Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 128: 198-211, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742811

RESUMO

Heart failure is associated with hypertrophying of cardiomyocytes and changes in transcriptional activity. Studies from rapidly dividing cells in culture have suggested that transcription may be compartmentalized into factories within the nucleus, but this phenomenon has not been tested in vivo and the role of nuclear architecture in cardiac gene regulation is unknown. While alterations to transcription have been linked to disease, little is known about the regulation of the spatial organization of transcription and its properties in the pathological setting. In the present study, we investigate the structural features of endogenous transcription factories in the heart and determine the principles connecting chromatin structure to transcriptional regulation in vivo. Super-resolution imaging of endogenous RNA polymerase II clusters in neonatal and adult cardiomyocytes revealed distinct properties of transcription factories in response to pathological stress: neonatal nuclei demonstrated changes in number of clusters, with parallel increases in nuclear area, while the adult nuclei underwent changes in size and intensity of RNA polymerase II foci. Fluorescence in situ hybridization-based labeling of genes revealed locus-specific relationships between expression change and anatomical localization-with respect to nuclear periphery and heterochromatin regions, both sites associated with gene silencing-in the nuclei of cardiomyocytes in hearts (but not liver hepatocytes) of mice subjected to pathologic stimuli that induce heart failure. These findings demonstrate a role for chromatin organization and rearrangement of nuclear architecture for cell type-specific transcription in vivo during disease. RNA polymerase II ChIP and chromatin conformation capture studies in the same model system demonstrate formation and reorganization of distinct nuclear compartments regulating gene expression. These findings reveal locus-specific compartmentalization of stress-activated, housekeeping and silenced genes in the anatomical context of the endogenous nucleus, revealing basic principles of global chromatin structure and nuclear architecture in the regulation of gene expression in healthy and diseased conditions.


Assuntos
Insuficiência Cardíaca/genética , Coração/diagnóstico por imagem , RNA Polimerase II/genética , Transcrição Gênica/genética , Animais , Animais Recém-Nascidos , Cromatina/genética , Cromatina/isolamento & purificação , Regulação da Expressão Gênica , Coração/fisiopatologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Hibridização in Situ Fluorescente , Camundongos , Imagem Molecular/métodos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Polimerase II/isolamento & purificação , Ativação Transcricional/genética
2.
Nucleic Acids Res ; 46(4): 1695-1709, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186511

RESUMO

Trypanosomes are protistan parasites that diverged early in evolution from most eukaryotes. Their streamlined genomes are packed with arrays of tandemly linked genes that are transcribed polycistronically by RNA polymerase (pol) II. Individual mRNAs are processed from pre-mRNA by spliced leader (SL) trans splicing and polyadenylation. While there is no strong evidence that general transcription factors are needed for transcription initiation at these gene arrays, a RNA pol II transcription pre-initiation complex (PIC) is formed on promoters of SLRNA genes, which encode the small nuclear SL RNA, the SL donor in trans splicing. The factors that form the PIC are extremely divergent orthologues of the small nuclear RNA-activating complex, TBP, TFIIA, TFIIB, TFIIH, TFIIE and Mediator. Here, we functionally characterized a heterodimeric complex of unannotated, nuclear proteins that interacts with RNA pol II and is essential for PIC formation, SL RNA synthesis in vivo, SLRNA transcription in vitro, and parasite viability. These functional attributes suggest that the factor represents TFIIF although the amino acid sequences are too divergent to firmly make this conclusion. This work strongly indicates that early-diverged trypanosomes have orthologues of each and every general transcription factor, requiring them for the synthesis of SL RNA.


