Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440770

RESUMO

Introns are ubiquitous in eukaryotic genomes and have long been considered as 'junk RNA' but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.


Assuntos
Íntrons , Organelas/genética , RNA de Algas/genética , RNA Fúngico/genética , RNA de Plantas/genética , RNA não Traduzido/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma Fúngico , Genoma de Planta , Organelas/metabolismo , Splicing de RNA , Estabilidade de RNA , RNA de Algas/metabolismo , RNA Fúngico/metabolismo , RNA de Plantas/metabolismo , RNA não Traduzido/metabolismo , Transcrição Gênica
2.
J Plant Physiol ; 260: 153394, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33676110

RESUMO

Aureochrome, a blue-light receptor specifically found in photosynthetic stramenopiles, plays an important role in algal growth and development. It holds a reversed effector-sensor topology for the reception of blue light, acting as a candidate of optogenetic tool in transcriptional regulation. However, the inner regulatory mechanism of aureochrome is still unclear. In this study, we explored the potential regulatory relationship between microRNAs (miRNAs) and mRNAs by small RNA, transcriptome and degradome sequencing in Saccharina japonica. Through screening miRNA-mRNA interaction networks at the whole-genome level, we found that 18 miRNAs perfectly paired with aureochrome. Among these screened miRNAs, miR8181 was negatively correlated with aureochrome5 with high credibility, exhibiting tissue-specific expression in sporophyte of S. japonica. Degradome analysis further revealed the exact cleavage site of miR8181 on aureochrome5, confirming their targeting relationship. For the 54 target genes of miR8181, nine genes that exhibited similar expression to that of aureochrome5 competed for the same binding site, thus establishing a competing endogenous RNA network. Functional enrichment of the target genes revealed that miR8181 was involved in the regulation of cell differentiation and development in S. japonica. Moreover, overexpression of miR8181 resulted in significant decreases in the cell growth rates of Phaeodactylum tricornutum, suggesting negative roles of miR8181 in regulating cell growth. Our study revealed that miR8181, the targeting miRNA of aureochrome5, played negative roles in cell growth and development.


Assuntos
MicroRNAs/genética , Phaeophyceae/fisiologia , RNA de Algas/genética , RNA Mensageiro/genética , Transcriptoma , Diferenciação Celular/genética , MicroRNAs/metabolismo , Phaeophyceae/genética , RNA de Algas/metabolismo , RNA Mensageiro/metabolismo
3.
Sci Rep ; 10(1): 14269, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868853

RESUMO

Plant-pathogen interactions follow spatial and temporal developmental dynamics where gene expression in pathogen and host undergo crucial changes. Therefore, it is of great interest to detect, quantify and localise where and when key genes are active to understand these processes. Many pathosystems are not accessible for genetic amendments or other spatially-resolved gene expression monitoring methods. Here, we adapt single molecule FISH techniques to demonstrate the presence and activity of mRNAs at the single-cell level using phytomyxids in their plant and algal host in lab and field material. This allowed us to monitor and quantify the expression of genes from the clubroot pathogen Plasmodiophora brassicae, several species of its Brassica hosts, and of several brown algae, including the genome model Ectocarpus siliculosus, infected with the phytomyxid Maullinia ectocarpii. We show that mRNAs are localised along a spatiotemporal gradient, thus providing a proof-of-concept of the usefulness of single-molecule FISH to increase knowledge about the interactions between plants, algae and phytomyxids. The methods used are easily applicable to any interaction between microbes and their algal or plant host, and have therefore the potential to rapidly increase our understanding of key, spatially- and temporally-resolved processes underpinning complex plant-microbe interactions.


