Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163183

RESUMO

Aminoacridines, used for decades as antiseptic and antiparasitic agents, are prospective candidates for therapeutic repurposing and new drug development. Although the mechanisms behind their biological effects are not fully elucidated, they are most often attributed to the acridines' ability to intercalate into DNA. Here, we characterized the effects of 9-aminoacridine (9AA) on pre-rRNA metabolism in cultured mammalian cells. Our results demonstrate that 9AA inhibits both transcription of the ribosomal RNA precursors (pre-rRNA) and processing of the already synthesized pre-rRNAs, thereby rapidly abolishing ribosome biogenesis. Using a fluorescent intercalator displacement assay, we further show that 9AA can bind to RNA in vitro, which likely contributes to its ability to inhibit post-transcriptional steps in pre-rRNA maturation. These findings extend the arsenal of small-molecule compounds that can be used to block ribosome biogenesis in mammalian cells and have implications for the pharmacological development of new ribosome biogenesis inhibitors.


Assuntos
Aminacrina/farmacologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Ribossômico/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Nucléolo Celular/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Ribossômico/biossíntese , RNA Ribossômico/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
2.
Anticancer Drugs ; 33(1): e21-e27, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561998

RESUMO

The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Nucléolo Celular/efeitos dos fármacos , Neoplasias/patologia , DNA Ribossômico/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , RNA Polimerase I/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
3.
Nucleic Acids Res ; 50(1): 244-258, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34904670

RESUMO

Loss of genome stability leads to reduced fitness, fertility and a high mutation rate. Therefore, the genome is guarded by the pathways monitoring its integrity and neutralizing DNA lesions. To analyze the mechanism of DNA damage induction by cytidine analog zebularine, we performed a forward-directed suppressor genetic screen in the background of Arabidopsis thaliana zebularine-hypersensitive structural maintenance of chromosomes 6b (smc6b) mutant. We show that smc6b hypersensitivity was suppressed by the mutations in EQUILIBRATIVE NUCLEOSIDE TRANSPORTER 3 (ENT3), DNA METHYLTRANSFERASE 1 (MET1) and DECREASE IN DNA METHYLATION 1 (DDM1). Superior resistance of ent3 plants to zebularine indicated that ENT3 is likely necessary for the import of the drug to the cells. Identification of MET1 and DDM1 suggested that zebularine induces DNA damage by interference with the maintenance of CG DNA methylation. The same holds for structurally similar compounds 5-azacytidine and 2-deoxy-5-azacytidine. Based on our genetic and biochemical data, we propose that zebularine induces enzymatic DNA-protein crosslinks (DPCs) of MET1 and zebularine-containing DNA in Arabidopsis, which was confirmed by native chromatin immunoprecipitation experiments. Moreover, zebularine-induced DPCs accumulate preferentially in 45S rDNA chromocenters in a DDM1-dependent manner. These findings open a new avenue for studying genome stability and DPC repair in plants.


Assuntos
Citidina/análogos & derivados , Heterocromatina/metabolismo , Mutagênicos/toxicidade , RNA Ribossômico/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Citidina/toxicidade , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Resistência a Medicamentos , Heterocromatina/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Mutação , RNA Ribossômico/efeitos dos fármacos , Fatores de Transcrição/genética
4.
Nucleic Acids Res ; 49(16): 9574-9593, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403481

RESUMO

Sequence variation in a widespread, recurrent, structured RNA 3D motif, the Sarcin/Ricin (S/R), was studied to address three related questions: First, how do the stabilities of structured RNA 3D motifs, composed of non-Watson-Crick (non-WC) basepairs, compare to WC-paired helices of similar length and sequence? Second, what are the effects on the stabilities of such motifs of isosteric and non-isosteric base substitutions in the non-WC pairs? And third, is there selection for particular base combinations in non-WC basepairs, depending on the temperature regime to which an organism adapts? A survey of large and small subunit rRNAs from organisms adapted to different temperatures revealed the presence of systematic sequence variations at many non-WC paired sites of S/R motifs. UV melting analysis and enzymatic digestion assays of oligonucleotides containing the motif suggest that more stable motifs tend to be more rigid. We further found that the base substitutions at non-Watson-Crick pairing sites can significantly affect the thermodynamic stabilities of S/R motifs and these effects are highly context specific indicating the importance of base-stacking and base-phosphate interactions on motif stability. This study highlights the significance of non-canonical base pairs and their contributions to modulating the stability and flexibility of RNA molecules.