Assuntos
Proteínas de Protozoários/metabolismo , RNA Polimerase II/metabolismo , RNA Líder para Processamento/biossíntese , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/fisiologia , RNA Polimerase II/isolamento & purificação , RNA Líder para Processamento/genética , Fatores de Transcrição TFII/isolamento & purificação , Trypanosoma brucei brucei/enzimologia
3.
Methods ; 120: 115-124, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28434999

RESUMO

Single-molecule fluorescence and in particular single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful tool to provide real-time information on the dynamic architecture of large macromolecular structures such as eukaryotic transcription initiation complexes. In contrast to other structural biology methods, not only structural details, but dynamics transitions are revealed thus closing in on the underlying molecular mechanisms. Here, we describe a comprehensive quantitative biophysical toolbox which can be used for rigorous analysis of dynamic protein-nucleic acid complexes and is applied to the study of eukaryotic transcription initiation. We present detailed protocols for the purification of all essential protein components of the minimal eukaryotic transcription initiation complex. Moreover, we demonstrate how elaborate strategies for site-specific protein labeling can be used to produce complexes with dye molecules attached to arbitrary desired positions. These complexes are then used for smFRET measurements. Moreover, we describe the Nano-Positioning System (NPS) which allows us to quantitatively use the results from a network of smFRET measurements to obtain structural information. With this we provide a toolbox to answer open questions which could not be addressed using methods like X-ray crystallography or cryo-electron microscopy.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Complexos Multiproteicos/química , RNA Polimerase II/química , Imagem Individual de Molécula/métodos , Iniciação da Transcrição Genética , Algoritmos , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência/instrumentação , Cinética , Microscopia de Fluorescência/instrumentação , Complexos Multiproteicos/metabolismo , Peptídeos/química , Regiões Promotoras Genéticas , Estrutura Quaternária de Proteína , RNA Polimerase II/genética , RNA Polimerase II/isolamento & purificação , RNA Polimerase II/metabolismo , Imagem Individual de Molécula/instrumentação , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodos
4.
Cell ; 165(2): 357-71, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058666

RESUMO

We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , DNA/química , DNA Topoisomerases Tipo I/genética , Técnicas de Silenciamento de Genes , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/química , RNA Polimerase II/isolamento & purificação , Elongação da Transcrição Genética , Fatores de Transcrição/isolamento & purificação , Sítio de Iniciação de Transcrição
5.
Bioengineered ; 6(1): 62-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25551420

RESUMO

We report the molecular cloning, expression, and single-step homogeneous purification of RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae. RPB5 is a 210 amino acid nuclear protein that functions as the fifth largest subunit of polymerase II and plays a central role in transcription. The gene that codes for RPB5 was generated by amplification by polymerase chain reaction. It was then inserted in the expression vector pET28a(+) under the transcriptional control of the bacteriophage T7 promoter and lac operator. BL21(DE3) Escherichia coli strain transformed with the rpb5 expression vector pET28a(+)-rpb5 accumulates large amounts of a soluble protein of about 30 kDa (25 kDa plus 5 kDa double His6-Tag at N and C-terminal). The protein was purified to homogeneity using immobilized metal affinity chromatography. RPB5 recombinant protein was further confirmed by immunoblotting with anti-His antibody. In this study, the expression and purification procedures have provided a simple and efficient method to obtain pure RPB5 in large quantities. This will provide an opportunity to study the role of S. cerevisiae RPB5 in gene expression and transcription regulation. Furthermore, it can provide additional knowledge of the interaction partners of RPB5 during various steps of transcription and gene expression.


Assuntos
Clonagem Molecular , RNA Polimerases Dirigidas por DNA/isolamento & purificação , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cromatografia de Afinidade , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/isolamento & purificação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade
6.
Methods Mol Biol ; 977: 289-98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23436371

RESUMO

Affinity purification and mass spectrometry analysis have been used to identify and characterize protein complexes. Wdr82-associated chromatin modifying complexes were purified by single-step FLAG affinity purification from human cells induced to express FLAG-tagged Wdr82. Purified proteins were analyzed by SDS-PAGE and specific protein bands were identified by mass spectrometry. Subsequently, purified proteins were fractionated on sucrose gradient equilibrium centrifugation to determine overall composition of each identified complex. We describe here simple and efficient approaches for the identification of chromatin modifying complexes and subsequent characterization of complex composition.