Assuntos
Cercozoários/fisiologia , Interações Hospedeiro-Parasita/genética , Hibridização in Situ Fluorescente , Phaeophyceae/genética , Doenças das Plantas/parasitologia , RNA Mensageiro/genética , Brassica/parasitologia , Hibridização in Situ Fluorescente/métodos , Phaeophyceae/metabolismo , Phaeophyceae/parasitologia , RNA de Algas/genética , RNA de Algas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
4.
Sci Rep ; 9(1): 10559, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332253

RESUMO

Light is a key environmental regulator in all photosynthetic organisms. Many studies focused on the physiologic response to changes in light availability of species from the Zygnematophyceae, but the impact of the absence of light and the molecular acclimation process on the other side have been poorly understood. Here we present transcriptomic analyses of Cosmarium crenatum from a polar habitat exposed to darkness. The algae were cultured in dark for one week; cell number and quantum yield of photosystem II (Fv/Fm) were monitored. Cell number was stable, but the Fv/Fm decreased in both groups, darkness-treated and control. Gene expression analysis revealed a strong repression of transcripts associated with photosynthesis, photorespiration and cell wall development. General carbohydrate and lipid metabolism were differentially regulated, but starch is shown to be the primary energy source in these conditions. Additionally, C. crenatum induced mRNA responsible for epigenetic modifications which may be a specific response to an adaption and acclimation to polar conditions. Our study sheds light on the molecular acclimation process to darkness and provides ecological implications for new perspectives in this specialized group of green algae.


Assuntos
Desmidiales/genética , Desmidiales/efeitos da radiação , Aclimatação/genética , Aclimatação/fisiologia , Aclimatação/efeitos da radiação , Carotenoides/metabolismo , Clorofila/metabolismo , Clima Frio , Escuridão , Desmidiales/fisiologia , Ecossistema , Metabolismo Energético/genética , Epigênese Genética , Expressão Gênica/efeitos da radiação , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Fotossíntese/genética , Fotossíntese/fisiologia , RNA de Algas/genética , RNA de Algas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Protist ; 168(5): 612-635, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29028580

RESUMO

The green picoalgal genus Micromonas is broadly distributed in estuaries, coastal marine habitats and open oceans, from the equator to the poles. Phylogenetic, ecological and genomic analyses of culture strains and natural populations have suggested that this cosmopolitan genus is composed of several cryptic species corresponding to genetic lineages. We performed a detailed analysis of variations in morphology, pigment content, and sequences of the nuclear-encoded small-subunit rRNA gene and the second internal transcribed spacer (ITS2) from strains isolated worldwide. A new morphological feature of the genus, the presence of tip hairs at the extremity of the hair point, was discovered and subtle differences in hair point length were detected between clades. Clear non-homoplasious synapomorphies were identified in the small-subunit rRNA gene and ITS2 spacer sequences of five genetic lineages. These findings lead us to provide emended descriptions of the genus Micromonas, of the type species M. pusilla, and of the recently described species M. commoda, as well as to describe 2 new species, M. bravo and M. polaris. By clarifying the status of the genetic lineages identified within Micromonas, these formal descriptions will facilitate further interpretations of large-scale analyses investigating ecological trends in time and space for this widespread picoplankter.


Assuntos
Clorófitas/classificação , Clorófitas/genética , Genoma , Filogenia , Sequência de Bases , Clorófitas/citologia , Pigmentos Biológicos/análise , RNA de Algas/genética , RNA Ribossômico , Alinhamento de Sequência , Especificidade da Espécie
6.
Protist ; 168(4): 425-438, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28803921

RESUMO

The knowledge of the taxonomy and classification of algae (including lichenized) has recently increased rapidly, but there are still many gaps. We aimed to 1) identify the Fuscidea photobionts by locating their taxonomic positions in the green algal classification, and 2) to resolve their interspecific relationships. The lichenized algae were examined based on morphological observations of axenic isolates as well as molecular studies of 18S and ITS nrDNA sequences. Analysis of the secondary structure of the ITS2 operon complemented these investigations. We found that the Fuscidea photobionts were placed within the Trebouxiophyceae, related to Apatococcus lobatus (Chodat) J.B.Petersen. Phylogenetic analyses revealed one clade nesting free-living and lichenized Apatococcus F.Brand which comprised six different lineages in the ITS phylogeny. The lichenized alga associated with the investigated Fuscidea species, except for F. lightfootii (Sm.) Coppins & James, represents a hitherto unknown lineage within Apatococcus. Fuscidea lightfootii was lichenized with a separate lineage within Apatococcus, together with free-living members, which were already known from Genbank sequences. All retrieved groups within Apatococcus were rather different in their ITS sequences, thus most likely corresponding to different species. The most common photobiont of Fuscidea species, Apatococcus fuscideae A.Beck & Zahradn., was described as new to science.


