Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 769
Filtrar
1.
Biomed Pharmacother ; 173: 116450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503239

RESUMO

Cisplatin not only targets DNA but also RNA. However, it is largely unknown whether platinated RNA (Pt-RNA) causes apoptosis and thus contributes to the cytotoxic effects of cisplatin. Consequently, cellular RNA was isolated from HepG2 and LS180 cells, exposed to cisplatin, and the resulting Pt-RNA (20 ng Pt/µg RNA) was transfected into these cancer cell lines or used to treat an apoptosis reporter Caenorhabditis elegans (C. elegans) strain (MD701, expressing CED-1::GFP). Cellular and molecular effects of Pt-RNA were evaluated by luminogenic caspase 3/7 assays, PCR array analysis, and fluorescence microscopy-based quantification of apoptosis in C. elegans gonads. Assuming RNA cross-linking (pseudo double-stranded RNA), the contribution of the Toll-like receptor 3 (TLR3, a sensor of double-stranded RNA) to apoptosis induction in cancer cell lines was investigated by pharmacological TLR3 inhibition and overexpression. In contrast to controls, Pt-RNA significantly enhanced apoptosis in C. elegans (2-fold) and in the cancer cell lines (2-fold to 4-fold). TLR3 overexpression significantly enhanced the pro-apoptotic effects of Pt-RNA in HepG2 cells. TLR3 inhibition reduced the pro-apoptotic effects of Pt-RNA and cisplatin, but not of paclitaxel (off-target control). Gene expression analysis showed that Pt-RNA (but not RNA) significantly enhanced the mRNA levels of nuclear factor kappa B subunit 2 and interleukin-8 in HepG2 cells, suggesting that Pt-RNA is a damage-associated molecular pattern that additionally causes pro-inflammatory responses. Together, this data suggests that not only DNA but also cellular RNA is a functionally relevant target of cisplatin, leading to pro-apoptotic and immunogenic effects.


Assuntos
Cisplatino , Neoplasias , Animais , Cisplatino/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Apoptose , Linhagem Celular Tumoral , DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Pest Manag Sci ; 80(4): 2170-2178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284497

RESUMO

BACKGROUND: Rhizoctonia solani Kühn is a pathogenic fungus causing tobacco target spot disease, and leads to great losses worldwide. At present, resistant varieties and effective control strategy on tobacco target spot disease are very limited. Host-induced gene silencing (HIGS) as well as the exogenous dsRNA can be used to suppress disease progression, and reveal the function of crucial genes involved in the growth and pathogenesis of the fungus. RESULTS: The silencing of endoPGs or RPMK1 in host plants by TRV-based HIGS resulted in a significant reduction in disease development in Nicotiana benthamiana. In vitro analysis validated that red fluorescence signals were consistently observed in the hyphae treated with Cy3-fluorescein-labeled dsRNA at 12, 24, 48 and 72 h postinoculation (hpi). Additionally, application of dsRNA-endoPGs, dsRNA-RPMK1 and dsRNA-PGMK (fusion of partial endoPGs and RPMK1 sequences) effectively inhibited the hyphal growth of R. solani YC-9 in vitro and suppressed disease progression in the leaves, and quantitative real-time PCR confirmed that the application of dsRNAs significantly reduced the expression levels of endoPGs and RPMK1. CONCLUSION: These results provide theoretical basis and new direction for RNAi approaches on the prevention and control of disease caused by R. solani. © 2024 Society of Chemical Industry.


Assuntos
Nicotiana , RNA de Cadeia Dupla , Nicotiana/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Rhizoctonia , Progressão da Doença
3.
Mol Plant Pathol ; 25(1): e13417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279851