Assuntos
Motivos de Nucleotídeos/genética , RNA Ribossômico/ultraestrutura , RNA/ultraestrutura , Pareamento de Bases/genética , Cristalografia por Raios X , Ligação de Hidrogênio/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/efeitos dos fármacos , RNA/genética , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/genética , Ricina/farmacologia
5.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562610

RESUMO

Trichothecenes are the most prevalent mycotoxins contaminating cereal grains. Some of them are also considered as the virulence factors of Fusarium head blight disease. However, the mechanism behind the structure-activity relationship for trichothecenes remains unexplained. Filling this information gap is a crucial step for developing strategies to manage this large family of mycotoxins in food and feed. Here, we perform an in-depth re-examination of the existing structures of Saccharomyces cerevisiae ribosome complexed with three different trichothecenes. Multiple binding interactions between trichothecenes and 25S rRNA, including hydrogen bonds, nonpolar pi stacking interactions and metal ion coordination interactions, are identified as important binding determinants. These interactions are mainly contributed by the key structural elements to the toxicity of trichothecenes, including the oxygen in the 12,13-epoxide ring and a double bond between C9 and C10. In addition, the C3-OH group also participates in binding. The comparison of three trichothecenes binding to the ribosome, along with their binding pocket architecture, suggests that the substitutions at different positions impact trichothecenes binding in two different patterns. Moreover, the binding of trichothecenes induced conformation changes of several nucleotide bases in 25S rRNA. This then provides a structural framework for understanding the structure-activity relationships apparent in trichothecenes. This study will facilitate the development of strategies aimed at detoxifying mycotoxins in food and feed and at improving the resistance of cereal crops to Fusarium fungal diseases.


Assuntos
Micotoxinas/química , Tricotecenos/química , Sítios de Ligação , Grão Comestível/toxicidade , Contaminação de Alimentos , Fusarium/química , Fusarium/patogenicidade , Inativação Metabólica , Modelos Moleculares , Estrutura Molecular , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Fúngico/química , RNA Fúngico/efeitos dos fármacos , RNA Ribossômico/química , RNA Ribossômico/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Tricotecenos/metabolismo , Tricotecenos/toxicidade
6.
Pharmacol Rev ; 72(4): 862-898, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929000

RESUMO

RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.


Assuntos
RNA/efeitos dos fármacos , RNA/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Betacoronavirus , COVID-19 , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Coronavirus/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/organização & administração , Descoberta de Drogas , Humanos , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Pandemias , Pneumonia Viral/tratamento farmacológico , RNA/efeitos adversos , RNA Antissenso/farmacologia , RNA Antissenso/uso terapêutico , RNA Guia de Cinetoplastídeos/farmacologia , RNA Guia de Cinetoplastídeos/uso terapêutico , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/farmacologia , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/farmacologia , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , RNA Viral/efeitos dos fármacos , Ribonucleases/metabolismo , Riboswitch/efeitos dos fármacos , SARS-CoV-2
7.
Medicine (Baltimore) ; 97(42): e12878, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30335006