Assuntos
Complexos Multiproteicos/química , Subunidades Proteicas/química , Centrifugação com Gradiente de Concentração/métodos , Montagem e Desmontagem da Cromatina , Cromatografia de Afinidade , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Anotação de Sequência Molecular/métodos , Complexos Multiproteicos/isolamento & purificação , Proteínas Metiltransferases/química , Proteínas Metiltransferases/isolamento & purificação , Subunidades Proteicas/isolamento & purificação , RNA Polimerase II/química , RNA Polimerase II/isolamento & purificação , Receptores de Neuropeptídeo Y/química , Receptores de Neuropeptídeo Y/isolamento & purificação , Proteínas Recombinantes de Fusão
7.
Proc Natl Acad Sci U S A ; 109(44): 18024-9, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071310

RESUMO

The primary structure and phosphorylation pattern of the tandem Y(1)S(2)P(3)T(4)S(5)P(6)S(7) repeats of the RNA polymerase II carboxyl-terminal domain (CTD) convey information about the transcription apparatus--a CTD code--to a large ensemble of CTD-binding receptor proteins. Four of the seven coding "letters" of the fission yeast CTD (Tyr1, Pro3, Ser5, Pro6) are essential in vivo, but the grammatical rules of the code are obscure. Here we show that the minimal fission yeast CTD coding unit is a decapeptide Y(1)S(2)P(3)T(4)S(5)P(6)S(7)Y(1)S(2)P(3) and the spacing between coding units is flexible; the coding unit must contain two Tyr1 residues and the spacing between consecutive tyrosines is important; Ser5-PO(4)-Pro6 comprises an essential two-letter code "word" that is read by the mRNA capping apparatus; and a threshold number of Ser5-PO(4)-Pro6 words are needed to comprise a readable "sentence" of CTD information. Bypassing the essentiality of the Ser5 and Pro6 letters by fusion of capping enzymes to the CTD helped reveal how CTD phosphorylation circuits are wired in vivo. We found that the Ser2-PO(4) mark is independent of Ser5, Pro6, Ser7, and Thr4, whereas the Ser5-PO(4) mark is independent of Ser2, Ser7, and Thr4. These results provide unique insights to the reading and writing of the CTD code.


Assuntos
RNA Polimerase II/metabolismo , Schizosaccharomyces/enzimologia , Mutação , Fosforilação , RNA Polimerase II/isolamento & purificação , Schizosaccharomyces/crescimento & desenvolvimento
8.
J Mol Biol ; 417(5): 387-94, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22343046

RESUMO

The human Mediator complex controls RNA polymerase II (pol II) function in ways that remain incompletely understood. Activator-Mediator binding alters Mediator structure, and these activator-induced structural shifts appear to play key roles in regulating transcription. A recent cryo-electron microscopy (EM) analysis revealed that pol II adopted a stable orientation within a Mediator-pol II-TFIIF assembly in which Mediator was bound to the activation domain of viral protein 16 (VP16). Whereas TFIIF was shown to be important for orienting pol II within this assembly, the potential role of the activator was not assessed. To determine how activator binding might affect pol II orientation, we isolated human Mediator-pol II-TFIIF complexes in which Mediator was not bound to an activator. Cryo-EM analysis of this assembly, coupled with pol II crystal structure docking, revealed that pol II binds Mediator at the same general location; however, in contrast to VP16-bound Mediator, pol II does not appear to stably orient in the absence of an activator. Variability in pol II orientation might be important mechanistically, perhaps to enable sense and antisense transcription at human promoters. Because Mediator interacts extensively with pol II, these results suggest that Mediator structural shifts induced by activator binding help stably orient pol II prior to transcription initiation.


Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Complexo Mediador/isolamento & purificação , Complexo Mediador/ultraestrutura , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , RNA Polimerase II/isolamento & purificação , RNA Polimerase II/ultraestrutura , Fatores de Transcrição TFII/isolamento & purificação , Fatores de Transcrição TFII/ultraestrutura
9.
Mol Cell Proteomics ; 11(6): M111.011767, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22199231

RESUMO

RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology.


