Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 17(4): 412-420, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462493

RESUMO

Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance.


Assuntos
Macrolídeos/metabolismo , RNA Ribossômico/ultraestrutura , Ribossomos/ultraestrutura , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Metilação , RNA Ribossômico/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Ribossomos/genética , Ribossomos/metabolismo
2.
Nat Commun ; 10(1): 4563, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594941

RESUMO

Ribosome-synthesized post-translationally modified peptides (RiPPs) represent a rapidly expanding class of natural products with various biological activities. Linear azol(in)e-containing peptides (LAPs) comprise a subclass of RiPPs that display outstanding diversity of mechanisms of action while sharing common structural features. Here, we report the discovery of a new LAP biosynthetic gene cluster in the genome of Rhizobium Pop5, which encodes the precursor peptide and modification machinery of phazolicin (PHZ) - an extensively modified peptide exhibiting narrow-spectrum antibacterial activity against some symbiotic bacteria of leguminous plants. The cryo-EM structure of the Escherichia coli 70S-PHZ complex reveals that the drug interacts with the 23S rRNA and uL4/uL22 proteins and obstructs ribosomal exit tunnel in a way that is distinct from other compounds. We show that the uL4 loop sequence determines the species-specificity of antibiotic action. PHZ expands the known diversity of LAPs and may be used in the future as biocontrol agent for agricultural needs.


Assuntos
Antibacterianos/farmacologia , Azóis/farmacologia , Agentes de Controle Biológico/farmacologia , Peptídeos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Azóis/química , Azóis/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Microscopia Crioeletrônica , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Família Multigênica , Biossíntese Peptídica/genética , Peptídeos/química , Peptídeos/metabolismo , Phaseolus/microbiologia , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Rhizobium/genética , Rhizobium/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Especificidade da Espécie , Simbiose
3.
Sci Rep ; 9(1): 11460, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391518

RESUMO

The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/ultraestrutura , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Proteínas Ribossômicas/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Eritromicina/uso terapêutico , Humanos , Mutação , Ligação Proteica/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Imagem Individual de Molécula , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestrutura
4.
Nature ; 564(7736): 444-448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518861

RESUMO

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Assuntos
Evolução Molecular Direcionada , Escherichia coli , Biossíntese de Proteínas , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Sequência de Bases , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Escherichia coli/classificação , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas/química , Ribossomos/química , Ribossomos/genética
5.
Mol Cell ; 70(5): 881-893.e3, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883607

RESUMO

The assembly of ribosomal subunits is an essential prerequisite for protein biosynthesis in all domains of life. Although biochemical and biophysical approaches have advanced our understanding of ribosome assembly, our mechanistic comprehension of this process is still limited. Here, we perform an in vitro reconstitution of the Escherichia coli 50S ribosomal subunit. Late reconstitution products were subjected to high-resolution cryo-electron microscopy and multiparticle refinement analysis to reconstruct five distinct precursors of the 50S subunit with 4.3-3.8 Å resolution. These assembly intermediates define a progressive maturation pathway culminating in a late assembly particle, whose structure is more than 96% identical to a mature 50S subunit. Our structures monitor the formation and stabilization of structural elements in a nascent particle in unprecedented detail and identify the maturation of the rRNA-based peptidyl transferase center as the final critical step along the 50S assembly pathway.


Assuntos
Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Relação Estrutura-Atividade
6.
Methods Enzymol ; 558: 99-124, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068739

RESUMO

The biology of an RNA is encoded in its structure and dynamics, whether that be binding to a protein, binding to another RNA, enzymatic catalysis, or becoming a substrate. In solution, most RNA molecules are sampling conformations, and their structures are best described as conformational ensembles. For larger RNAs, experiments that can describe the conformations of their domains can be particularly daunting, especially when the RNA is novel and not well characterized. Here, we explain how we have used site-specific 2-aminopurine as a fluorescent probe of the secondary and tertiary structures of a 60 nucleotide RNA, and what new findings we have about its Mg(2+)-dependent conformational changes. We focus on this RNA from prokaryotic ribosome as a proof of concept as well as a research project. Its tertiary structure is known from a cocrystal, and its secondary structure is modeled from phylogenetic conservation, but there are virtually no data describing the motions of its nucleotides in solution, or its folding kinetics. It is a perfect system to illustrate the unique information that comes from a comprehensive fluorescence study of this intricate RNA.


