Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
PLoS One ; 19(7): e0305012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980892

RESUMO

Pre-messenger RNA (pre-mRNA) splicing modulation is an attractive approach for investigating the mechanisms of genetic disorders caused by mis-splicing. Previous reports have indicated that a modified U7 small nuclear RNA (U7 snRNA) is a prospective tool for modulating splicing both in vitro and in vivo. To date, very few studies have investigated the role of antisense sequence length in modified U7 snRNA. In this study, we designed a series of antisense sequences with various lengths and evaluated their efficiency in inducing splicing modulation. To express modified U7 snRNAs, we constructed a series of plasmid DNA sequences which codes cytomegalovirus (CMV) enhancer, human U1 promoter, and modified mouse U7 snRNAs with antisense sequences of different lengths. We evaluated in vitro splicing modulation efficiency using a luciferase reporter system for simple and precise evaluation as well as reverse transcription-polymerase chain reaction to monitor splicing patterns. Our in vitro assay findings suggest that antisense sequences of modified mouse U7 snRNAs have an optimal length for efficient splicing modulation, which depends on the target exon. In addition, antisense sequences that were either too long or too short decreased splicing modulation efficiency. To confirm reproducibility, we performed an in vitro assay using two target genes, mouse Fas and mouse Dmd. Together, our data suggests that the antisense sequence length should be optimized for modified mouse U7 snRNAs to induce efficient splicing modulation.


Assuntos
Precursores de RNA , Splicing de RNA , RNA Nuclear Pequeno , RNA Nuclear Pequeno/genética , Animais , Camundongos , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sequência de Bases , Éxons/genética , RNA Antissenso/genética
3.
Nature ; 632(8026): 832-840, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991538

RESUMO

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 base pair region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals in whom it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologues. Using RNA sequencing, we show how 5' splice-site use is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 base pair region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide.


Assuntos
Encéfalo , Transtornos do Neurodesenvolvimento , RNA Nuclear Pequeno , Humanos , RNA Nuclear Pequeno/genética , Transtornos do Neurodesenvolvimento/genética , Feminino , Masculino , Encéfalo/metabolismo , Heterozigoto , Alelos , Síndrome , Spliceossomos/genética , Animais
4.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029934

RESUMO

HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.


Assuntos
Homólogo 5 da Proteína Cromobox , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Transcriptoma , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Animais , Camundongos , Transcriptoma/genética , Feminino , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Masculino , Adulto , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Pessoa de Meia-Idade , Splicing de RNA/genética , Regulação da Expressão Gênica , Monócitos/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica/métodos
5.
Plant Sci ; 347: 112199, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038708

RESUMO

U6 snRNA is one of the uridine-rich non-coding RNAs, abundant and stable in various cells, function as core particles in the intron-lariat spliceosome (ILS) complex. The Increased Level of Polyploidy1-1D (ILP1) and NTC-related protein 1 (NTR1), two conserved disassembly factors of the ILS complex, facilitates the disintegration of the ILS complex after completing intron splicing. The functional impairment of ILP1 and NTR1 lead to increased U6 levels, while other snRNAs comprising the ILS complex remained unaffected. We revealed that ILP1 and NTR1 had no impact on the transcription, 3' end phosphate structure or oligo(U) tail of U6 snRNA. Moreover, we uncovered that the mutation of ILP1 and NTR1 resulted in the accumulation of ILS complexes, impeding the dissociation of U6 from splicing factors, leading to an extended half-life of U6 and ultimately causing an elevation in U6 snRNA levels. Our findings broaden the understanding of the functions of ILS disassembly factors ILP1 and NTR1, and providing insights into the dynamic disassembly between U6 and ILS.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Nuclear Pequeno , Spliceossomos , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Spliceossomos/metabolismo , Splicing de RNA , RNA de Plantas/metabolismo , RNA de Plantas/genética , Estabilidade de RNA/genética
6.
RNA ; 30(9): 1199-1212, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38876504

RESUMO

The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.


Assuntos
Fatores de Processamento de RNA , Splicing de RNA , RNA Nuclear Pequeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Spliceossomos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/química , Íntrons/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/química , Microscopia Crioeletrônica , Mutação , Ligação Proteica , Domínio Catalítico , Alelos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Proteínas de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U5 , RNA Helicases
7.
Nat Commun ; 15(1): 5237, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898005

RESUMO

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Spliceossomos , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Spliceossomos/metabolismo , Cisplatino/farmacologia , Linhagem Celular Tumoral , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , Reparo do DNA
8.
PLoS Genet ; 20(5): e1011284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743783

RESUMO

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.