RESUMO

Stability and delivery are major challenges associated with exogenous double-stranded RNA (dsRNA) application into plants. We report the encapsulation and delivery of dsRNA in cationic poly-aspartic acid-derived polymer (CPP6) into plant cells. CPP6 stabilizes the dsRNAs during long exposure at varied temperatures and pH, and protects against RNase A degradation. CPP6 helps dsRNA uptake through roots or foliar spray and facilitates systemic movement to induce endogenous gene silencing. The fluorescence of Arabidopsis GFP-overexpressing transgenic plants was significantly reduced after infiltration with gfp-dsRNA-CPP6 by silencing of the transgene compared to plants treated only with gfp-dsRNA. The plant endogenous genes flowering locus T (FT) and phytochrome interacting factor 4 (PIF4) were downregulated by a foliar spray of ft-dsRNA-CPP6 and pif4-dsRNA-CPP6 in Arabidopsis, with delayed flowering and enhanced biomass. The rice PDS gene targeted by pds-dsRNA-CPP6 through root uptake was effectively silenced and plants showed a dwarf and albino phenotype. The NaCl-induced OsbZIP23 was targeted through root uptake of bzip23-dsRNA-CPP6 and showed reduced transcripts and seedling growth compared to treatment with naked dsRNA. The negative regulators of plant defence SDIR1 and SWEET14 were targeted through foliar spray to provide durable resistance against bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Overall, the study demonstrates that transient silencing of plant endogenous genes using polymer-encapsulated dsRNA provides prolonged and durable resistance against Xoo, which could be a promising tool for crop protection and for sustaining productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infecções Bacterianas , RNA de Cadeia Dupla/farmacologia , Arabidopsis/metabolismo , Inativação Gênica , Infecções Bacterianas/genética , Polímeros/metabolismo , Polímeros/farmacologia , Doenças das Plantas/microbiologia , Interferência de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Pest Manag Sci ; 80(2): 896-904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816139

RESUMO

BACKGROUND: In recent years, the use of the RNA interference technology (RNAi) has emerged as one of the new strategies for species-specific control of insect pests. Its specificity depends on the distinctiveness of the target gene sequence for a given species. In this work, we assessed in the pea aphid Acyrthosiphon pisum (A. pisum) the use of a double-stranded RNA (dsRNA) that targets the ß2 divergent nicotinic acetylcholine receptor (nAChR) subunit (dsRNA-ß2), which shares low sequence identity with other subunits, to control populations of this pest at different developmental stages. Because nAChRs are targeted by neonicotinoid insecticides such as imidacloprid, we also assessed the effect of dsRNA-ß2 coupled to this insecticide on aphid survival. Finally, because the effect of a control agent on beneficial insect must be considered before any use of new pest management strategies, the acute toxicity of dsRNA-ß2 combined with imidacloprid was evaluated on honeybee Apis mellifera. RESULTS: In this work, we demonstrated that dsRNA-ß2 alone has an insecticidal effect on aphid larvae and adults. Moreover, dsRNA-ß2 and imidacloprid effects on aphid larvae and adults were additive, meaning that dsRNA-ß2 did not alter the efficacy of imidacloprid on these two developmental stages. Also, no obvious acute toxicity on Apis mellifera was reported. CONCLUSION: Using RNAi that targets ß2 divergent nAChR subunit is effective alone or combined with imidacloprid to control A. pisum at larval and adult stages. Because no obvious Apis mellifera mortality has been reported, this RNAi-based pest management strategy should be considered to control insect pest. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Afídeos , Inseticidas , Nitrocompostos , Receptores Nicotínicos , Abelhas/genética , Animais , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Larva , Pisum sativum , Afídeos/genética , Afídeos/metabolismo , Neonicotinoides/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Inseticidas/farmacologia , Interferência de RNA , Insetos/genética
5.
Pest Manag Sci ; 80(2): 905-909, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822012

RESUMO

BACKGROUND: Implementation of resistance management tools is crucial for the continued efficacy of insect control technologies. An important aspect of insect resistance management (IRM) is the combined or sequential use of different modes-of-action to reduce selection pressure and delay evolution of resistance. This is especially important for insect pests with established ability to develop resistance to insecticides, such as the Colorado potato beetle (Leptinotarsa decemlineata, CPB). A new class of insecticides, based on double-stranded RNA (dsRNA) activating the gene silencing RNA-interference (RNAi) pathway, are currently under review for regulatory approval and commercial use in the USA against CPB. However, there is no information available on the potential for cross-resistance between RNAi insecticides and other classes of insecticides used against CPB. Herein, we aim to fill this knowledge gap by capitalizing on the availability of a CPB strain highly resistant to dsRNAs and test its susceptibility to diverse small-molecule insecticide classes compared to reference dsRNA-susceptible CPB strains. RESULTS: Differences in activity were observed among the four insecticides tested, with abamectin demonstrating highest activity against all three strains of CPB. However, no differences were observed among the dsRNA-resistant and susceptible CPB strains for any of the tested compounds. Overall, these results demonstrate lack of cross-resistance to commonly used chemical insecticides in the dsRNA-resistant strain of CPB. CONCLUSION: These data support the use of these different insecticide classes along with RNAi-based insecticides as part of an effective insect resistance management framework aimed at delaying resistance in CPB. © 2023 Society of Chemical Industry.


