Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.982
Filtrar
1.
Mitochondrion ; 76: 101876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599301

RESUMO

Ribosome biogenesis, involving processing/assembly of rRNAs and r-proteins is a vital process. In Saccharomyces cerevisiae mitochondria, ribosomal small subunit comprises 15S rRNA (15S). While the 15S 5'-end processing uses Ccm1p and Pet127p, the mechanisms of the 3'-end processing remain unclear. We reveal involvement of Rmd9p in safeguarding/processing 15S 3'-end. Rmd9p deficiency results in a cleavage at a position 183 nucleotides upstream of 15S 3'-end, and in the loss of the 3'-minor domain. Rmd9p binds to the sequences in the 3'-end region of 15S, and a genetic interaction between rmd9 and dss1 indicates that Rmd9p regulates/limits mtEXO activity during the 3'-end spacer processing.


Assuntos
RNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Mitocôndrias/genética , Processamento de Terminações 3' de RNA , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA Fúngico/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
J Mol Biol ; 436(8): 168513, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447889

RESUMO

Systemic fungal infections are a growing public health threat, and yet viable antifungal drug targets are limited as fungi share a similar proteome with humans. However, features of RNA metabolism and the noncoding transcriptomes in fungi are distinctive. For example, fungi harbor highly structured RNA elements that humans lack, such as self-splicing introns within key housekeeping genes in the mitochondria. However, the location and function of these mitochondrial riboregulatory elements has largely eluded characterization. Here we used an RNA-structure-based bioinformatics pipeline to identify the group I introns interrupting key mitochondrial genes in medically relevant fungi, revealing their fixation within a handful of genetic hotspots and their ubiquitous presence across divergent phylogenies of fungi, including all highest priority pathogens such as Candida albicans, Candida auris, Aspergillus fumigatus and Cryptococcus neoformans. We then biochemically characterized two representative introns from C. albicans and C. auris, demonstrating their exceptionally efficient splicing catalysis relative to previously-characterized group I introns. Indeed, the C. albicans mitochondrial intron displays extremely rapid catalytic turnover, even at ambient temperatures and physiological magnesium ion concentrations. Our results unmask a significant new set of players in the RNA metabolism of pathogenic fungi, suggesting a promising new type of antifungal drug target.


Assuntos
Antifúngicos , Candida albicans , Íntrons , Humanos , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Íntrons/genética , Splicing de RNA/genética , RNA Fúngico/metabolismo
3.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547866

RESUMO

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Assuntos
Fator de Iniciação 4F em Eucariotos , Fator de Iniciação Eucariótico 4G , Resposta ao Choque Térmico , Proteínas de Ligação a Poli(A) , Biossíntese de Proteínas , RNA Mensageiro , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Resposta ao Choque Térmico/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Ligação Proteica , RNA Fúngico/metabolismo , RNA Fúngico/genética
4.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
5.
PLoS Pathog ; 19(12): e1011885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117848

RESUMO

Small RNAs act as fungal pathogen effectors that silence host target genes to promote infection, a virulence mechanism termed cross-kingdom RNA interference (RNAi). The essential pathogen factors of cross-kingdom small RNA production are largely unknown. We here characterized the RNA-dependent RNA polymerase (RDR)1 in the fungal plant pathogen Botrytis cinerea that is required for pathogenicity and cross-kingdom RNAi. B. cinerea bcrdr1 knockout (ko) mutants exhibited reduced pathogenicity and loss of cross-kingdom small RNAs. We developed a "switch-on" GFP reporter to study cross-kingdom RNAi in real-time within the living plant tissue which highlighted that bcrdr1 ko mutants were compromised in cross-kingdom RNAi. Moreover, blocking seven pathogen cross-kingdom small RNAs by expressing a short-tandem target mimic RNA in transgenic Arabidopsis thaliana led to reduced infection levels of the fungal pathogen B. cinerea and the oomycete pathogen Hyaloperonospora arabidopsidis. These results demonstrate that cross-kingdom RNAi is significant to promote host infection and making pathogen small RNAs an effective target for crop protection.