Assuntos
2-Aminopurina/química , Proteínas de Escherichia coli/ultraestrutura , Sondas Moleculares/química , RNA Ribossômico 23S/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Sequência de Bases , Cátions Bivalentes , Escherichia coli/química , Proteínas de Escherichia coli/química , Fluorescência , Cinética , Magnésio/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Dobramento de RNA , RNA Ribossômico 23S/química , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Espectrometria de Fluorescência/métodos , Termodinâmica
7.
Bull Math Biol ; 71(1): 84-106, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19083065

RESUMO

We give a Large Deviation Principle (LDP) with explicit rate function for the distribution of vertex degrees in plane trees, a combinatorial model of RNA secondary structures. We calculate the typical degree distributions based on nearest neighbor free energies, and compare our results with the branching configurations found in two sets of large RNA secondary structures. We find substantial agreement overall, with some interesting deviations which merit further study.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , RNA Ribossômico 23S/ultraestrutura , RNA Viral/ultraestrutura , Interpretação Estatística de Dados , Árvores de Decisões , Redes Neurais de Computação , Picornaviridae/genética , Probabilidade , Termodinâmica
8.
Proc Natl Acad Sci U S A ; 103(26): 9838-43, 2006 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-16785426

RESUMO

Thousands of introns have been localized to rRNA genes throughout the three domains of life. The consequences of the presence of either a spliced or an unspliced intron in a rRNA for ribosome assembly and packaging are largely unknown. To help address these questions, and to begin an intron imaging study, we selected a member of the self-splicing group II intron family, which is hypothesized to be the progenitor not only of spliceosomal introns but also of non-LTR retrotransposons. We cloned the self-splicing group II Ll.LtrB intron from Lactococcus lactis into L. lactis 23S rRNA. The 2,492-nt Ll.LtrB intron comprises a catalytic core and an ORF, which encodes a protein, LtrA. LtrA forms a ribonucleoprotein (RNP) complex with the intron RNA to mediate splicing and mobility. The chimeric 23S-intron RNA was shown to be splicing proficient in its native host in the presence of LtrA. Furthermore, a low-resolution cryo-EM reconstruction of the L. lactis ribosome fused to the intron-LtrA RNP of a splicing-defective Ll.LtrB intron was obtained. The image revealed the intron as a large, well defined structure. The activity and structural integrity of the intron indicate not only that it can coexist with the ribosome but also that its presence permits the assembly of a stable ribosome. Additionally, we view our results as a proof of principle that ribosome chimeras may be generally useful for studying a wide variety of structured RNAs and RNP complexes that are not amenable to NMR, crystallographic, or single-particle cryo-EM methodologies.


Assuntos
Íntrons , Conformação de Ácido Nucleico , RNA Ribossômico 23S/ultraestrutura , Ribossomos/ultraestrutura , Spliceossomos/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Lactococcus lactis/genética , Splicing de RNA , RNA Ribossômico 23S/química , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribossomos/química , Spliceossomos/química
9.
BMC Mol Biol ; 5: 10, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15298702

RESUMO

BACKGROUND: Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. METHODS: The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. RESULTS: We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. CONCLUSIONS: These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.