RESUMO

RATIONALE: Mitochondrial DNA mutations have been associated with many maternal inherited diseases. A1555G mutation in mtDNA effects the gene code for rRNA, resulting in the structural change of human ribosome rending it susceptible to binding of the common antibiotic, aminoglycosides. Such mutation has linked with non-syndromic hearing loss and is one of the most common mtDNA mutations in Asian populations. PATIENT CONCERNS: A 50-year-old Taiwanese female visited our neurology department with concern for multiple members with hearing loss in her family, including herself. DIAGNOSES: Physical examination findings were not significant besides hearing loss and brain MRI did not reveal any lesions. BAEP confirmed bilateral peripheral sensory deficit. Given the multiple cases of hearing loss in the family, a genetic cause was suspected. Using PCR and sequences chromatogram technique we have identified A1555G mutation on her mtDNA affecting region codes for 12S rRNA. Additionally, we observed severe speech disorder in two young family members with the onset of hearing loss began in their early childhood. INTERVENTIONS: The patient declined any form of intervention at the time for personal reasons. OUTCOMES: The patient was satisfied with the diagnosis, her and her families are continuously followed by our neurology department. LESSONS: We report on a family with mtDNA mutation hearing loss that is related to exposure to aminoglycosides. Children with such mutation are at high risk for impaired linguistic function. Early identification and intervention with cochlear implant should be considered.


Assuntos
Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , DNA Mitocondrial/genética , Surdez/induzido quimicamente , Surdez/genética , Distúrbios da Fala/induzido quimicamente , Distúrbios da Fala/genética , DNA Mitocondrial/efeitos dos fármacos , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Mutação , Linhagem , Variantes Farmacogenômicos , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/genética
8.
Nucleic Acids Res ; 46(18): 9793-9804, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113694

RESUMO

The bacterial 30S ribosomal subunit is a primary antibiotic target. Despite decades of discovery, the mechanisms by which antibiotic binding induces ribosomal dysfunction are not fully understood. Ambient temperature crystallographic techniques allow more biologically relevant investigation of how local antibiotic binding site interactions trigger global subunit rearrangements that perturb protein synthesis. Here, the structural effects of 2-deoxystreptamine (paromomycin and sisomicin), a novel sisomicin derivative, N1-methyl sulfonyl sisomicin (N1MS) and the non-deoxystreptamine (streptomycin) aminoglycosides on the ribosome at ambient and cryogenic temperatures were examined. Comparative studies led to three main observations. First, individual aminoglycoside-ribosome interactions in the decoding center were similar for cryogenic versus ambient temperature structures. Second, analysis of a highly conserved GGAA tetraloop of h45 revealed aminoglycoside-specific conformational changes, which are affected by temperature only for N1MS. We report the h44-h45 interface in varying states, i.e. engaged, disengaged and in equilibrium. Third, we observe aminoglycoside-induced effects on 30S domain closure, including a novel intermediary closure state, which is also sensitive to temperature. Analysis of three ambient and five cryogenic crystallography datasets reveal a correlation between h44-h45 engagement and domain closure. These observations illustrate the role of ambient temperature crystallography in identifying dynamic mechanisms of ribosomal dysfunction induced by local drug-binding site interactions. Together, these data identify tertiary ribosomal structural changes induced by aminoglycoside binding that provides functional insight and targets for drug design.


Assuntos
Aminoglicosídeos/química , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Ribossômico/química , Ribossomos/química , Aminoglicosídeos/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Escherichia coli/genética , Hexosaminas/química , Hexosaminas/farmacologia , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Estreptomicina/química , Estreptomicina/farmacologia
9.
ACS Chem Biol ; 13(8): 1978-1982, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29952541

RESUMO

Among the putative defense proteins that occur in fungi, one of the best studied is α-sarcin, produced by the mold Aspergillus giganteus. This protein is the most significant member of the ribotoxin family, which consists of extracellular rRNA ribonucleases that display cytotoxic activity toward animal cells. Ribotoxins are rRNA endonucleases that catalyze the hydrolysis of the phosphodiester bond between G4325 and A4326 from the rat 28S rRNA. The results of several experimental approaches have led to propose ribotoxins as insecticidal agents. In this work, we report that α-sarcin displays a strong antifungal activity against Penicillium digitatum, being able to enter into the cytosol where it inactivates the ribosomes, thus killing the cells and arresting the growth of the fungus. This is the first time that a ribotoxin has been found to display antifungal activity. Therefore, this protein could play, besides the already proposed insecticidal function, a role in nature as an antifungal agent.