Assuntos
Ascomicetos/fisiologia , Clorófitas/fisiologia , Simbiose , Clorófitas/classificação , Clorófitas/genética , DNA Espaçador Ribossômico/genética , Líquens/fisiologia , Filogenia , RNA de Algas/genética , RNA Ribossômico 18S/genética , Análise de Sequência de RNA
7.
Protist ; 168(4): 468-480, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28822911

RESUMO

Phytomyxea are obligate endoparasites of angiosperm plants and Stramenopiles characterised by a complex life cycle. Here Maullinia braseltonii sp. nov., an obligate parasite infecting the bull kelp Durvillaea (Phaeophyceae, Fucales) from the South-Eastern Pacific (Central Chile and Chiloe Island) and South-Western Atlantic (Falkland Islands, UK) is described. M. braseltonii causes distinct hypertrophies (galls) on the host thalli making it easily identifiable in the field. Sequence comparisons based on the partial 18S and the partial 18S-5.8S-28S regions confirmed its placement within the order Phagomyxida (Phytomyxea, Rhizaria), as a sister species of the marine parasite Maullinia ectocarpii, which is also a parasite of brown algae. The development of resting spores in M. braseltonii is described by light and electron microscopy and confirmed by FISH experiments, which visually showed the differential expression of the 28S non-coding gene, strongly in early plasmodia and weakly in late cysts. M. braseltonii is, so far, the only phytomyxean parasite of brown algae for which the formation of resting spores has been reported, and which is widely distributed in Durvillaea stocks from the Southeastern Pacific and Southwestern Atlantic.


Assuntos
Kelp/parasitologia , RNA de Algas/genética , Rhizaria/classificação , Rhizaria/fisiologia , Chile , Ilhas Malvinas , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Rhizaria/genética , Análise de Sequência de RNA
8.
J Phycol ; 53(6): 1263-1282, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28833138

RESUMO

The family Oocystaceae (Chlorophyta) is a group of morphologically and ultrastructurally distinct green algae that constitute a well-supported clade in the class Trebouxiophyceae. Despite the family's clear delimitation, which is based on specific cell wall features, only a few members of the Oocystaceae have been examined using data other than morphological. In previous studies of Trebouxiophyceae, after the establishment of molecular phylogeny, the taxonomic status of the family was called into question. The genus Oocystis proved to be paraphyletic and some species were excluded from Oocystaceae, while a few other species were newly redefined as members of this family. We investigated 54 strains assigned to the Oocystaceae using morphological, ultrastructural and molecular data (SSU rRNA and rbcL genes) to clarify the monophyly of and diversity within Oocystaceae. Oonephris obesa and Nephrocytium agardhianum clustered within the Chlorophyceae and thus are no longer members of the Oocystaceae. On the other hand, we transferred the coenobial Willea vilhelmii to the Oocystaceae. Our findings combined with those of previous studies resulted in the most robust definition of the family to date. The division of the family into three subfamilies and five morphological clades was suggested. Taxonomical adjustments in the genera Neglectella, Oocystidium, Oocystis, and Ooplanctella were established based on congruent molecular and morphological data. We expect further taxonomical changes in the genera Crucigeniella, Eremosphaera, Franceia, Lagerheimia, Oocystis, and Willea in the future.


Assuntos
Clorófitas/classificação , Clorófitas/genética , Proteínas de Algas/genética , Clorófitas/citologia , Clorófitas/ultraestrutura , Microscopia Eletrônica de Transmissão , Filogenia , RNA de Algas/genética , Análise de Sequência de DNA
9.
Sci Rep ; 7(1): 8989, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827639