Assuntos
Arabidopsis , RNA Polimerase Dependente de RNA , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Virulência/genética , Plantas/genética , Botrytis/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Fúngico/genética , RNA de Plantas
6.
Pestic Biochem Physiol ; 196: 105599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945247

RESUMO

Despite the increasing number of fungal microRNA-like small RNAs (milRNAs) being identified and reported, profiling of milRNAs in biocontrol fungi and their roles in the mycoparasitism of pathogenic fungi remains limited. Therefore, in this study, we constructed a GFP fluorescence strain to evaluate the critical period of mycoparasitism in the interaction system between T. breve T069 and B. cinerea. The results showed that the early stage of Trichoderma mycoparasitism occurred 12 h after hyphal contact and was characterized by hyphal parallelism, whereas the middle stage lasted 36 h was characterized by wrapping. The late stage of mycoparasitism occurred at 72 h was characterized by the degradation of B. cinerea mycelia. We subsequently identified the sRNAs of T. breve T069 and B. cinerea during the critical period of mycoparasitism using high-throughput sequencing. In ltR1, 45 potential milRNA targets were identified for 243 genes, and 73 milRNAs targeted 733 genes in ltR3. Additionally, to identify potential transboundary miRNAs in T. breve T069, we screened for miRNAs that were exclusively expressed and had precursor structures in the T. breve T069 genome but were absent in the B. cinerea genome. Next, we predicted the target genes of B. cinerea. Our findings showed that 14 potential transboundary milRNAs from T. breve T069 targeted 41 genes in B. cinerea. Notably, cme-MIR164a-p5_1ss17CT can target 15 genes, including Rim15 (BCIN_15g00280), Nop53 (BCIN_12g03770), Skn7 (BCIN_02g08650), and Vel3 (BCIN_03g06410), while ppe-MIR477b-p3_1ss11TC targeted polyketide synthase (BCIN_03g04360, PKS3). The target gene of PC-5p-27397_41 was a non-ribosomal peptide synthetase (BCIN_01g03730, Bcnrps6). PC-3p-0029 (Tri-milR29) targeted chitin synthetase 7. These genes play crucial roles in normal mycelial growth and pathogenicity of B. cinerea. In conclusion, this study highlights the significance of milRNAs in Trichoderma mycoparasitism of B. cinerea. This discovery provides a new strategy for the application of miRNAs in the prevention and treatment of fungal pathogens.


Assuntos
Hypocreales , MicroRNAs , Trichoderma , MicroRNAs/genética , Hypocreales/genética , Botrytis/genética , RNA Fúngico/genética , Trichoderma/genética , Regulação Fúngica da Expressão Gênica
7.
Anal Chim Acta ; 1273: 341528, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423662

RESUMO

Efficient DNA sample preparation from fungi with the rigid cell walls is still critical for successful polymerase chain reaction (PCR), one of the basic platforms in molecular diagnostics of fungi, especially in medical mycology. Common methods that involve different chaotropes to yield DNA samples have found a limited application for fungi. Here we describe a novel procedure for efficient production of permeable fungal cell envelopes with DNA inside as suitable templates for PCR. This procedure is facile, relies on boiling of fungal cells in aqueous solutions of selected chaotropic agents and additives and enables to remove RNA and proteins from PCR template samples. The use of chaotropic solutions containing 7 M urea, 1% sodium dodecyl sulfate (SDS), up to100 mM ammonia and/or 25 mM sodium citrate was the best option to yield highly purified DNA-containing cell envelopes from all fungal strains under study, including clinical Candida and Cryptococcusisolates. After treatment with the selected chaotropic mixtures, the fungal cell walls had undergone loosening and were no longer a barrier to release DNA in PCR as evident from electron microscopy examinations and successful target gene amplifications. Overall, the developed simple, fast, and low-cost approach to produce PCR-suitable templates in the form of DNA encased by permeable cell walls can find application in molecular diagnostics.