Assuntos
Proteínas Argonautas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , RNA Nuclear Pequeno , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animais , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Processamento Alternativo/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA , Spliceossomos/metabolismo , Spliceossomos/genética
9.
RNA ; 30(8): 1058-1069, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38719745

RESUMO

Identification of splice sites is a critical step in pre-messenger RNA (pre-mRNA) splicing because the definition of the exon/intron boundaries controls what nucleotides are incorporated into mature mRNAs. The intron boundary with the upstream exon is initially identified through interactions with the U1 small nuclear ribonucleoprotein (snRNP). This involves both base-pairing between the U1 snRNA and the pre-mRNA as well as snRNP proteins interacting with the 5' splice site (5'ss)/snRNA duplex. In yeast, this duplex is buttressed by two conserved protein factors, Yhc1 and Luc7. Luc7 has three human paralogs (LUC7L, LUC7L2, and LUC7L3), which play roles in alternative splicing. What domains of these paralogs promote splicing at particular sites is not yet clear. Here, we humanized the zinc finger (ZnF) domains of the yeast Luc7 protein in order to understand their roles in splice site selection using reporter assays, transcriptome analysis, and genetic interactions. Although we were unable to determine a function for the first ZnF domain, humanization of the second ZnF domain to mirror that found in LUC7L or LUC7L2 resulted in altered usage of nonconsensus 5'ss. In contrast, the corresponding ZnF domain of LUC7L3 could not support yeast viability. Further, humanization of Luc7 can suppress mutation of the ATPase Prp28, which is involved in U1 release and exchange for U6 at the 5'ss. Our work reveals a role for the second ZnF of Luc7 in splice site selection and suggests that different ZnF domains may have different ATPase requirements for release by Prp28.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Dedos de Zinco , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Sítios de Splice de RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Splicing de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Alternativo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Íntrons/genética
10.
Nat Med ; 30(8): 2165-2169, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821540

RESUMO

Most people with intellectual disability (ID) do not receive a molecular diagnosis following genetic testing. To identify new etiologies of ID, we performed a genetic association analysis comparing the burden of rare variants in 41,132 noncoding genes between 5,529 unrelated cases and 46,401 unrelated controls. RNU4-2, which encodes U4 small nuclear RNA, a critical component of the spliceosome, was the most strongly associated gene. We implicated de novo variants among 47 cases in two regions of RNU4-2 in the etiology of a syndrome characterized by ID, microcephaly, short stature, hypotonia, seizures and motor delay. We replicated this finding in three collections, bringing the number of unrelated cases to 73. Analysis of national genomic diagnostic data showed RNU4-2 to be a more common etiological gene for neurodevelopmental abnormality than any previously reported autosomal gene. Our findings add to the growing evidence of spliceosome dysfunction in the etiologies of neurological disorders.


Assuntos
Deficiência Intelectual , Mutação , Transtornos do Neurodesenvolvimento , RNA Nuclear Pequeno , Humanos , RNA Nuclear Pequeno/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Mutação/genética , Feminino , Masculino , Spliceossomos/genética , Microcefalia/genética , Microcefalia/epidemiologia , Estudos de Associação Genética , Criança
11.
Adv Biol (Weinh) ; 8(7): e2400006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797893

RESUMO

Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.


Assuntos
Precursores de RNA , RNA Nuclear Pequeno , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Precursores de RNA/metabolismo , Precursores de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Animais , Splicing de RNA , Processamento Pós-Transcricional do RNA
12.
PLoS Genet ; 20(5): e1011301, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814983