Assuntos
Besouros , Inseticidas , Praguicidas , Solanum tuberosum , Animais , Besouros/genética , Larva , Inseticidas/farmacologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Praguicidas/farmacologia , Solanum tuberosum/genética , Interferência de RNA
6.
Blood Adv ; 7(22): 7087-7099, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37824841

RESUMO

Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Transdução de Sinais , Camundongos , Humanos , Animais , Criança , Ligantes , RNA de Cadeia Dupla/farmacologia , Linfócitos B
7.
Pestic Biochem Physiol ; 195: 105548, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666591

RESUMO

The utilization of RNA interference (RNAi) for pest management has garnered global interest. The bioassay results suggested the knockout of the PxRdl2 gene significantly increased the insecticidal activities of the γ-aminobutyric acid receptor (GABAR)-targeting compounds (fipronil, two pyrazoloquinazolines, and two isoxazolines), thereby presenting a viable target gene for RNAi-mediated pest control. Consequently, we suggest enhancing the insecticidal activities of GABAR-targeting compounds by knockdown the transcript level of PxRdl2. Furthermore, PxRdl2 dsRNA was expressed in HT115 Escherichia coli to reduce costs and protect dsRNA against degradation. In comparison to in vitro synthesized dsRNA, the recombinant bacteria (ds-B) exhibited superior interference efficiency and greater stability when exposed to UV irradiation. Collectively, our results provide a strategy for insecticide spray that combines synergistically with insecticidal activities by suppressing PxRdl2 using ds-B and may be beneficial for reducing the usage of insecticide and slowing pest resistance.


Assuntos
Inseticidas , Lepidópteros , Animais , Inseticidas/farmacologia , Bioensaio , Escherichia coli/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia
8.
Mol Biol Rep ; 50(10): 8421-8429, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620739

RESUMO

BACKGROUND: Venturia inaequalis is an apple scab causing fungal pathogen. It is a highly contagious and destructive pathogen which rapidly spreads infection in the surrounding orchards if not managed. The management and control of disease require multiple fungicides to be sprayed at different development stages of the apple. Persistent applications of fungicides also raises environmental concerns. Here, we demonstrate the potential of using spray induced gene silencing (SIGS) by developing target specific gene constructs for the synthesis of corresponding double-stranded RNA (dsRNA). METHODS AND RESULTS: The exogenous application of dsRNAs was found to reduce mycelial growth and spore formation of V. inaequalis on culture plates. Four genes of V. inaequalis viz. CIN1, CE5, VICE12 and VICE16 which get upregulated during infection, were selected as targets for the development of gene construct expressing the corresponding dsRNA. The effect of exogenously supplied in vitro synthesized dsRNA on V. inaequalis was assessed in culture bioassay experiments with respect to growth, and spore formation. The expression level of the target genes in treated and control fungus was evaluated using quantitative PCR. Fungus treated with VICE12 targeted dsRNA showed maximum reduction in colony size (~ 55%), conidia formation (~ 93%) and expression level of the corresponding gene (2.2 fold), which was followed by CIN1-dsRNA. VICE16-dsRNA treatment was least effective with 32% reduction in growth, the non-significant effect of conidial spore formation and 1.13 fold down regulation of corresponding target gene expression level. CONCLUSION: The result of this investigation validates the hypothesis that RNAi is evoked in V. inaequalis by exogenously supplied dsRNA and spray induced gene silencing (SIGS) based solutions may reduce burden of fungicide usage on apple crop against apple scab disease in future.


Assuntos
Ascomicetos , Fungicidas Industriais , Malus , Fungicidas Industriais/farmacologia , Ascomicetos/genética , Interferência de RNA , Regulação para Baixo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
9.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902311

RESUMO

It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells. Treating bone marrow cells with dsRNA stimulated the growth of colonies, mainly cells of the granulocyte-macrophage lineage. A total of 0.8% of Krebs-2 cells internalized FAM-dsRNA and were simultaneously CD34+ cells. dsRNA in its native state was delivered into the cell, where it was present without any signs of processing. dsRNA binding to a cell was independent of cell charge. dsRNA internalization was related to the receptor-mediated process that requires energy from ATP. Synthetic dsRNA did not degrade in the bloodstream for at least 2 h. Hematopoietic precursors that had captured dsRNA reinfused into the bloodstream and populated the bone marrow and spleen. This study, for the first time, directly proved that synthetic dsRNA is internalized into a eukaryotic cell via a natural mechanism.