Assuntos
Antifúngicos/farmacologia , Endorribonucleases/farmacologia , Proteínas Fúngicas/farmacologia , Penicillium/efeitos dos fármacos , Hidrólise , Micélio/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/metabolismo , Ribossomos/efeitos dos fármacos
10.
PLoS One ; 12(11): e0187977, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190286

RESUMO

The nucleolus produces the large polycistronic transcript (47S precursor) containing the 18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA processing. Among numerous components it contains condensed chromatin and active rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm of chromosome territory organization. Active rRNA genes are clustered within several fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucleolar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed chromatin. To reach that goal, we used two complementary approaches: i) time-lapse confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF, histone H2B) and ii) ultrastructural identification of nucleolar components involved in the reorganization. Data obtained by time lapse confocal microscopy were analyzed through detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no fusion and no change in the relative position of the different nucleoli contained in one nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and condensed chromatin at a higher resolution, we performed correlative light and electron microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated that threads of intranucleolar condensed chromatin are localized in a complex 3D network of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward the perinucleolar condensed chromatin, to which they finally fuse. During their migration, FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the periphery of nucleoli.


Assuntos
Compartimento Celular , Nucléolo Celular/metabolismo , Cromatina/metabolismo , RNA Ribossômico/antagonistas & inibidores , Linhagem Celular Tumoral , Dactinomicina/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , RNA Ribossômico/biossíntese , RNA Ribossômico/efeitos dos fármacos
11.
PLoS One ; 12(9): e0184722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910383

RESUMO

Temperature adaptation of bacterial RNAs is a subject of both fundamental and practical interest because it will allow a better understanding of molecular mechanism of RNA folding with potential industrial application of functional thermophilic or psychrophilic RNAs. Here, we performed a comprehensive study of rRNA, tRNA, and mRNA of more than 200 bacterial species with optimal growth temperatures (OGT) ranging from 4°C to 95°C. We investigated temperature adaptation at primary, secondary and tertiary structure levels. We showed that unlike mRNA, tRNA and rRNA were optimized for their structures at compositional levels with significant tertiary structural features even for their corresponding randomly permutated sequences. tRNA and rRNA are more exposed to solvent but remain structured for hyperthermophiles with nearly OGT-independent fluctuation of solvent accessible surface area within a single RNA chain. mRNA in hyperthermophiles is essentially the same as random sequences without tertiary structures although many mRNA in mesophiles and psychrophiles have well-defined tertiary structures based on their low overall solvent exposure with clear separation of deeply buried from partly exposed bases as in tRNA and rRNA. These results provide new insight into temperature adaptation of different RNAs.


Assuntos
Bactérias/genética , RNA Mensageiro/química , RNA Ribossômico/química , RNA de Transferência/química , Bases de Dados Genéticas , Modelos Moleculares , Conformação de Ácido Nucleico , Dobramento de RNA/efeitos dos fármacos , RNA Bacteriano/química , RNA Bacteriano/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , RNA de Transferência/efeitos dos fármacos , Solventes/farmacologia , Temperatura
12.
Am J Physiol Endocrinol Metab ; 310(8): E652-E661, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26860985