RESUMO

Whether single-cell RNA-sequencing (scRNA-seq) captures the same biological information as single-nucleus RNA-sequencing (snRNA-seq) remains uncertain and likely to be context-dependent. Herein, a head-to-head comparison was performed in matched normal-adenocarcinoma human lung samples to assess biological insights derived from scRNA-seq versus snRNA-seq and better understand the cellular transition that occurs from normal to tumoral tissue. Here, the transcriptome of 160,621 cells/nuclei was obtained. In non-tumor lung, cell type proportions varied widely between scRNA-seq and snRNA-seq with a predominance of immune cells in the former (81.5%) and epithelial cells (69.9%) in the later. Similar results were observed in adenocarcinomas, in addition to an overall increase in cell type heterogeneity and a greater prevalence of copy number variants in cells of epithelial origin, which suggests malignant assignment. The cell type transition that occurs from normal lung tissue to adenocarcinoma was not always concordant whether cells or nuclei were examined. As expected, large differential expression of the whole-cell and nuclear transcriptome was observed, but cell-type specific changes of paired normal and tumor lung samples revealed a set of common genes in the cells and nuclei involved in cancer-related pathways. In addition, we showed that the ligand-receptor interactome landscape of lung adenocarcinoma was largely different whether cells or nuclei were evaluated. Immune cell depletion in fresh specimens partly mitigated the difference in cell type composition observed between cells and nuclei. However, the extra manipulations affected cell viability and amplified the transcriptional signatures associated with stress responses. In conclusion, research applications focussing on mapping the immune landscape of lung adenocarcinoma benefit from scRNA-seq in fresh samples, whereas snRNA-seq of frozen samples provide a low-cost alternative to profile more epithelial and cancer cells, and yield cell type proportions that more closely match tissue content.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/imunologia , Análise de Sequência de RNA/métodos , Núcleo Celular/genética , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica , Pulmão/metabolismo , Pulmão/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , RNA Nuclear Pequeno/genética , RNA-Seq/métodos , Perfilação da Expressão Gênica/métodos , Variações do Número de Cópias de DNA/genética
13.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
Cell Res ; 34(6): 428-439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658629

RESUMO

Spliceosome is often assembled across an exon and undergoes rearrangement to span a neighboring intron. Most states of the intron-defined spliceosome have been structurally characterized. However, the structure of a fully assembled exon-defined spliceosome remains at large. During spliceosome assembly, the pre-catalytic state (B complex) is converted from its precursor (pre-B complex). Here we report atomic structures of the exon-defined human spliceosome in four sequential states: mature pre-B, late pre-B, early B, and mature B. In the previously unknown late pre-B state, U1 snRNP is already released but the remaining proteins are still in the pre-B state; unexpectedly, the RNAs are in the B state, with U6 snRNA forming a duplex with 5'-splice site and U5 snRNA recognizing the 3'-end of the exon. In the early and mature B complexes, the B-specific factors are stepwise recruited and specifically recognize the exon 3'-region. Our study reveals key insights into the assembly of the exon-defined spliceosomes and identifies mechanistic steps of the pre-B-to-B transition.


Assuntos
Éxons , RNA Nuclear Pequeno , Spliceossomos , Humanos , Spliceossomos/metabolismo , Éxons/genética , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Splicing de RNA , Íntrons/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/genética , Sítios de Splice de RNA/genética , Modelos Moleculares
15.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499487

RESUMO

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Assuntos
RNA Helicases DEAD-box , Fatores de Processamento de RNA , RNA Nuclear Pequeno , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Humanos , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Splicing de RNA , Íntrons/genética , Células HeLa , Ligação Proteica , Corpos Enovelados/metabolismo , Células HEK293
16.
Chem Commun (Camb) ; 60(30): 4088-4091, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38511312

RESUMO

We combined the CRISPR-Cas13a system with CMC chemical labeling, developing an approach that enables precise identification of pseudouridine (Ψ) sites at specific loci within ribosomal RNA (rRNA), messenger RNA (mRNA) and small nuclear RNAs (snRNA). This method, with good efficiency and simplicity, detects Ψ sites through fluorescence measurement, providing a straightforward and fast validation for targeted Ψ sites of interest.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pseudouridina , Pseudouridina/genética , RNA Nuclear Pequeno/genética , RNA Ribossômico , RNA Mensageiro/genética
17.
Nucleic Acids Res ; 52(10): 5959-5974, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426935

RESUMO

Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.


Assuntos
Éxons , Sítios de Splice de RNA , RNA Nuclear Pequeno , Fator de Transcrição STAT3 , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Sítios de Ligação/genética , Splicing de RNA , Ligação Proteica , Sequência de Bases , Células HeLa
18.
Int J Parasitol ; 54(6): 257-266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452964