Assuntos
Células-Tronco Hematopoéticas , RNA de Cadeia Dupla , Animais , Camundongos , RNA de Cadeia Dupla/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Antígenos CD34/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
10.
Inflammation ; 46(3): 808-823, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36763254

RESUMO

Recognition of nucleic acids as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) promotes an inflammatory response. On the other hand, LL-37, an antimicrobial peptide, is a multifunctional modulator of immune response, though whether it modulates inflammatory responses induced by nucleic acids in oral keratinocytes is unknown. In this study, we firstly investigated the effect of LL-37 on CXCL10 induced by DAMPs and PAMPs in immortalized oral keratinocytes, RT7. Furthermore, the effects of LL-37 on translocation of exogenous nucleic acids into cytoplasm as well as cytosolic receptor, RIG-I on immune responses mediated by LL-37-nucleic acid complexes were examined. From these results, LL-37 enhanced necrotic cell supernatant (NCS)-induced CXCL10 expression in RT7, while the response was decreased by RNase. Complexes of LL-37 and double-stranded (ds) RNA, Poly(I:C) enhanced CXCL10 expression in comparison with each alone, which were associated with NF-κB activation. Furthermore, LL-37 was shown to bind with ds nucleotides and translocate into cytoplasm. Knockdown of RIG-I decreased expression of CXCL10 induced by LL-37-Poly(I:C) complexes, and RIG-I were co-localized with Poly(I:C) entered by LL-37 in cytoplasm. LL-37 modulates dsRNA-mediated inflammatory response via RIG-I in oral keratinocytes, which may play an important role in the pathogenesis of oral inflammatory diseases.


Assuntos
Queratinócitos , Moléculas com Motivos Associados a Patógenos , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/farmacologia , Queratinócitos/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/farmacologia , Poli I-C/farmacologia , Imunidade
11.
Autophagy ; 19(6): 1678-1692, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36409297

RESUMO

Mitophagy is a form of autophagy that selectively removes damaged mitochondria and attenuates mitochondrial-dependent apoptosis during viral infection, but how arboviruses balance mitophagy and apoptosis to facilitate persistent viral infection in insect vectors without causing evident fitness cost remains elusive. Here, we identified mitochondrial VDAC1 (voltage-dependent anion channel 1) that could be hijacked by nonstructural protein Pns11 of rice gall dwarf virus (RGDV), a plant nonenveloped double-stranded RNA virus, to synergistically activate pro-viral extensive mitophagy and limited apoptosis in leafhopper vectors. The direct target of fibrillar structures constructed by Pns11 with VDAC1 induced mitochondrial degeneration. Moreover, the degenerated mitochondria were recruited into Pns11-induced phagophores to initiate mitophagy via interaction of VDAC1 with Pns11 and an autophagy protein, ATG8. Such mitophagy mediated by Pns11 and VDAC1 required the classical PRKN/Parkin-PINK1 pathway. VDAC1 regulates apoptosis by controlling the release of apoptotic signaling molecules through its pore, while the anti-apoptotic protein GSN (gelsolin) could bind to VDAC1 pore. We demonstrated that the interaction of Pns11 with VDAC1 and gelsolin decreased VDAC1 expression but increased GSN expression, which prevented the extensive apoptotic response in virus-infected regions. Meanwhile, virus-induced mitophagy also effectively prevented extensive apoptotic response to decrease apoptosis-caused insect fitness cost. The subsequent fusion of virus-loaded mitophagosomes with lysosomes is prevented, and thus such mitophagosomes are exploited for persistent spread of virions within insect bodies. Our results reveal a new strategy for arboviruses to balance and exploit mitophagy and apoptosis, resulting in an optimal intracellular environment for persistent viral propagation in insect vectors.Abbreviations: ATG: autophagy related; BNIP3: BCL2 interacting protein 3; CYCS/CytC: cytochrome c, somatic; dsGSN: double-stranded RNAs targeting GSN/gelsolin; dsGFP: double-stranded RNAs targeting green fluorescent protein; dsPRKN: double-stranded RNAs targeting PRKN; dsPns11: double-stranded RNAs targeting Pns11; dsRNA: double-stranded RNA; EC: epithelia cell; GST: glutathione S-transferase; LAMP1: lysosomal associated membrane protein 1; Mito: mitochondrion; Mmg: middle midgut; MP, mitophagosome; PG, phagophore. padp: post-first access to diseased plants; PINK1: PTEN induced kinase 1; RGDV: rice gall dwarf virus; SQSTM1: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VDAC1: voltage dependent anion channel 1.