RESUMO

Resistance exercise training (RT) is the most effective method for increasing skeletal muscle mass in older adults; however, the amount of RT-induced muscle growth is highly variable between individuals. Recent evidence from our laboratory and others suggests ribosome biogenesis may be an important factor regulating RT-induced hypertrophy, and we hypothesized that the extent of hypertrophy is at least partly regulated by the amount of RT-induced ribosome biogenesis. To examine this, 42 older adults underwent 4 wk of RT aimed at inducing hypertrophy of the knee extensors (e.g., 2 sets of squat, leg press, and knee extension, 10-12 repetition maximums, 3 days/wk), and vastus lateralis muscle biopsies were performed pre- and post-RT. Post hoc K-means cluster analysis revealed distinct differences in type II myofiber hypertrophy among subjects. The percent change in type II myofiber size in nonresponders (Non; n = 17) was -7%, moderate responders (Mod; n = 19) +22%, and extreme responders (Xtr; n = 6) +83%. Total muscle RNA increased only in Mod (+9%, P < 0.08) and Xtr (+26%, P < 0.01), and only Xtr increased rRNA content (+40%, P < 0.05) and myonuclei/type II fiber (+32%, P < 0.01). Additionally, Mod and Xtr had a greater increase in c-Myc protein levels compared with Non (e.g., approximately +350 and +250% vs. +50%, respectively, P < 0.05). In vitro studies showed that growth factor-induced human myotube hypertrophy is abolished when rRNA synthesis is knocked down using the Pol I-specific inhibitor CX-5461. Overall, these data implicate ribosome biogenesis as a key process regulating the extent of RT-induced myofiber hypertrophy in older adults.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Biogênese de Organelas , Músculo Quadríceps/crescimento & desenvolvimento , RNA Ribossômico/metabolismo , Treinamento Resistido , Ribossomos/metabolismo , Adulto , Idoso , Benzotiazóis/farmacologia , Análise por Conglomerados , Feminino , Humanos , Hipertrofia , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Naftiridinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Músculo Quadríceps/metabolismo , RNA/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Ribossômico/efeitos dos fármacos
13.
Oncogene ; 35(8): 977-89, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25961931

RESUMO

Many drugs currently used in chemotherapy work by hindering the process of ribosome biogenesis. In tumors with functional p53, the inhibition of ribosome biogenesis may contribute to the efficacy of this treatment by inducing p53 stabilization. As the level of stabilized p53 is critical for the induction of cytotoxic effects, it seems useful to highlight those cancer cell characteristics that can predict the degree of p53 stabilization following the treatment with inhibitors of ribosome biogenesis. In the present study we exposed a series of p53 wild-type human cancer cell lines to drugs such as actinomycin D (ActD), doxorubicin, 5-fluorouracil and CX-5461, which hinder ribosomal RNA (rRNA) synthesis. We found that the amount of stabilized p53 was directly related to the level of ribosome biogenesis in cells before the drug treatment. This was due to different levels of inactivation of the ribosomal proteins-MDM2 pathway of p53 digestion. Inhibition of rRNA synthesis always caused cell cycle arrest, independent of the ribosome biogenesis rate of the cells, whereas apoptosis occurred only in cells with a high rDNA transcription rate. The level of p53 stabilization induced by drugs acting in different ways from the inhibition of ribosome biogenesis, such as hydroxyurea (HU) and nutlin-3, was independent of the level of ribosome biogenesis in cells and always lower than that occurring after the inhibition of rRNA synthesis. Interestingly, in cells with a low ribosome biogenesis rate, the combined treatment with ActD and HU exerted an additive effect on p53 stabilization. These results indicated that (i) drugs inhibiting ribosome biogenesis may be highly effective in p53 wild-type cancers with a high ribosome biogenesis rate, as they induce apoptotic cell death, and (ii) the combination of drugs capable of stabilizing p53 through different mechanisms may be useful for treating cancers with a low ribosome biogenesis rate.


Assuntos
Antineoplásicos/farmacologia , Biogênese de Organelas , RNA Ribossômico/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Humanos , Estabilidade Proteica/efeitos dos fármacos , RNA Ribossômico/biossíntese , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas
14.
Oncotarget ; 6(33): 34846-58, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26472108