Assuntos
DNA Ribossômico/genética , Genes , Modelos Genéticos , Conformação de Ácido Nucleico , RNA/genética , Transcrição Gênica , Algoritmos , Pareamento de Bases , DNA Bacteriano/genética , Ligação de Hidrogênio , Íntrons/genética , RNA/ultraestrutura , Processamento Pós-Transcricional do RNA , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/ultraestrutura
10.
IEEE Trans Nanobioscience ; 2(2): 70-4, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15382661

RESUMO

RNA molecules play essential roles in many biological processes, including the storage and transfer of information in the cell. These events are mediated via RNA-protein interactions or by catalytic RNA molecules. It is now recognized that unique RNA folds are associated with biological functions. Therefore, to study the intrinsic structural changes and dynamics which regulate the various functions of RNA, it is necessary to probe its three-dimensional structure in solution. In this respect, using single-molecule methodologies may allow study of native RNA molecules independent of their size and in real time. However, this may require the immobilization of RNA on a surface. Here, we report a novel approach to immobilize RNA on a glass. The procedures involve both chemical and enzymatic modifications of long RNA molecules. In addition, we demonstrate the application of an optical tweezers apparatus to measure the length and, hence, the dynamics of immobilized intact ribosomal RNA molecules as a function of different solution conditions.


Assuntos
Micromanipulação/métodos , Nanotecnologia/métodos , RNA/química , RNA/ultraestrutura , Coloração e Rotulagem/métodos , Adsorção , Estudos de Viabilidade , Vidro/química , Cloreto de Magnésio/química , Movimento (Física) , Conformação de Ácido Nucleico , Óptica e Fotônica , RNA/análise , RNA Ribossômico 23S/análise , RNA Ribossômico 23S/química , RNA Ribossômico 23S/ultraestrutura
11.
J Mol Biol ; 307(5): 1341-9, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11292346

RESUMO

Insertions were introduced by a two-step mutagenesis procedure into each of five double-helical regions of Escherichia coli 23 S rRNA, so as to extend the helix concerned by 17 bp. The helices chosen were at sites within the 23 S molecule (h9, h25, h45, h63 and h98) where significant length variations between different species are known to occur. At each of these positions, with the exception of h45, there are also significant differences between the 23 S rRNAs of E. coli and Haloarcula marismortui. Plasmids carrying the insertions were introduced into an E. coli strain lacking all seven rrn operons. In four of the five cases the cells were viable and 50 S subunits could be isolated; only the insertion in h63 was lethal. The modified subunits were examined by cryo-electron microscopy (cryo-EM), with a view to locating extra electron density corresponding to the insertion elements. The results were compared both with the recently determined atomic structure of H. marismortui 23 S rRNA in the 50 S subunit, and with previous 23 S rRNA modelling studies based on cryo-EM reconstructions of E. coli ribosomes. The insertion element in h45 was located by cryo-EM at a position corresponding precisely to that of the equivalent helix in H. marismortui. The insertion in h98 (which is entirely absent in H. marismortui) was similarly located at a position corresponding precisely to that predicted from the E. coli modelling studies. In the region of h9, the difference between the E. coli and H. marismortui secondary structures is ambiguous, and the extra electron density corresponding to the insertion was seen at a location intermediate between the position of the nearest helix in the atomic structure and that in the modelled structure. In the case of h25 (which is about 50 nucleotides longer in H. marismortui), no clear extra cryo-EM density corresponding to the insertion could be observed.


Assuntos
Microscopia Crioeletrônica , Escherichia coli/genética , Haloarcula marismortui/genética , RNA Bacteriano/ultraestrutura , RNA Ribossômico 23S/ultraestrutura , Ribossomos/ultraestrutura , Sequência de Bases , Divisão Celular , Gráficos por Computador , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Genes Letais/genética , Haloarcula marismortui/química , Haloarcula marismortui/crescimento & desenvolvimento , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese/genética , Conformação de Ácido Nucleico , Óperon/genética , Conformação Proteica , Subunidades Proteicas , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
12.
J Mol Biol ; 298(1): 35-59, 2000 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-10756104