Assuntos
Mitose , RNA Polimerase II/metabolismo , Cromatografia em Gel , Doença , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imunoprecipitação , Interfase , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteoma/genética , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica , Interferência de RNA , RNA Polimerase II/isolamento & purificação , Ribonucleoproteínas/genética , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/isolamento & purificação , Proteínas Ribossômicas/metabolismo , Transcrição Gênica
10.
Protein Expr Purif ; 69(1): 83-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19567268

RESUMO

In order to analyze the structure-function of multi-subunit RNA polymerases (RNAPs), it is necessary to make site-directed mutations in key residues. Because Saccharomyces cerevisiae RNAP II is isolated as a 12 subunit enzyme that has not been amenable to in vitro reconstitution, making site-directed mutations in a particular subunit presents technical issues. In this work, we demonstrate a method to generate and purify site-directed mutants in the second largest (Rpb2) RNAP II subunit from yeast, using a tandem affinity purification tag. Mutants are analyzed for growth defects in vivo and for defects in transcriptional elongation in vitro. We show that Rpb2 R512A/C located just C-terminal to fork loop 2 (Rpb2 500-511) has transcriptional defects that are distinct from surrounding fork loop 2 region mutants. Rpb2 E529A/D replacements are faster and E529Q is slower than wild type RNAP II in elongation. E529 appears to form an ion pair with K987, an essential active site residue. Mutations are also analyzed within the active site region indicating key residues for catalysis and the importance of a Rpb2 R983-E1028 ion pair. Rpb2 R983Q and E1028Q are defective in escape from a transcriptional stall.


Assuntos
Bioensaio/métodos , Mutagênese Sítio-Dirigida/métodos , RNA Polimerase II/isolamento & purificação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Análise Mutacional de DNA , Proteínas Mutantes/isolamento & purificação , RNA Polimerase II/genética
12.
J Virol ; 82(3): 1118-27, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18032511

RESUMO

Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.


Assuntos
Vírus Delta da Hepatite/metabolismo , RNA Polimerase II/metabolismo , RNA Viral/metabolismo , Amanitinas/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Antígenos da Hepatite delta/isolamento & purificação , Antígenos da Hepatite delta/metabolismo , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Ligação Proteica , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/isolamento & purificação , RNA Viral/isolamento & purificação , Transcrição Gênica/efeitos dos fármacos , Ultracentrifugação
13.
Proc Natl Acad Sci U S A ; 104(50): 19948-53, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18077427

RESUMO

To characterize proteins associated with active transcription complexes, we purified RNA polymerase II (pol II) from Saccharomyces cerevisiae after fixing live cells with formaldehyde. The approach mimics ChIP and requires solubilizing cross-linked complexes with sonication. Pol II was affinity-purified, and associated proteins were identified by MS. Several classes of proteins depended on cross-linking, including Mediator, general transcription factors, elongation factors, ribonucleoprotein particle (RNP) proteins, and histones. A tagged RNP protein reciprocally purified pol II under identical cross-linking conditions, and the association between RNP proteins and pol II was largely RNase-sensitive. The data indicate that the cross-linked Pol II purification contains elongating pol II with associated nascent RNP. Consistent with this view, some elongation factors no longer associate with pol II after inactivation of transcription in the temperature-sensitive pol II mutant, rpb1-1. Taken together, our data suggest that the cross-linked pol II purification contains a mixed population of pol II, including initiating pol II and elongating pol II.