RESUMO

Enhanced rRNA synthesis is a downstream effect of many of the signaling pathways that are aberrantly activated in cancer, such as the PI3K/mTOR and MAP kinase pathways. Recently, two new rRNA synthesis inhibitors have demonstrated therapeutic effects on cancer cells while sparing normal cells. One of them, CX-5461, is currently in phase 1 clinical trials for hematological malignancies. Here, we investigate the effectiveness of transient treatment with this drug on acute lymphoblastic leukemia cells. Our results show that short exposure to CX-5461 followed by drug washout is sufficient to induce persistent G2 cell-cycle arrest and irreversible commitment to cell death, in spite of rRNA synthesis returning to normal within 24 hours of drug washout. The magnitude of cell death after transient exposure is similar to continuous exposure, but the time to cell death is relatively delayed with transient exposure. In this report, we also investigate rational drug combinations that can potentiate the effect of continuous CX-5461 treatment. We show that the checkpoint abrogator UCN-01 can relieve CX-5461-induced G2 arrest and potentiate the cytotoxic effects of CX-5461. Finally, we show that ERK1/2 is activated upon CX-5461 treatment, and that pharmacological inhibition of MEK1/2 leads to enhanced cell death in combination with CX-5461. In summary, our results provide evidence for the effectiveness of CX-5461 pulse treatment, which may minimize drug related toxicity, and evidence for enhanced effectiveness of CX-5461 in combination with other targeted agents.


Assuntos
Benzotiazóis/farmacologia , Naftiridinas/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Ribossômico/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Western Blotting , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas
15.
Biochemistry ; 52(10): 1651-3, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23427980

RESUMO

The dynamic behavior of the rRNA A-site plays an important functional role. We have employed femtosecond time-resolved spectroscopy to investigate the nature of the conformational dynamics. In the drug-free state, the A-site samples multiple distinct conformations. Drug binding shifts the population distribution in a drug-specific manner. Motions of bases on nanosecond and picosecond time scales are differentially affected by the drug binding. Our results underscore the importance of understanding the detailed dynamic picture of molecular recognition by resolving dynamics in the distinct picosecond time regime and facilitate development of antimicrobial drugs targeting dynamic RNAs.


Assuntos
RNA Ribossômico/química , Adenina/química , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Polarização de Fluorescência , Cinética , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Bacteriano/química , RNA Bacteriano/efeitos dos fármacos , RNA Bacteriano/metabolismo , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/metabolismo
16.
Toxicol Appl Pharmacol ; 265(1): 10-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23022514

RESUMO

The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-µ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism.


Assuntos
Clivagem do RNA/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Anisomicina/toxicidade , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 8/efeitos dos fármacos , Catepsina L/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores da Síntese de Ácido Nucleico/toxicidade , Proteínas Proto-Oncogênicas c-hck/metabolismo , RNA Ribossômico/isolamento & purificação , Ricina/toxicidade , Tricotecenos/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Braz J Otorhinolaryngol ; 77(5): 573-6, 2011.
Artigo em Inglês, Português | MEDLINE | ID: mdl-22030963

RESUMO

UNLABELLED: Streptomycin and aminoglycoside derivatives are commonly used to treat tuberculosis and other stubborn infections; these drugs may alter auditory and/or vestibular function. Mutations in mitochondrial DNA have been associated with hypersensitivity to aminoglycosides; no studies have been conducted in Mexicans, which are very prone to such alterations because aminoglycosides have been prescribed carelessly for many years, irrespective of the ailment to be treated. AIM: We investigated "hot spot" mutations described previously as causing inner ear alterations. METHODS: Hot spot mutations at the 12S rRNA gene and the tRNA Serine (UCN) gene were screened by PCR-RFLP and sequencing in 65 subjects undergoing audiological and vestibular testing. STUDY DESIGN: Experimental. RESULTS: 32 individuals had healthy auditory and vestibular function, whereas 33 subjects had auditory affections. We found none of the previously reported mutations related to aminoglycoside hypersensitivity, or non-syndromic hearing loss. Two hearing-impaired patients that had been treated with streptomycin had the T1189C variant of the mitochondrial 12S rRNA region. CONCLUSION: Mutations related to hearing loss in other ethnic backgrounds were not found in Mexicans. However, the T1189C variant is possibly a putative mutation related to aminoglycoside hypersensitivity and was present in 2 patients.