Assuntos
Parede Celular , Reação em Cadeia da Polimerase , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , Parede Celular/química
8.
Nat Commun ; 14(1): 4383, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474601

RESUMO

Small RNAs (sRNAs) of the fungal pathogen Botrytis cinerea can enter plant cells and hijack host Argonaute protein 1 (AGO1) to silence host immunity genes. However, the mechanism by which these fungal sRNAs are secreted and enter host cells remains unclear. Here, we demonstrate that B. cinerea utilizes extracellular vesicles (EVs) to secrete Bc-sRNAs, which are then internalized by plant cells through clathrin-mediated endocytosis (CME). The B. cinerea tetraspanin protein, Punchless 1 (BcPLS1), serves as an EV biomarker and plays an essential role in fungal pathogenicity. We observe numerous Arabidopsis clathrin-coated vesicles (CCVs) around B. cinerea infection sites and the colocalization of B. cinerea EV marker BcPLS1 and Arabidopsis CLATHRIN LIGHT CHAIN 1, one of the core components of CCV. Meanwhile, BcPLS1 and the B. cinerea-secreted sRNAs are detected in purified CCVs after infection. Arabidopsis knockout mutants and inducible dominant-negative mutants of key components of the CME pathway exhibit increased resistance to B. cinerea infection. Furthermore, Bc-sRNA loading into Arabidopsis AGO1 and host target gene suppression are attenuated in those CME mutants. Together, our results demonstrate that fungi secrete sRNAs via EVs, which then enter host plant cells mainly through CME.


Assuntos
Arabidopsis , Vesículas Extracelulares , Arabidopsis/microbiologia , RNA Fúngico/genética , Células Vegetais , Endocitose , Clatrina , Doenças das Plantas/microbiologia
9.
Mol Plant Pathol ; 24(6): 570-587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917011

RESUMO

The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.


Assuntos
Ascomicetos , Hordeum , RNA Fúngico/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Hordeum/microbiologia , RNA de Transferência , Interferência de RNA , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
10.
RNA Biol ; 20(1): 109-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988190

RESUMO

Small RNAs (sRNAs) are short non-coding regulatory RNA sequences that silence the complementary expressive transcripts through an endogenous RNA mediated interference mechanism (RNAi). These sRNAs typically move through plasmodesmata and phloem in plants to support disease resistance, and also through septal pores and vesicles in fungi to act as effector of pathogenicity. Notably, recent reports have shown the occurrence of a bidirectional trafficking of these sRNAs between the host plants and the attacking fungal phytopathogen which have significant implication in the nature of the infection. While the trans-species sRNAs from the pathogen can silence the host mRNAs and inhibit the host immunity genes, the sRNA modules from the host plants can silence the mRNA in the pathogen by impeding the expression of the pathogenicity-related genes. In the present review, we discuss the current state of sRNA trafficking between the plant and the pathogen with special emphasis on the mechanism of cross-kingdom communication which could contribute to the development of pathogen and pest control in future agriculture.


Assuntos
Fungos , Plantas , Pequeno RNA não Traduzido , Agricultura , Interferência de RNA , RNA Fúngico/genética , RNA Mensageiro , Pequeno RNA não Traduzido/genética , Plantas/genética , Plantas/microbiologia , Fungos/genética , Fungos/patogenicidade
11.
Elife ; 112022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484778

RESUMO

RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/milRNA characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1727 reported mi/milRNA loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.