Assuntos
Infecções por Arbovirus , Hemípteros , Animais , Mitofagia/genética , Hemípteros/genética , Hemípteros/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , RNA de Cadeia Dupla/farmacologia , Gelsolina/genética , Gelsolina/metabolismo , Gelsolina/farmacologia , Autofagia , Apoptose , Proteínas Quinases/metabolismo
12.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012653

RESUMO

Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Inseticidas/farmacologia , Nitrocompostos/farmacologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Sinapsinas/genética , Transmissão Sináptica , Tiametoxam/farmacologia
13.
Pestic Biochem Physiol ; 186: 105178, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973767

RESUMO

Spodoptera exigua (Lepidoptera, Noctuidae) has been responsible for causing considerable and widespread agricultural losses worldwide. Owing to strong selective pressure, S. exigua showed increased resistance to Lufenuron (LUF). Consequently, RNA interference (RNAi)-based insecticides had more benefits than chemical insecticides. Therefore, to enhance the insecticidal activity of LUF to S. exigua, in the present study, we aimed to elucidate the impact of double-stranded RNAs (dsRNAs) on S. exigua larval susceptibility to LUF. First, the transcriptome of S. exigua was sequenced following the treatment with LUF. By comparing the upregulated and downregulated GO enrichment, chitin binding and chitin metabolic processes were the significantly enriched pathways. According to transcriptome sequencing, 8 genes associated with chitin biosynthesis, 8 chitin degradation genes, and 17 cuticle protein genes were obtained. UDP-N-acetylglucosamine pyrophosphorylase (UAP) and Chitin synthase A (CHSA) showed significantly downregulated expression after treatment with different sublethal doses of LUF. Downregulation of UAP increased mortality from 31.97% to 47.91% when the larvae were exposed to LUF. A significant increase in the mortality of S. exigua from 30.63% to 50.19% was observed following LUF administration after dsCHSA. In addition, the expression analysis of genes associated with chitin biosynthesis was significantly changed after LUF treatment, dsRNAs-RNAi, and their combination (LUF-dsRNAs). Significant differences were observed in the chitin content between the control group at 72 h after treatments. Results of the present study can help further elucidate the understanding of the combined effects of RNAi and LUF on S. exigua. Additionally, this research provides a suitable foundation for future studies with the aim to develop an efficient method of delivery for large-scale pest control in the fields.


Assuntos
Quitina Sintase , Inseticidas , Animais , Benzamidas , Quitina/farmacologia , Quitina Sintase/genética , Quitina Sintase/metabolismo , Fluorocarbonos , Inseticidas/metabolismo , Inseticidas/farmacologia , Larva/genética , Larva/metabolismo , Nucleotidiltransferases , RNA de Cadeia Dupla/farmacologia , Spodoptera
14.
Pestic Biochem Physiol ; 184: 105121, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715059

RESUMO

Pesticide resistance in pests drives the development of RNA interference (RNAi)-based technology as a novel approach for pest control. To investigate the effects of the positional dependency of double-stranded RNAs (dsRNAs), we newly designed four different 200 bp dsRNAs targeting Colorado potato beetle (CPB) ß-Actin gene, termed as dsACT200-1 to dsACT200-4, to compare their insecticidal activity to CPB larvae together with our previously used 200 bp and 700 bp dsRNAs (dsACT200 and dsACT700), respectively (He et al., 2020a). Each of dsRNAs harbors different numbers of expected siRNAs predicted by sequence-based prediction platform, dsACT200 and dsACT200-2 have a relatively higher number of siRNA than other 200 bps dsRNAs. When CPB larvae were fed with in vitro synthesized dsRNA-painted potato leaves, all the tested dsRNAs showed significant effects to protect against CPB larvae. Combined with the survival rate of CPB larvae, ß-Actin gene expression level and the surviving CPB larvae weight, various positional dsRNAs from the same allele showed different plant protection activity against CPB larvae and partially correlated with the predicted siRNA numbers and distribution on the target sequence. This study suggests the specific allelic locus for rational dsRNA design triggering RNAi efficiency for target gene silencing is an essential factor in enhancing the insecticidal activity.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Actinas/genética , Actinas/metabolismo , Actinas/farmacologia , Animais , Inseticidas/farmacologia , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
15.
Neurotherapeutics ; 19(4): 1381-1400, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35655111