RESUMO

Nitrogen (N) is essential for the growth of algae, and its concentration varies greatly in the ocean, which has been regarded as a limitation for phytoplankton growth. Despite its great importance, most of the existing studies on the mechanisms underlying the effects of N on diatoms have focused on physiology, biochemistry and a few target genes and have rarely involved whole genomic analyses. Therefore, in this study, we integrated physiological data with RNA and protein profiling data to reveal the response strategy of Thalassiosira pseudonana under N-depleted conditions. Physiological measurements indicated that the cell growth capacity and chlorophyll content of the cells decreased, as did the expression of photosynthesis- and chlorophyll biosynthesis-related genes or proteins. The RNA-Seq profile results showed that T. pseudonana responded to N deprivation through increases in glycolysis, the TCA cycle and N metabolism as well as down-regulation in the Calvin cycle, gluconeogenesis, pentose phosphate, oxidative phosphorylation and lipid synthesis. These results provide a basic understanding for further research addressing how N affects phytoplankton in terms of genomics.


Assuntos
Proteínas de Algas/análise , Diatomáceas/fisiologia , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Proteoma/análise , RNA de Algas/análise , Estresse Fisiológico , Organismos Aquáticos/química , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Clorofila/análise , Ciclo do Ácido Cítrico , Diatomáceas/química , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Glicólise , Fotossíntese , RNA de Algas/genética
10.
J Phycol ; 53(5): 1097-1105, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28736815

RESUMO

Several new genera originally classified as the genus Phormidium, a polyphyletic and taxonomically complex genus within the Oscillatoriales, were recently described. The simple morphology of Phormidium does not reflect its genetic diversity and the delimitation of a natural group is not possible with traditional classification systems based on morphology alone. Therefore, this study used morphological, ecological, and molecular approaches to evaluate four populations morphologically similar to Ammassolinea, Kamptonema, and Ancylothrix (simple, curved, and gradually attenuated at the ends trichome), found in subtropical and tropical Brazilian regions. 16S rRNA gene sequences grouped all the strains in a highly supported clade with other two European strains isolated from thermal springs surrounding areas. The 16S-23S ITS secondary structure corroborated the phylogenetic analysis with all the strains having similar structures. Consequently, a genetically well-defined and cryptic new genus, Koinonema gen. nov., is proposed containing the aquatic, mesophilic, and morphologically homogeneous new species, Koinonema pervagatum sp. nov.


Assuntos
Cianobactérias/classificação , Cianobactérias/fisiologia , Brasil , Cianobactérias/citologia , Cianobactérias/genética , DNA Espaçador Ribossômico/genética , Filogenia , RNA de Algas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de RNA
11.
Sci Rep ; 7(1): 5462, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710366

RESUMO

The unicellular alga Chlamydomonas reinhardtii contains many types of small RNAs (sRNAs) but the biological role(s) of bona fide microRNAs (miRNAs) remains unclear. To address their possible function(s) in responses to nutrient availability, we examined miRNA expression in cells cultured under different trophic conditions (mixotrophic in the presence of acetate or photoautotrophic in the presence or absence of nitrogen). We also reanalyzed miRNA expression data in Chlamydomonas subject to sulfur or phosphate deprivation. Several miRNAs were differentially expressed under the various trophic conditions. However, in transcriptome analyses, the majority of their predicted targets did not show expected changes in transcript abundance, suggesting that they are not subject to miRNA-mediated RNA degradation. Mutant strains, defective in sRNAs or in ARGONAUTE3 (a key component of sRNA-mediated gene silencing), did not display major phenotypic defects when grown under multiple nutritional regimes. Additionally, Chlamydomonas miRNAs were not conserved, even in algae of the closely related Volvocaceae family, and many showed features resembling those of recently evolved, species-specific miRNAs in the genus Arabidopsis. Our results suggest that, in C. reinhardtii, miRNAs might be subject to relatively fast evolution and have only a minor, largely modulatory role in gene regulation under diverse trophic states.