RESUMO

Trichomonas vaginalis is a medically important protozoan parasite, and a deep-branching, evolutionarily divergent unicellular eukaryote that has conserved several key features of eukaryotic gene expression. Trichomonas vaginalis possesses a metazoan/plant-like capping apparatus, mRNAs with a cap 1 structure and spliceosomes containing the five small nuclear RNAs (snRNAs). However, in contrast to metazoan and plant snRNAs, the structurally conserved T. vaginalis snRNAs were initially identified as lacking the canonical guanosine cap nucleotide. To explain this unusual condition, we sought to investigate transcriptional and processing features of the spliceosomal snRNAs in this protist. Here, we show that T. vaginalis spliceosomal snRNA genes mostly lack typical eukaryotic promoters. In contrast to other eukaryotes, the putative TATA box in the T. vaginalis U6 snRNA gene was found to be dispensable for transcription or RNA polymerase selectivity. Moreover, U6 transcription in T. vaginalis was virtually insensitive to tagetitoxin compared with other cellular transcripts produced by the same RNA polymerase III. Most important and unexpected, snRNA transcription in T. vaginalis appears to bypass capping as we show that these transcripts retain their original 5'-triphosphate groups. In conclusion, transcription and processing of spliceosomal snRNAs in T. vaginalis deviate considerably from the conventional rules of other eukaryotes.


Assuntos
RNA Nuclear Pequeno , Spliceossomos , Transcrição Gênica , Trichomonas vaginalis , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Processamento Pós-Transcricional do RNA , RNA de Protozoário/metabolismo , RNA de Protozoário/genética , Animais
19.
RNA ; 30(6): 695-709, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38443114

RESUMO

In spliceosome assembly, the 5' splice site is initially recognized by U1 snRNA. U1 leaves the spliceosome during the assembly process, therefore other factors contribute to the maintenance of 5' splice site identity as it is loaded into the catalytic site. Recent structural data suggest that human tri-snRNP 27K (SNRP27) M141 and SNU66 H734 interact to stabilize the U4/U6 quasi-pseudo knot at the base of the U6 snRNA ACAGAGA box in pre-B complex. Previously, we found that mutations in Caenorhabditis elegans at SNRP-27 M141 promote changes in alternative 5'ss usage. We tested whether the potential interaction between SNRP-27 M141 and SNU-66 H765 (the C. elegans equivalent position to human SNU66 H734) contributes to maintaining 5' splice site identity during spliceosome assembly. We find that SNU-66 H765 mutants promote alternative 5' splice site usage. Many of the alternative 5' splicing events affected by SNU-66(H765G) overlap with those affected SNRP-27(M141T). Double mutants of snrp-27(M141T) and snu-66(H765G) are homozygous lethal. We hypothesize that mutations at either SNRP-27 M141 or SNU-66 H765 allow the spliceosome to load alternative 5' splice sites into the active site. Tests with mutant U1 snRNA and swapped 5' splice sites indicate that the ability of SNRP-27 M141 and SNU-66 H765 mutants to affect a particular 5' splice alternative splicing event is dependent on both the presence of a weaker consensus 5'ss nearby and potentially nearby splicing factor binding sites. Our findings confirm a new role for the C terminus of SNU-66 in maintenance of 5' splice site identity during spliceosome assembly.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Sítios de Splice de RNA , RNA Nuclear Pequeno , Spliceossomos , Animais , Processamento Alternativo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutação , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética
20.
Exp Cell Res ; 436(1): 113961, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341080

RESUMO

Non-coding RNAs, particularly small Cajal-body associated RNAs (scaRNAs), play a significant role in spliceosomal RNA modifications. While their involvement in ischemic myocardium regeneration is known, their role in cardiac development is unexplored. We investigated scaRNA20's role in iPSC differentiation into cardiomyocytes (iCMCs) via overexpression and knockdown assays. We measured scaRNA20-OE-iCMCs and scaRNA20-KD-iCMCs contractility using Particle Image Velocimetry (PIV), comparing them to control iCMCs. We explored scaRNA20's impact on alternative splicing via pseudouridylation (Ψ) of snRNA U12, analyzing its functional consequences in cardiac differentiation. scaRNA20-OE-iPSC differentiation increased beating colonies, upregulated cardiac-specific genes, activated TP53 and STAT3, and preserved contractility under hypoxia. Conversely, scaRNA20-KD-iCMCs exhibited poor differentiation and contractility. STAT3 inhibition in scaRNA20-OE-iPSCs hindered cardiac differentiation. RNA immunoprecipitation revealed increased Ψ at the 28th uridine of U12 RNA in scaRNA20-OE iCMCs. U12-KD iCMCs had reduced cardiac differentiation, which improved upon U12 RNA introduction. In summary, scaRNA20-OE in iPSCs enhances cardiomyogenesis, preserves iCMC function under hypoxia, and may have implications for ischemic myocardium regeneration.


Assuntos
RNA Nuclear Pequeno , RNA , Humanos , RNA Nuclear Pequeno/genética , Processamento Alternativo , Hipóxia , Miócitos Cardíacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA