair mutations, or if single base-pair mutations were in the 3' end of the sgRNA. Bioinformatic analysis of >450 S. mutans genomes allied with in vivo assays revealed a similar PAM recognition sequence as Cas9Spy. Next, we created a comprehensive library of sgRNA plasmids that were directed at essential and growth-supporting genes. We discovered growth defects for 77% of the CRISPRi strains expressing sgRNAs. Phenotypes of CRISPRi strains, across several biological pathways, were assessed using fluorescence microscopy. A variety of cell structure anomalies were observed, including segregational instability of the chromosome, enlarged cells, and ovococci-to-rod shape transitions. CRISPRi was also employed to observe how silencing of cell wall glycopolysaccharide biosynthesis (rhamnose-glucose polysaccharide, RGP) affected both cell division and pathogenesis in a wax worm model. The CRISPRi tool and sgRNA library are valuable resources for characterizing essential genes in S. mutans, some of which could prove to be promising therapeutic targets.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/fisiologia , Streptococcus mutans , Estudo de Associação Genômica Ampla , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/biossíntese , RNA Guia de Cinetoplastídeos/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo
18.
Metab Eng ; 60: 56-65, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32222320

RESUMO

Isotopically nonstationary metabolic flux analysis (INST-MFA) provides a versatile platform to quantitatively assess in vivo metabolic activities of autotrophic systems. By applying INST-MFA to recombinant aldehyde-producing cyanobacteria, we identified metabolic alterations that correlated with increased strain performance in order to guide rational metabolic engineering. We identified four reactions adjacent to the pyruvate node that varied significantly with increasing aldehyde production: pyruvate kinase (PK) and acetolactate synthase (ALS) fluxes were directly correlated with product formation, while pyruvate dehydrogenase (PDH) and phosphoenolpyruvate carboxylase (PPC) fluxes were inversely correlated. Overexpression of enzymes for PK or ALS did not result in further improvements to the previous best-performing strain, while downregulation of PDH expression (through antisense RNA expression) or PPC flux (through expression of the reverse reaction, phosphoenolpyruvate carboxykinase) provided significant improvements. These results illustrate the potential of INST-MFA to enable a systematic approach for iterative identification and removal of pathway bottlenecks in autotrophic host cells.


Assuntos
Aldeídos/metabolismo , Synechococcus/metabolismo , Acetolactato Sintase/metabolismo , Aminoácidos/metabolismo , Engenharia Metabólica , Análise do Fluxo Metabólico , Fosfoenolpiruvato Carboxilase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Piruvato Quinase/metabolismo , Piruvatos/metabolismo , RNA Bacteriano/biossíntese , RNA Bacteriano/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-32039645

RESUMO

The modular structure of bacterial ribonuclease P (RNase P) ribozymes, which recognize tertiary structures of precursor tRNAs (pre-tRNAs) to cleave their 5' leader sequence, can be dissected physically into the two structured domain RNAs (S-domain and C-domain). Separately prepared S-domain RNA and C-domain RNA assemble to form bimolecular forms of RNase P ribozymes. We analyzed the effects of polyethylene glycols (PEGs) on pre-tRNA cleavage catalyzed by bimolecular RNase P ribozymes to examine the effects of molecular crowding on the reaction. PEG molecular crowders significantly enhanced the activities of bimolecular RNase P ribozymes, some of which were hardly active without PEGs.


Assuntos
Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Polietilenoglicóis/metabolismo , Ribonuclease P/metabolismo , Biocatálise , Estrutura Molecular , Polietilenoglicóis/química , RNA Bacteriano/biossíntese , RNA Bacteriano/química , Ribonuclease P/química
20.
Methods ; 172: 12-26, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325492

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins provide an inheritable and adaptive immune system against phages and foreign genetic elements in many bacteria and archaea. The three stages of CRISPR-Cas immunity comprise adaptation, CRISPR RNA (crRNA) biogenesis and interference. The maturation of the pre-crRNA into mature crRNAs, short guide RNAs that target invading nucleic acids, is crucial for the functionality of CRISPR-Cas defense systems. Mature crRNAs assemble with Cas proteins into the ribonucleoprotein (RNP) effector complex and guide the Cas nucleases to the cognate foreign DNA or RNA target. Experimental approaches to characterize these crRNAs, the specific steps toward their maturation and the involved factors, include RNA-seq analyses, enzyme assays, methods such as cryo-electron microscopy, the crystallization of proteins, or UV-induced protein-RNA crosslinking coupled to mass spectrometry analysis. Complex and multiple interactions exist between CRISPR-cas-encoded specific riboendonucleases such as Cas6, Cas5d and Csf5, endonucleases with dual functions in maturation and interference such as the enzymes of the Cas12 and Cas13 families, and nucleases belonging to the cell's degradosome such as RNase E, PNPase and RNase J, both in the maturation as well as in interference. The results of these studies have yielded a picture of unprecedented diversity of sequences, enzymes and biochemical mechanisms.


Assuntos
Sistemas CRISPR-Cas/genética , Endorribonucleases/metabolismo , RNA Arqueal/biossíntese , RNA Bacteriano/biossíntese , RNA Guia de Cinetoplastídeos/biossíntese , Imunidade Adaptativa/genética , Archaea/enzimologia , Archaea/genética , Archaea/imunologia , Proteínas Arqueais/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Processamento Pós-Transcricional do RNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...