Assuntos
Chlamydomonas reinhardtii/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Fosfatos/deficiência , RNA de Algas/genética , Enxofre/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Argonautas/deficiência , Proteínas Argonautas/genética , Evolução Biológica , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , MicroRNAs/metabolismo , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Fosfatos/farmacologia , Filogenia , RNA de Algas/metabolismo , Enxofre/farmacologia
12.
BMC Biol ; 15(1): 65, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738898

RESUMO

BACKGROUND: Biological mineral formation (biomineralization) proceeds in specialized compartments often bounded by a lipid bilayer membrane. Currently, the role of membranes in biomineralization is hardly understood. RESULTS: Investigating biomineralization of SiO2 (silica) in diatoms we identified Silicanin-1 (Sin1) as a conserved diatom membrane protein present in silica deposition vesicles (SDVs) of Thalassiosira pseudonana. Fluorescence microscopy of GFP-tagged Sin1 enabled, for the first time, to follow the intracellular locations of a biomineralization protein during silica biogenesis in vivo. The analysis revealed incorporation of the N-terminal domain of Sin1 into the biosilica via association with the organic matrix inside the SDVs. In vitro experiments showed that the recombinant N-terminal domain of Sin1 undergoes pH-triggered assembly into large clusters, and promotes silica formation by synergistic interaction with long-chain polyamines. CONCLUSIONS: Sin1 is the first identified SDV transmembrane protein, and is highly conserved throughout the diatom realm, which suggests a fundamental role in the biomineralization of diatom silica. Through interaction with long-chain polyamines, Sin1 could serve as a molecular link by which the SDV membrane exerts control on the assembly of biosilica-forming organic matrices in the SDV lumen.


Assuntos
Diatomáceas/genética , Diatomáceas/metabolismo , Proteínas de Membrana/genética , RNA de Algas/genética , Dióxido de Silício/metabolismo , Proteínas de Membrana/metabolismo , RNA de Algas/metabolismo
13.
Mar Genomics ; 36: 49-55, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28625778

RESUMO

Studying taxonomic and ecological diversity of phytoplankton assemblages is often difficult because morphological analysis cannot provide a complete description of their composition. Therefore, more robust and feasible approaches have to be chosen to elucidate the interactions between environmental and human pressures and phytoplankton assemblages. The Ocean Sampling Day (OSD) allowed collecting seawater samples from a wide range of oceanic regions including the Mediterranean Sea. In this study, a total of 754,167 V4-18S ribosomal DNA (rDNA) metabarcodes derived from 20 plankton samples collected at 19 sampling sites across the coastal areas of the Mediterranean Sea were analyzed to explore the relationships between phytoplankton assemblages' composition, sub-regional environmental features and human pressures. We reduced the whole set of autotroph plankton (1398 OTUs) to a smaller number of ecologically relevant entities (205 taxa) and used the latter for analysing the structure of phytoplankton assemblages. Chaetoceros was the only genus occurring in all the samples, while the number of taxa was maximum in the W Mediterranean. Based on the assigned OTUs, the structure of E Mediterranean phytoplankton was the most homogeneous. Further, phytoplankton assemblages from the three Mediterranean sub-regions (Western, Adriatic and Eastern) were significantly different (R=0.25, p=0.0136) based on Jaccard similarity. We also observed that phytoplankton diversity and human impact on marine ecosystems were not significantly related to each other based on Mantel's test.


Assuntos
Biodiversidade , Fitoplâncton/classificação , Fitoplâncton/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Mar Mediterrâneo , Microalgas/classificação , Microalgas/genética , Microalgas/fisiologia , Fitoplâncton/genética , RNA de Algas/genética , RNA Ribossômico 18S/genética
14.
PLoS One ; 12(3): e0172135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278262

RESUMO

Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 µmol photons m-2 s-1 supplied in the HL treatment. NIRFU's domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.


Assuntos
Proteínas de Algas/genética , Clorófitas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Raios Ultravioleta , Clorófitas/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Algas/genética , Análise de Sequência de RNA
15.
J Phycol ; 53(3): 567-576, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28191634

RESUMO

The temporal dimension of the most recent Corallinaceae (order Corallinales) phylogeny was presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a separation of Corallinales from Hapalidiales in the Albian (Early Cretaceous ~105 mya). Neither the calibration nor the fossil record resolved the succession of appearance of the first three emerging subfamilies: Mastophoroideae, Corallinoideae, and Neogoniolithoideae. The development of the tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials was an evolutionary novelty emerging at the Cretaceous-Paleogene boundary (~66 mya). This novelty was shared by the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae, which diverged in the early Paleogene. Subclades within the Metagoniolithoideae and Lithophylloideae diversified in the late Oligocene-middle Miocene (~28-12 mya). The most common reef corallinaceans (Hydrolithon, Porolithon, Harveylithon, "Pneophyllum" conicum, and subclades within Lithophylloideae) appeared in this interval in the Indo-Australian Archipelago.