RESUMO

Double-stranded RNA (dsRNA)-activated kinase (PKR) is an important component in inflammation and immune dysfunction. However, the role of PKR in neuropathic pain remains unclear. Here, we showed that lumbar 5 spinal nerve ligation (SNL) led to a significant increase in the level of phosphorylated PKR (p-PKR) in both the dorsal root ganglia (DRG) and spinal dorsal horn. Images of double immunofluorescence staining revealed that p-PKR was expressed in myelinated A-fibers, unmyelinated C-fibers, and satellite glial cells in the DRG. In the dorsal horn, p-PKR was located in neuronal cells, astrocytes, and microglia. Data from behavioral tests showed that intrathecal (i.t.) injection of 2-aminopurine (2-AP), a specific inhibitor of PKR activation, and PKR siRNA prevented the reductions in PWT and PWL following SNL. Established neuropathic pain was also attenuated by i.t. injection of 2-AP and PKR siRNA, which started on day 7 after SNL. Prior repeated i.t. injections of PKR siRNA prevented the SNL-induced degradation of IκBα and IκBß in the cytosol and the nuclear translocation of nuclear factor κB (NF-κB) p65 in both the DRG and dorsal horn. Moreover, the SNL-induced increase in interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production was diminished by this treatment. Collectively, these results suggest that peripheral nerve injury-induced PKR activation via NF-κB signaling-regulated expression of proinflammatory cytokines in the DRG and dorsal horn contributes to the pathogenesis of neuropathic pain. Our findings suggest that pharmacologically targeting PKR might be an effective therapeutic strategy for the treatment of neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Ratos , Animais , Gânglios Espinais , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/farmacologia , RNA de Cadeia Dupla/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , 2-Aminopurina/metabolismo , 2-Aminopurina/farmacologia , 2-Aminopurina/uso terapêutico , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Neuralgia/tratamento farmacológico , Corno Dorsal da Medula Espinal/metabolismo
16.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563088

RESUMO

Urolithin A is an active compound of gut-microbiota-derived metabolites of polyphenol ellagic acid that has anti-aging, antioxidative, and anti-inflammatory effects. However, the effects of urolithin A on polyinosinic acid-polycytidylic acid (poly(I:C))-induced inflammation remain unclear. Poly(I:C) is a double-stranded RNA (dsRNA) similar to a virus and is recognized by Toll-like receptor-3 (TLR3), inducing an inflammatory response in immune cells, such as macrophages. Inflammation is a natural defense process of the innate immune system. Therefore, we used poly(I:C)-induced RAW264.7 cells and attenuated the inflammation induced by urolithin A. First, our data suggested that 1-30 µM urolithin A does not reduce RAW264.7 cell viability, whereas 1 µM urolithin A is sufficient for antioxidation and the decreased production of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and C-C chemokine ligand 5. The inflammation-related proteins cyclooxygenase-2 and inducible nitric oxide synthase were also downregulated by urolithin A. Next, 1 µM urolithin A inhibited the levels of interferon (INF)-α and INF-ß. Urolithin A was applied to investigate the blockade of the TLR3 signaling pathway in poly(I:C)-induced RAW264.7 cells. Moreover, the TLR3 signaling pathway, subsequent inflammatory-related pathways, and antioxidation pathways showed changes in nuclear factor-κB (NF-κB) signaling and blocked ERK/mitogen-activated protein kinase (MAPK) signaling. Urolithin A enhanced catalase (CAT) and superoxide dismutase (SOD) activities, but decreased malondialdehyde (MDA) levels in poly(I:C)-induced RAW264.7 cells. Thus, our results suggest that urolithin A inhibits TLR3-activated inflammatory and oxidative-associated pathways in macrophages, and that this inhibition is induced by poly(I:C). Therefore, urolithin A may have antiviral effects and could be used to treat viral-infection-related diseases.