Assuntos
MicroRNAs , RNA Fúngico , Animais , RNA Fúngico/genética , RNA Fúngico/química , Regulação Fúngica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Fungos/genética
12.
Microbiol Spectr ; 10(6): e0021922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36301126

RESUMO

miRNA-like RNAs (milRNAs) have been recognized as sequence-specific regulators of posttranscriptional regulation of gene expression in eukaryotes. However, the functions of hundreds of fungal milRNAs in the biosynthesis of metabolic components are obscure. Sanghuangporus produces diverse bioactive compounds and is widely used in Asian countries. Here, genes encoding two Dicers, four Argonautes, and four RdRPs were identified and characterized in Sanghuangporus vanini. Due to the lack of an efficient gene manipulation system, the efficacy of spray-induced gene silencing (SIGS) was determined in S. vanini, which showed efficient double-stranded RNA (dsRNA) uptake and gene silencing efficiency. SIGS-mediated gene knockdown showed that SVRDRP-3, SVRDRP-4, SVDICER-1, and SVDICER-2 were critical for mycelial biomass, flavonoid, triterpenoid, and polysaccharide production. Illumina deep sequencing was performed to characterize the milRNAs from S. vanini mycelium and fruiting body. A total of 31 milRNAs were identified, out of which, SvmilR10, SvmilR17, and SvmilR33 were Svrdrp-4- and Svdicer-1-dependent milRNAs. Importantly, SIGS-mediated overexpression of SvmilR10 and SvmilR33 resulted in significant changes in the yields of flavonoids, triterpenoids, and polysaccharides. Further analysis showed that these milRNA target genes encoding the retrotransposon-derived protein PEG1 and histone-lysine N-methyltransferase were potentially downregulated in the milRNA overexpressing strain. Our results revealed that S. vanini has high external dsRNA and small RNA uptake efficiency and that milRNAs may play crucial regulatory roles in the biosynthesis of bioactive compounds. IMPORTANCE Fungi can take up environmental RNA that can silence fungal genes with RNA interference, which prompts the development of SIGS. Efficient dsRNA and milRNA uptake in S. vanini, successful dsRNA-targeted gene block, and the increase in intracellular miRNA abundance showed that SIGS technology is an effective and powerful tool for the functional dissection of fungal genes and millRNAs. We found that the RdRP, Dicer, and Argonaute genes are critical for mycelial biomass and bioactive compound production. Our study also demonstrated that overexpressed SVRDRP-4- and SVDICER-1-dependent milRNAs (SvmilR10 and SvmilR33) led to significant changes in the yields of the three active compounds. This study not only provides the first report on SIGS-based gene and milRNA function exploration, but also provides a theoretical platform for exploration of the functions of milRNAs involved in biosynthesis of metabolic compounds in fungi.


Assuntos
Basidiomycota , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Basidiomycota/metabolismo , Interferência de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica
13.
Arch Virol ; 167(11): 2223-2227, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35962823

RESUMO

Here, we report the characterization of a novel (-)ssRNA mycovirus isolated from Auricularia heimuer CCMJ1222, using a combination of RNA-seq, reverse transcription polymerase chain reaction, 5' and 3' rapid amplification of cDNA ends, and Sanger sequencing. Based on database searches, sequence alignment, and phylogenetic analysis, we designated the virus as "Auricularia heimuer negative-stranded RNA virus 1" (AhNsRV1). This virus has a monopartite RNA genome related to mymonaviruses (order Mononegavirales). The AhNsRV1 genome consists of 11,441 nucleotides and contains six open reading frames (ORFs). The largest ORF encodes a putative RNA-dependent RNA polymerase; the other ORFs encode hypothetical proteins with no conserved domains or known function. AhNsRV1 is the first (-)ssRNA virus and the third virus known to infect A. heimuer.


Assuntos
Micovírus , Vírus de RNA , Auricularia , DNA Complementar , Genoma Viral , Nucleotídeos , Fases de Leitura Aberta , Filogenia , RNA Fúngico , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
14.
Methods Mol Biol ; 2533: 149-166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796987

RESUMO

Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.