Assuntos
Aminoglicosídeos/efeitos adversos , DNA Mitocondrial/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Mutação Puntual/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , RNA de Transferência de Serina/efeitos dos fármacos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise Mutacional de DNA , DNA Mitocondrial/genética , Predisposição Genética para Doença , Perda Auditiva/genética , Humanos , México , Pessoa de Meia-Idade , Mutação Puntual/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico/genética , RNA de Transferência de Serina/genética , Estreptomicina/efeitos adversos , Adulto Jovem
18.
Braz. j. otorhinolaryngol. (Impr.) ; 77(5): 573-576, Sept.-Oct. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-601853

RESUMO

Streptomycin and aminoglycoside derivatives are commonly used to treat tuberculosis and other stubborn infections; these drugs may alter auditory and/or vestibular function. Mutations in mitochondrial DNA have been associated with hypersensitivity to aminoglycosides; no studies have been conducted in Mexicans, which are very prone to such alterations because aminoglycosides have been prescribed carelessly for many years, irrespective of the ailment to be treated. AIM: We investigated "hot spot" mutations described previously as causing inner ear alterations. METHODS: Hot spot mutations at the 12S rRNA gene and the tRNA Serine (UCN) gene were screened by PCR-RFLP and sequencing in 65 subjects undergoing audiological and vestibular testing. STUDY DESIGN: Experimental. RESULTS: 32 individuals had healthy auditory and vestibular function, whereas 33 subjects had auditory affections. We found none of the previously reported mutations related to aminoglycoside hypersensitivity, or non-syndromic hearing loss. Two hearing-impaired patients that had been treated with streptomycin had the T1189C variant of the mitochondrial 12S rRNA region. CONCLUSION: Mutations related to hearing loss in other ethnic backgrounds were not found in Mexicans. However, the T1189C variant is possibly a putative mutation related to aminoglycoside hypersensitivity and was present in 2 patients.


Derivados de aminoglicosídeos e estreptomicina são comumente utilizados para tratar tuberculose e outras infecções mais resistentes; esses medicamentos podem alterar a função vestibular e/ou auditiva. Mutações no DNA mitocondrial têm sido associadas à hipersensibilidade a aminoglicosídeos; não há estudos conduzidos com mexicanos, que são muito predispostos a tais alterações, uma vez que aminoglicosídeos têm sido exageradamente prescritos há anos, sem associações à doença sendo tratada. OBJETIVO: investigamos mutações "hot spot" previamente descritas como causas de alterações no ouvido interno. MÉTODOS: Mutações hot spot no gene 12S rRNA e gene SerinatRNA (UCN) foram triados pela PCR-RFLP e sequenciados em 65 indivíduos sujeitos a exames audiométricos e vestibulares. Desenho do estudo: Experimental. RESULTADOS: 32 indivíduos com funções auditiva e vestibular normais, e 33 indivíduos com doenças auditivas. Não encontramos nenhuma das mutações previamente relatadas como associadas à hipersensibilidade aos aminoglicosídeos, ou perda auditiva não-sindrômica. Dois pacientes com hipoacusia que haviam sido tratados com estreptomicina tinham a variante T1189C na região 12S rRNA. CONCLUSÃO: Mutações associadas à hipoacusia em outras etnias não foram encontradas em mexicanos. Entretanto, a variante T1189C é possivelmente uma mutação associada à hipersensibilidade a aminoglicosídeos, e esteve presente em dois pacientes.