RESUMO

The Escherichia coli 23 S and 5 S rRNA molecules have been fitted helix by helix to a cryo-electron microscopic (EM) reconstruction of the 50 S ribosomal subunit, using an unfiltered version of the recently published 50 S reconstruction at 7.5 A resolution. At this resolution, the EM density shows a well-defined network of fine structural elements, in which the major and minor grooves of the rRNA helices can be discerned at many locations. The 3D folding of the rRNA molecules within this EM density is constrained by their well-established secondary structures, and further constraints are provided by intra and inter-rRNA crosslinking data, as well as by tertiary interactions and pseudoknots. RNA-protein cross-link and foot-print sites on the 23 S and 5 S rRNA were used to position the rRNA elements concerned in relation to the known arrangement of the ribosomal proteins as determined by immuno-electron microscopy. The published X-ray or NMR structures of seven 50 S ribosomal proteins or RNA-protein complexes were incorporated into the EM density. The 3D locations of cross-link and foot-print sites to the 23 S rRNA from tRNA bound to the ribosomal A, P or E sites were correlated with the positions of the tRNA molecules directly observed in earlier reconstructions of the 70 S ribosome at 13 A or 20 A. Similarly, the positions of cross-link sites within the peptidyl transferase ring of the 23 S rRNA from the aminoacyl residue of tRNA were correlated with the locations of the CCA ends of the A and P site tRNA. Sites on the 23 S rRNA that are cross-linked to the N termini of peptides of different lengths were all found to lie within or close to the internal tunnel connecting the peptidyl transferase region with the presumed peptide exit site on the solvent side of the 50 S subunit. The post-transcriptionally modified bases in the 23 S rRNA form a cluster close to the peptidyl transferase area. The minimum conserved core elements of the secondary structure of the 23 S rRNA form a compact block within the 3D structure and, conversely, the points corresponding to the locations of expansion segments in 28 S rRNA all lie on the outside of the structure.


Assuntos
Escherichia coli/química , Escherichia coli/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/ultraestrutura , RNA Ribossômico 5S/química , RNA Ribossômico 5S/ultraestrutura , Ribossomos/ultraestrutura , Sequência de Bases , Sítios de Ligação , Simulação por Computador , Sequência Conservada/genética , Reagentes de Ligações Cruzadas , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Microscopia Imunoeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/ultraestrutura , Ribonucleases/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Ricina/metabolismo , Termodinâmica
13.
Structure ; 7(12): 1567-73, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10647187

RESUMO

BACKGROUND: Ribosomes are complex macromolecular machines that perform the translation of the genetic message. Cryo-electron microscopic (cryo-EM) maps of the Escherichia coli 70S ribosome are approaching a resolution of 10 A and X-ray maps of the 30S and 50S subunits are now available at 5 A. These maps show a lot of details about the inner architecture of the ribosome and ribosomal RNA helices are clearly visible. However, in the absence of further biological information, even at the higher resolution of the X-ray maps many rRNA helices can be placed only tentatively. Here we show that genetic tagging in combination with cryo-EM can place and orient double-stranded RNA helices with high accuracy. RESULTS: A tRNA sequence inserted into the E. coli 23S ribosomal RNA gene, at one of the points of sequence expansion in eukaryotic ribosomes, is visible in the cryo-EM map as a peripheral 'foot' structure. By tracing its acceptor-stem end, the location of helix 63 in domain IV and helix 98 in domain VI of the 50S subunit could be precisely determined. CONCLUSIONS: Our study demonstrates for the first time that features of a three-dimensional cryo-EM map of an asymmetric macromolecular complex can be interpreted in terms of secondary and primary structure. Using the identified helices as a starting point, it is possible to model and interpret, in molecular terms, a larger portion of the ribosome. Our results might be also useful in interpreting and refining the current X-ray maps.


Assuntos
Escherichia coli/genética , Escherichia coli/ultraestrutura , Conformação de Ácido Nucleico , RNA Ribossômico 23S/ultraestrutura , RNA de Transferência/ultraestrutura , Ribossomos/ultraestrutura , Sequência de Bases , Microscopia Crioeletrônica/métodos , Primers do DNA , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Insercional , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , RNA Ribossômico 23S/genética , RNA de Transferência/genética
14.
J Mol Biol ; 279(2): 403-21, 1998 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-9642046