Assuntos
Evolução Biológica , Rodófitas/genética , Proteínas de Algas/genética , Evolução Molecular , Fósseis , Filogenia , RNA de Algas/genética , Rodófitas/classificação
16.
J Phycol ; 52(6): 1018-1036, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27549783

RESUMO

Pennate diatoms are important contributors to primary production in freshwater and marine habitats. But the extent of their diversity, ecology, and evolution is still largely unknown. This is particularly evident among the clades of pennate diatoms without raphe slits, whose diversity is likely underestimated due to their small size and features that can be difficult to discern under light microscopy. In this study, we described five new araphid genera with eight new species based on morphological observations (light and electron microscopy) and molecular data (nuclear-encoded small subunit ribosomal RNA and chloroplast-encoded rbcL and psbC): Serratifera varisterna, Hendeyella rhombica, H. dimeregrammopsis, H. lineata, Psammotaenia lanceolata, Castoridens striata, C. hyalina, and Cratericulifera shandongensis. We also transferred Dimeregramma dubium to Hendeyella dubia. Phylogenetic analysis of the molecular data revealed that all the newly established taxa fell into a monophyletic group, with Fragilariforma virescens located at the base. The group was composed by two subclades: one comprising Castoridens, Cratericulifera, and Plagiostriata, and the larger including also the rest of the new genera plus some of the smallest known diatoms, such as Nanofrustulum, Opephora, Pseudostaurosira, Staurosirella, and Staurosira with a high level of support. This study enhances the general knowledge on the phylogeny and biodiversity of a group of small araphid diatoms that have been generally poorly described both by electron microscopy and DNA sequence data.


Assuntos
Biodiversidade , Diatomáceas/genética , Diatomáceas/ultraestrutura , Proteínas de Algas/genética , DNA Ribossômico/genética , Diatomáceas/classificação , Diatomáceas/citologia , Microscopia Eletrônica , Filogenia , RNA de Algas/genética
17.
J Phycol ; 52(5): 704-715, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27403596

RESUMO

The marine, sand-dwelling green alga Kraftionema allantoideum gen. et sp. nov. is described from clonal cultures established from samples collected in coastal, high intertidal pools from south eastern Australia. The species forms microscopic, uniseriate, unbranched, 6-8 µm wide filaments surrounded by a gelatinous capsule of varying thickness. Filaments are twisted, knotted, and variable in length from 4 to 50 cells in field samples but straighter and much longer in culture, up to 1.5 mm in length. Cell division occurs in several planes, resulting in daughter cells of varying shape, from square to rectangular to triangular, giving rise to gnarled filaments. Mature cells become allantoid, elongate with rounded ends, before dividing one time to form bicells comprised of two domed cells. Adjacent bicells separate from one another and mature filaments appeared as a string of loosely arranged sausages. A massive, single, banded chloroplast covered 3/4 of the wall circumference, and contained a single large pyrenoid encased in a starch envelope that measures 1.5-2.5 µm. Filaments were not adhesive nor did they produce specialized adhesive cells or structures. Reproduction was by fragmentation with all cells capable of producing a new filament. No motile or reproductive cells were observed. Filaments in culture grew equally well in freshwater or marine media, as well as at high salinity, and cells quickly recovered from desiccation. Phylogenetic analysis based on the nuclear-encoded small subunit ribosomal RNA (18S) shows the early branching nature of the Kraftionema lineage among Ulotrichales, warranting its recognition as a family (Kraftionemaceae).


Assuntos
Adaptação Fisiológica/fisiologia , Organismos Aquáticos/classificação , Clorófitas/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/ultraestrutura , Clorófitas/genética , Clorófitas/ultraestrutura , Microscopia Eletrônica de Transmissão , New South Wales , Filogenia , RNA de Algas/genética , RNA Ribossômico 18S/genética , Análise de Sequência de RNA , Especificidade da Espécie , Vitória
18.
PLoS One ; 11(7): e0155839, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27434306

RESUMO

Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 µm diameter) is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3' UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas.