Assuntos
Proteínas Fúngicas/química , Subunidades Proteicas/química , RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/química , Reagentes de Ligações Cruzadas , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , RNA Polimerase II/genética , RNA Polimerase II/isolamento & purificação , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/isolamento & purificação , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Espectrometria de Massas em Tandem , Ativação Transcricional/genética
14.
Curr Opin Struct Biol ; 17(5): 572-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17964135

RESUMO

High-resolution structures of macromolecular assemblies are pivotal for our understanding of their biological functions in fundamental cellular processes. In the field of X-ray crystallography, recent methodological and instrumental advances have led to the structure determinations of macromolecular assemblies of increased size and complexity, such as those of ribosomal complexes, RNA polymerases, and large multifunctional enzymes. These advances include the use of robotic screening techniques that maximize the chances of obtaining well-diffracting crystals of large complexes through the fine sampling of crystallization space. Sophisticated crystal optimization and cryoprotection techniques and the use of highly brilliant X-ray beams from third-generation synchrotron light sources now allow data collection from weakly diffracting crystals with large asymmetric units. Combined approaches are used to derive phase information, including phases calculated from electron microscopy (EM) models, heavy atom clusters, and density modification protocols. New crystallographic software tools prove valuable for structure determination and model refinement of large macromolecular complexes.


Assuntos
Cristalização/métodos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/isolamento & purificação , Cristalografia por Raios X , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Muramidase/química , Muramidase/isolamento & purificação , RNA Polimerase II/química , RNA Polimerase II/isolamento & purificação , Eletricidade Estática
15.
Mol Cell Biochem ; 303(1-2): 183-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17487459

RESUMO

Phosphorylation status of RNA polymerase (RNAP) II's largest subunit C-terminal domain (CTD) plays an important role during transcription cycles. The reversible phosphorylation mainly occurs at serine 2 and serine 5 of CTD heptapeptide repeats and regulates RNAP II's activity during transcription initiation, elongation and RNA processing. Here we expressed and characterized HSPC129, a putative human protein bearing a CTD phosphatase domain (CPD). PCR analysis showed that it was ubiquitously expressed. HSPC129DeltaTM, the truncate HSPC129 with first 156 N terminal amino acids deleted, exhibited Mg(2+) dependent phosphatase activity at pH 5.0. Its specific CTD phosphatase activity was verified in vitro. Our research suggests that HSPC129 may regulate the dynamic phosphorylation of RNAP II CTD.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Regulação da Expressão Gênica , Humanos , Magnésio/metabolismo , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/isolamento & purificação , Fosforilação , Estrutura Terciária de Proteína , RNA Polimerase II/genética , RNA Polimerase II/isolamento & purificação , Homologia de Sequência de Aminoácidos
16.
J Biol Chem ; 282(15): 11047-57, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17311916

RESUMO

RNA polymerases from Archaea and Eukaryotes consist of a core enzyme associated with a dimeric E'F (Rpb7/Rpb4) subcomplex but the functional contribution of the two subunit subcomplexes to the transcription process is poorly understood. Here we report the reconstitution of the 11-subunit RNA polymerase and of the core enzyme from the hyperthermophilic Archaeon Pyrococcus furiosus. The core enzyme showed significant activity between 70 and 80 degrees C but was almost inactive at 60 degrees C. E' stimulated the activity of the core enzyme at 60 degrees C, dramatically suggesting an important role of this subunit at low growth temperatures. Subunit F did not contribute significantly to catalytic activity. Permanganate footprinting at low temperatures dissected the contributions of the core enzyme, subunit E', and of archaeal TFE to open complex formation. Opening in the -2 and -4 region could be achieved by the core enzyme, subunit E' stimulated bubble formation in general and opening at the upstream end of the transcription bubble was preferably stimulated by TFE. Analyses of the kinetic stabilities of open complexes revealed an unexpected E'-independent role of TFE in the stabilization of open complexes.


Assuntos
Proteínas Arqueais/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , RNA Polimerase II/genética , RNA Polimerase II/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
17.
J Cell Biochem ; 99(4): 1001-9, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16960872

RESUMO

The nuclear isoform of myosin, Nuclear Myosin I (NMI) is involved in transcription by RNA polymerase I. Previous experiments showing that antibodies to NMI inhibit transcription by RNA polymerase II using HeLa cell nuclear extract (NE) suggested that NMI might be a general transcription factor for RNA polymerases. In this study we used a minimal in vitro transcription system to investigate the involvement of NMI in transcription by RNA polymerase II in detail. We demonstrate that NMI co-purifies with RNA polymerase II and that NMI is necessary for basal transcription by RNA polymerase II because antibodies to NMI inhibit transcription while adding NMI stimulates transcription. Further investigation revealed that NMI is specifically involved in transcription initiation. Finally, by employing an abortive transcription initiation assay, we demonstrate that NMI is crucial for the formation of the first phosphodiester bond during transcription initiation.