Assuntos
RNA Ribossômico , Saccharomyces cerevisiae , Acetilação , Humanos , Metilação , Pseudouridina/química , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Nature ; 606(7915): 725-731, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676473

RESUMO

Synonymous mutations in protein-coding genes do not alter protein sequences and are thus generally presumed to be neutral or nearly neutral1-5. Here, to experimentally verify this presumption, we constructed 8,341 yeast mutants each carrying a synonymous, nonsynonymous or nonsense mutation in one of 21 endogenous genes with diverse functions and expression levels and measured their fitness relative to the wild type in a rich medium. Three-quarters of synonymous mutations resulted in a significant reduction in fitness, and the distribution of fitness effects was overall similar-albeit nonidentical-between synonymous and nonsynonymous mutations. Both synonymous and nonsynonymous mutations frequently disturbed the level of mRNA expression of the mutated gene, and the extent of the disturbance partially predicted the fitness effect. Investigations in additional environments revealed greater across-environment fitness variations for nonsynonymous mutants than for synonymous mutants despite their similar fitness distributions in each environment, suggesting that a smaller proportion of nonsynonymous mutants than synonymous mutants are always non-deleterious in a changing environment to permit fixation, potentially explaining the common observation of substantially lower nonsynonymous than synonymous substitution rates. The strong non-neutrality of most synonymous mutations, if it holds true for other genes and in other organisms, would require re-examination of numerous biological conclusions about mutation, selection, effective population size, divergence time and disease mechanisms that rely on the assumption that synoymous mutations are neutral.


Assuntos
Genes Fúngicos , Aptidão Genética , Saccharomyces cerevisiae , Mutação Silenciosa , Sequência de Aminoácidos , Códon sem Sentido/genética , Evolução Molecular , Genes Fúngicos/genética , Aptidão Genética/genética , Taxa de Mutação , RNA Fúngico/análise , RNA Fúngico/biossíntese , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Seleção Genética , Mutação Silenciosa/genética
16.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563314

RESUMO

Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.


Assuntos
Agaricus , MicroRNAs , Agaricus/genética , Biologia Computacional/métodos , MicroRNAs/genética , RNA Fúngico , RNA-Seq
17.
Science ; 375(6584): 1000-1005, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239377

RESUMO

Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.


Assuntos
Genoma Fúngico , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Transcriptoma , Regiões 3' não Traduzidas , Sequência de Bases , Rearranjo Gênico , Variação Genética , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA-Seq , Análise de Sequência de RNA
18.
J Biol Chem ; 298(3): 101657, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131263

RESUMO

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3ß-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3ß-OH group of ergosterol (Erg), yielding ergosteryl-3ß-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3ß-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3ß-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


Assuntos
Ascomicetos , Ergosterol , Glicina , Aminoácidos , Ascomicetos/genética , Ascomicetos/metabolismo , Ácido Aspártico , Glicina/biossíntese , Glicina/genética , Glicina/metabolismo , Humanos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo
19.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055083

RESUMO

Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant-fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5' RLM-RACE approach.


Assuntos
Ascomicetos/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , RNA Fúngico , Pequeno RNA não Traduzido/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Interações Hospedeiro-Patógeno , Conformação de Ácido Nucleico , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
20.
Elife ; 112022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044907

RESUMO

Rap1 is the main protein that binds double-stranded telomeric DNA in Saccharomyces cerevisiae. Examination of the telomere functions of Rap1 is complicated by the fact that it also acts as a transcriptional regulator of hundreds of genes and is encoded by an essential gene. In this study, we disrupt Rap1 telomere association by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant telomeric repeats. tlc1-tm cells grow similar to wild-type cells, although depletion of Rap1 at telomeres causes defects in telomere length regulation and telomere capping. Rif2 is a protein normally recruited to telomeres by Rap1, but we show that Rif2 can still associate with Rap1-depleted tlc1-tm telomeres, and that this association is required to inhibit telomere degradation by the MRX complex. Rif2 and the Ku complex work in parallel to prevent tlc1-tm telomere degradation; tlc1-tm cells lacking Rif2 and the Ku complex are inviable. The partially redundant mechanisms may explain the rapid evolution of telomere components in budding yeast species.


Assuntos
Complexos Multiproteicos/metabolismo , RNA Fúngico/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Complexo Shelterina/metabolismo , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...