RESUMO

Samples of 80 S ribosomes from rabbit reticulocytes were subjected to electron cryomicroscopy combined with angular reconstitution. A three-dimensional reconstruction at 21 A resolution was obtained, which was compared with the corresponding (previously published) reconstruction of Escherichia coli 70 S ribosomes carrying tRNAs at the A and P sites. In the region of the intersubunit cavity, the principal features observed in the 70 S ribosome (such as the L1 protuberance, the central protuberance and A site finger in the large subunit) could all be clearly identified in the 80 S particle. On the other hand, significant additional features were observed in the 80 S ribosomes on the solvent sides and lower regions of both subunits. In the case of the small (40 S) subunit, the most prominent additions are two extensions at the base of the particle. By comparing the secondary structure of the rabbit 18 S rRNA with our model for the three-dimensional arrangement of E. coli 16 S rRNA, these two extensions could be correlated with the rabbit expansion segments (each totalling ca 170 bases) in the regions of helix 21, and of helices 8, 9 and 44, respectively. A similar comparison of the secondary structures of mammalian 28 S rRNA and E. coli 23 S rRNA, combined with preliminary modelling studies on the 23 S rRNA within the 50 S subunit, enabled the additional features in the 60 S subunit to be sub-divided into five groups. The first (corresponding to a total of ca 335 extra bases in helices 45, 98 and 101) is located on the solvent side of the 60 S subunit, close to the L7/L12 area. The second (820 bases in helices 25 and 38) is centrally placed on the solvent side of the subunit, whereas the third group (totaling 225 bases in helices 18/19, 27/29, 52 and 54) lies towards the L1 side of the subunit. The fourth feature (80 bases in helices 78 and 79) lies within or close to the L1 protuberance itself, and the fifth (560 bases in helix 63) is located underneath the L1 protuberance on the interface side of the 60 S subunit.


Assuntos
RNA Ribossômico/química , RNA Ribossômico/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Animais , Sequência de Bases , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestrutura , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/ultraestrutura , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/ultraestrutura , RNA Ribossômico 28S/química , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/ultraestrutura , Coelhos , Reticulócitos/química , Ribossomos/genética , Especificidade da Espécie
15.
Nucleic Acids Res ; 23(17): 3426-33, 1995 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-7567452

RESUMO

Ribosomal protein L11 and an antibiotic, thiostrepton, bind to the same highly conserved region of large subunit ribosomal RNA and stabilize a set of NH4(+)-dependent tertiary interactions within the domain. In vitro selection from partially randomized pools of RNA sequences has been used to ask what aspects of RNA structure are recognized by the ligands. L11-selected RNAs showed little sequence variation over the entire 70 nucleotide randomized region, while thiostrepton required a slightly smaller 58 nucleotide domain. All the selected mutations preserved or stabilized the known secondary and tertiary structure of the RNA. L11-selected RNAs from a pool mutagenized only around a junction structure yielded a very different consensus sequence, in which the RNA tertiary structure was substantially destabilized and L11 binding was no longer dependent on NH4+. We propose that L11 can bind the RNA in two different 'modes', depending on the presence or absence of the NH4(+)-dependent tertiary structure, while thiostrepton can only recognize the RNA tertiary structure. The different RNA recognition mechanisms for the two ligands may be relevant to their different effects on protein synthesis.


Assuntos
RNA Ribossômico 23S/ultraestrutura , Proteínas Ribossômicas/química , Tioestreptona/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação de Hidrogênio , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Ribossômico 23S/química , Proteínas de Ligação a RNA/química , Relação Estrutura-Atividade
16.
Proc Natl Acad Sci U S A ; 91(8): 2989-93, 1994 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-8159692