Assuntos
Núcleo Celular/metabolismo , Miosina Tipo I/metabolismo , Fosfatos/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Miosina Tipo I/imunologia , Miosina Tipo I/isolamento & purificação , Ligação Proteica , RNA Polimerase II/isolamento & purificação
18.
Mol Biochem Parasitol ; 150(2): 201-10, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16962183

RESUMO

In Trypanosoma brucei, transcription by RNA polymerase II accounts for the expression of the spliced leader (SL) RNA and most protein coding mRNAs. To understand the regulation of RNA polymerase II transcription in these parasites, we have purified a transcriptionally active enzyme through affinity chromatography of its essential subunit, RPB4. The enzyme preparation is active in both promoter-independent and promoter-dependent in vitro transcription assays. Importantly, the enzyme is sensitive to alpha-amanitin inhibition, a hallmark of eukaryotic RNA polymerase II enzymes. Using mass spectrometric analysis we have identified the previously unobserved RPB12 subunit of T. brucei RNA polymerase II. TbRPB12 contains a conserved CX(2)CX(10-15)CX(2)C zinc binding motif that is characteristic of other eukaryotic RPB12 polypeptides. We also identified seven proteins that associate with T. brucei RNA polymerase II. While both bioinformatics and biochemical analysis have focused on the subunit structure of trypanosome RNA polymerases, this is the first study that reveals a functional RNA polymerase II enzyme.


Assuntos
RNA Polimerase II/química , Trypanosoma brucei brucei/enzimologia , Amanitinas/farmacologia , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade , Estágios do Ciclo de Vida , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , RNA Polimerase II/isolamento & purificação , RNA Polimerase II/metabolismo , RNA Líder para Processamento , Alinhamento de Sequência , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica , Transfecção , Trypanosoma brucei brucei/crescimento & desenvolvimento
19.
Proc Natl Acad Sci U S A ; 103(25): 9506-11, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16769904

RESUMO

RNA polymerase II (Pol II), whose 12 subunits are conserved across eukaryotes, is at the heart of the machinery responsible for transcription of mRNA. Although associated general transcription factors impart promoter specificity, responsiveness to gene- and tissue-selective activators additionally depends on the multiprotein Mediator coactivator complex. We have isolated from tissue extracts a distinct and abundant mammalian Pol II subpopulation that contains an additional tightly associated polypeptide, Gdown1. Our results establish that Gdown1-containing Pol II, designated Pol II(G), is selectively dependent on and responsive to Mediator. Thus, in an in vitro assay with general transcription factors, Pol II lacking Gdown1 displays unfettered levels of activator-dependent transcription in the presence or absence of Mediator. In contrast, Pol II(G) is dramatically less efficient in responding to activators in the absence of Mediator yet is highly and efficiently responsive to activators in the presence of Mediator. Our results reveal a transcriptional control mechanism in which Mediator-dependent regulation is enforced by means of Gdown1, which likely restricts Pol II function only to be reversed by Mediator.


Assuntos
RNA Polimerase II/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase II/isolamento & purificação , Alinhamento de Sequência , Suínos , Transcrição Gênica/genética
20.
Methods Enzymol ; 408: 264-73, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16793374

RESUMO

In recent years, much research effort has been invested in understanding the role and importance of protein ubiquitylation. This chapter presents protocols that enable ubiquitylation of RNAPII and other proteins to be reconstituted in crude yeast extracts in vitro. These procedures, combined with the ease of genetic manipulations in yeast, provide a new powerful tool for investigating the mechanisms underlying protein ubiquitylation.


Assuntos
Bioensaio/métodos , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , RNA Polimerase II/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...