Assuntos
Proteínas de Algas/genética , Clorófitas/genética , Regulação da Expressão Gênica de Plantas , Proteômica , RNA de Algas/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Proteínas de Algas/metabolismo , Clorófitas/metabolismo , Códon , Ontologia Genética , Anotação de Sequência Molecular , Fotoperíodo , Fotossíntese/genética , Biossíntese de Proteínas , RNA de Algas/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
19.
Appl Environ Microbiol ; 82(19): 5878-91, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451454

RESUMO

UNLABELLED: The use of high-throughput sequencing technologies with the 16S rRNA gene for characterization of bacterial and archaeal communities has become routine. However, the adoption of sequencing methods for eukaryotes has been slow, despite their significance to natural and engineered systems. There are large variations among the target genes used for amplicon sequencing, and for the 18S rRNA gene, there is no consensus on which hypervariable region provides the most suitable representation of diversity. Additionally, it is unclear how much PCR/sequencing bias affects the depiction of community structure using current primers. The present study amplified the V4 and V8-V9 regions from seven microalgal mock communities as well as eukaryotic communities from freshwater, coastal, and wastewater samples to examine the effect of PCR/sequencing bias on community structure and membership. We found that degeneracies on the 3' end of the current V4-specific primers impact read length and mean relative abundance. Furthermore, the PCR/sequencing error is markedly higher for GC-rich members than for communities with balanced GC content. Importantly, the V4 region failed to reliably capture 2 of the 12 mock community members, and the V8-V9 hypervariable region more accurately represents mean relative abundance and alpha and beta diversity. Overall, the V4 and V8-V9 regions show similar community representations over freshwater, coastal, and wastewater environments, but specific samples show markedly different communities. These results indicate that multiple primer sets may be advantageous for gaining a more complete understanding of community structure and highlight the importance of including mock communities composed of species of interest. IMPORTANCE: The quantification of error associated with community representation by amplicon sequencing is a critical challenge that is often ignored. When target genes are amplified using currently available primers, differential amplification efficiencies result in inaccurate estimates of community structure. The extent to which amplification bias affects community representation and the accuracy with which different gene targets represent community structure are not known. As a result, there is no consensus on which region provides the most suitable representation of diversity for eukaryotes. This study determined the accuracy with which commonly used 18S rRNA gene primer sets represent community structure and identified particular biases related to PCR amplification and Illumina MiSeq sequencing in order to more accurately study eukaryotic microbial communities.


Assuntos
Biota , Primers do DNA/análise , Monitoramento Ambiental/métodos , Microalgas/classificação , Reação em Cadeia da Polimerase/normas , RNA Ribossômico 18S/genética , Primers do DNA/genética , Água Doce , Microalgas/genética , RNA de Algas/genética , Água do Mar , Águas Residuárias
20.
J Phycol ; 52(3): 397-403, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27273532

RESUMO

An unknown microscopic, branched filamentous red alga was isolated into culture from coral fragments collected in Coral Bay, Western Australia. It grew well unattached or attached to glass with no reproduction other than fragmentation of filaments. Cells of some branch tips became slightly contorted and digitated, possibly as a substrate-contact-response seen at filament tips of various algae. Attached multicellular compact disks on glass had a very different cellular configuration and size than the free filaments. In culture the filaments did not grow on or in coral fragments. Molecular phylogenies based on four markers (rbcL, cox1, 18S, 28S) clearly showed it belongs to the order Rhodogorgonales, as a sister clade of Renouxia. Based on these results, the alga is described as the new genus and species Rhodenigma contortum in the Rhodogorgonaceae. It had no morphological similarity to either of the other genera in Rhodogorgonaceae and illustrates the unknown diversity in cryptic habitats such as tropical coral rubble.


Assuntos
Rodófitas/anatomia & histologia , Rodófitas/classificação , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Filogenia , RNA de Algas/genética , RNA de Algas/metabolismo , Rodófitas/genética , Análise de Sequência de DNA , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...