RESUMO

A putative base-pairing interaction that determines the folding of the central region of 23S rRNA has been investigated by mutagenesis. Each of the possible base substitutions has been made at the phylogenetically covariant positions adenine-1262 (A1262) and U2017 in Escherichia coli 23S rRNA. Every substitution that disrupts the potential for Watson-Crick base pairing between these positions reduces or abolishes the participation of 23S rRNA in protein synthesis. All mutant 23S rRNAs are assembled into 50S subunits, but the mutant subunits are less able to stably interact with 30S subunits to form translationally active ribosomes. The function of 23S rRNA is largely reestablished by introduction of an alternative G1262.C2017 or U1262.A2017 pair, although neither of these supports polysome formation quite as effectively as the wild-type pair. A 23S rRNA with a C1262.G2017 pair is nonfunctional. In contrast to the considerable effect the mutations have on function, they impart only slight structural changes on the naked rRNA, and these are limited to the immediate vicinity of the mutations. The data show that positions 1262 and 2017 pair in a Watson-Crick manner, but the data also indicate that these nucleotides engage in additional interactions within the ribosome and that these interactions determine what base pairs are acceptable there.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico 23S/química , Sequência de Bases , Primers do DNA/química , Escherichia coli , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , RNA Ribossômico 23S/ultraestrutura , Ribossomos/ultraestrutura , Homologia de Sequência do Ácido Nucleico , Relação Estrutura-Atividade
17.
J Mol Biol ; 234(4): 1013-20, 1993 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-8263910

RESUMO

The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S rRNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S rRNA. Within the ribosome, L11 also interacts with this rRNA region, although the protection effects are subtly different and extend to nucleotide 1098. The pentameric r-protein complex L10.(L12)4 binds to an adjacent site on the rRNA, protecting riboses at positions 1043, 1046 to 1049, 1053 to 1055 and increasing the accessibility of position 1068. The overlap in the positions affected by r-proteins L11 and L10.(L12)4, and the increase in protection between positions 1078 and 1084 when they are bound at the same time, reflect the mutually cooperative nature of their interaction with the rRNA. The data support a model for the tertiary configuration of the rRNA region, in which two stem-loop structures fold so that the loops lie in close proximity, with the main ribose interactions of L11 within the minor groove of one of the stems. The conformation of the rRNA-L11 interaction is modulated by L10.(L12)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there.


Assuntos
Endorribonucleases , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/ultraestrutura , Tioestreptona/metabolismo , Sequência de Bases , Sítios de Ligação , Escherichia coli , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 23S/ultraestrutura , Proteína Ribossômica L10 , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
18.
EMBO J ; 12(4): 1499-504, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7682175

RESUMO

Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , RNA Ribossômico 23S/química , Proteínas Ribossômicas/metabolismo , Ribossomos/ultraestrutura , Sequência de Bases , Sítios de Ligação , Análise Mutacional de DNA , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Fúngico/química , RNA Fúngico/genética , RNA Ribossômico 23S/ultraestrutura , Ribossomos/metabolismo , Relação Estrutura-Atividade , Tioestreptona/metabolismo
19.
J Cell Biol ; 115(3): 597-605, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1918155

RESUMO

A reconstruction, at 40 A, of the Escherichia coli ribosome imaged by cryo-electron microscopy, obtained from 303 projections by a single-particle method of reconstruction, shows the two subunits with unprecedented clarity. In the interior of the subunits, a complex distribution of higher mass density is recognized, which is attributed to ribosomal RNA. The masses corresponding to the 16S and 23S components are linked in the region of the platform of the small subunit. Thus the topography of the rRNA regions responsible for protein synthesis can be described.


Assuntos
Escherichia coli/ultraestrutura , RNA Ribossômico/ultraestrutura , Ribossomos/ultraestrutura , Gráficos por Computador , Modelos Estruturais , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/ultraestrutura
20.
Biochim Biophys Acta ; 1050(1-3): 8-13, 1990 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-2207172

RESUMO

A large number of intra-RNA and RNA-protein cross-link sites have been localized within the 23S RNA from E. coli 50 S ribosomal subunits. These sites, together with other data, are sufficient to constrain the secondary structure of the 23 S molecule into a compact three-dimensional shape. Some of the features of this structure are discussed, in particular, those relating to the orientation of tRNA on the 50 S subunit as studied by site-directed cross-linking techniques. A corresponding model for the 16S RNA within the 30 S subunit has already been described, and here a site-directed cross-linking approach is being used to determine the path followed through the subunit by messenger RNA.


Assuntos
Escherichia coli/genética , RNA Ribossômico/genética , Sequência de Bases , Reagentes de Ligações Cruzadas , Modelos Estruturais , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Ribossômico/ultraestrutura , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...