Assuntos
Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Aminoglicosídeos/efeitos adversos , DNA Mitocondrial/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Mutação Puntual/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , RNA de Transferência de Serina/efeitos dos fármacos , Análise Mutacional de DNA , DNA Mitocondrial/genética , Predisposição Genética para Doença , Perda Auditiva/genética , México , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Mutação Puntual/genética , RNA Ribossômico/genética , RNA de Transferência de Serina/genética , Estreptomicina/efeitos adversos
19.
Microb Pathog ; 50(6): 336-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21377522

RESUMO

Epidemiological studies of macrolide resistance in Campylobacter jejuni demonstrated that infections with macrolide-resistant C. jejuni could be associated with an increased risk of adverse events, development of invasive illness or death compared to macrolide-susceptible isolates. In this study, an in vitro induction experiment was conducted using susceptible C. jejuni strain and erythromycin as a selecting agent to obtain Ery-resistant mutant with 23S rRNA gene mutation (A2074C). Changes in the virulence characteristics and fitness between the susceptible parent strain and Ery-resistant mutant were examined. Ery-resistant mutant demonstrated slightly more resistance to bile in the bile tolerance assay compared to the susceptible strain but with no statistical significant difference. However Ery-resistant mutant apparently demonstrated reduced adhesion and invasion characteristics to intestinal epithelial cells, murine macrophage and short time intracellular survivability within macrophage compared to the susceptible strain. Co-inoculation of the two strains in the mice resulted in low colonization level of the resistant strain compared to the susceptible strain. Competition experiments resulted in mutant that grew significantly slower than the susceptible parent strain and the mutation imposed a fitness cost in Ery-resistant mutant. Taken together these findings demonstrated the increment of the virulence characteristics of Ery-susceptible strain rather than Ery-resistant strain. The adverse events previously observed in the epidemiological studies for macrolide-resistant strains infection, we suggested this maybe attributed to the resistivity of the resistant strains to the treatment and consequently prolonged the symptoms and compromised the disease in patients.


Assuntos
Antibacterianos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Eritromicina/farmacologia , Animais , Campylobacter jejuni/genética , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/patogenicidade , Farmacorresistência Bacteriana , Deleção de Genes , Variação Genética , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Mutação/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética
20.
Sex Health ; 8(1): 69-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21371385

RESUMO

BACKGROUND: The dynamics of chlamydia clearance after treatment administration for chlamydial urogenital infection are unknown. We estimated the time to clearance of Chlamydia trachomatis (CT) ribosomal RNA (rRNA) after administration of azithromycin for cervical chlamydial infection using APTIMA Combo 2 (Gen-Probe, Inc., San Diego, CA, USA). METHODS: A total of 115 women diagnosed with urogenital chlamydial infection, defined as a positive APTIMA urine or endocervical specimen, were enrolled in the present study. Vaginal swabs on the day of treatment (Day 0) and on Days 3, 7, 10 and 14 after treatment with 1 g of azithromycin were self-obtained by participants. Specimens were tested in a single laboratory. Our analysis was limited to women who were CT-confirmed by vaginal swab at baseline, who returned all follow-up swabs, and who reported sexual abstinence during the follow-up period (n = 61). RESULTS: Among 61 participants, 48 (79%) had a negative APTIMA at Day 14. Subjects with a negative APTIMA at each time-point were as follows: 0/61 (0%) on Day 0, 7/61 (12%) on Day 3, 28/61 (46%) on Day 7, 40/61 (66%) on Day 10, and 48/61 (79%) on Day 14. Multiple linear regression analysis predicted time to clearance at 17 days (95% confidence interval, 16-18 days) after administration of azithromycin. Seventeen of the 94 participants (18.1%) who screened positive for chlamydia had a negative vaginal swab on Day 0, indicating possible spontaneous clearance of CT. CONCLUSIONS: After treatment, CT rRNA declined with time. As rRNA was still detectable in 21% of the women 14 days after treatment, APTIMA should not be used as a test-of-cure in the 14-day period following azithromycin administration.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/efeitos dos fármacos , RNA Bacteriano/efeitos dos fármacos , Adolescente , Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Chlamydia trachomatis/isolamento & purificação , Feminino , Seguimentos , Humanos , Estudos Prospectivos , RNA Bacteriano/genética , RNA Ribossômico/efeitos dos fármacos , Kit de Reagentes para Diagnóstico , Vagina/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...