Assuntos
Cumarínicos , NF-kappa B , Receptor 3 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antioxidantes/farmacologia , Cumarínicos/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Poli I-C/farmacologia , Células RAW 264.7 , RNA de Cadeia Dupla/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/metabolismo
17.
Cells ; 11(5)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269455

RESUMO

Chilli leaf curl virus (ChiLCV; genus: Begomovirus), transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in a persistent-circulative manner, is a major constraint in chilli production. The present study demonstrates for the first time that a topical spray of naked double-stranded RNA (dsRNA) on chilli plants causes mortality and inability to acquire and transmit ChiLCV in B. tabaci. dsRNA targeting heat shock protein 70 (hsp70) and fasciclin 2 (fas2) of B. tabaci Asia II 1 was first assessed under controlled conditions through oral delivery. Hsp70 and fas2 dsRNA resulted in up to 82.22% and 72% mortality of B. tabaci and around 12.4- and 8.5-fold decreases in mRNA levels, respectively, 24 h post-ingestion. ChiLCV copies in hsp70 dsRNA-fed B. tabaci steadily decreased with an increase in dsRNA concentration and were undetectable at a higher concentration of dsRNA. However, ChiLCV copies significantly increased in fas2 dsRNA-fed B. tabaci. Transmission of ChiLCV by B. tabaci was completely inhibited post-24 h feeding on hsp70 dsRNA at 3 µg/mL. Naked hsp70 dsRNA was topically sprayed on ChiLCV-infected chilli plants like an insecticide. 67.77% mortality of B. tabaci, 4.6-fold downregulation of hsp70 mRNA, and 1.34 × 1015-fold decreased ChiLCV copies in B. tabaci were recorded when adults were exposed to the dsRNA-treated plants under semi-field conditions. Foliar application of naked dsRNA reduced the ChiLCV transmission by 75% without any visible symptoms in the inoculated plants. A total of 2 consecutive sprays of dsRNA provided significant protection to B. tabaci for up to 20 days under semi-field conditions.


Assuntos
Begomovirus , Hemípteros , Animais , Ásia , Begomovirus/fisiologia , Proteínas de Choque Térmico HSP70/genética , RNA de Cadeia Dupla/farmacologia , RNA Mensageiro
18.
Cell Rep Methods ; 2(2): 100170, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35128513

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus within 20 years that gave rise to a life-threatening disease and the first to reach pandemic spread. To make therapeutic headway against current and future coronaviruses, the biology of coronavirus RNA during infection must be precisely understood. Here, we present a robust and generalizable framework combining high-throughput confocal and super-resolution microscopy imaging to study coronavirus infection at the nanoscale. Using the model human coronavirus HCoV-229E, we specifically labeled coronavirus genomic RNA (gRNA) and double-stranded RNA (dsRNA) via multi-color RNA immunoFISH and visualized their localization patterns within the cell. The 10-nm resolution achieved by our approach uncovers a striking spatial organization of gRNA and dsRNA into three distinct structures and enables quantitative characterization of the status of the infection after antiviral drug treatment. Our approach provides a comprehensive imaging framework that will enable future investigations of coronavirus fundamental biology and therapeutic effects.


Assuntos
COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2/genética , Coronavirus Humano 229E/genética , Linhagem Celular , RNA de Cadeia Dupla/farmacologia
19.
Autophagy ; 18(10): 2350-2367, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35130104

RESUMO

Zaire ebolavirus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates with high morbidity and mortality. EBOV infection is dependent on its structural glycoprotein (GP), but high levels of GP expression also trigger cell rounding, detachment, and downregulation of many surface molecules that is thought to contribute to its high pathogenicity. Thus, EBOV has evolved an RNA editing mechanism to reduce its GP expression and increase its fitness. We now report that the GP expression is also suppressed at the protein level in cells by protein disulfide isomerases (PDIs). Although PDIs promote oxidative protein folding by catalyzing correct disulfide formation in the endoplasmic reticulum (ER), PDIA3/ERp57 adversely triggered the GP misfolding by targeting GP cysteine residues and activated the unfolded protein response (UPR). Abnormally folded GP was targeted by ER-associated protein degradation (ERAD) machinery and, unexpectedly, was degraded via the macroautophagy/autophagy-lysosomal pathway, but not the proteasomal pathway. PDIA3 also decreased the GP expression from other ebolavirus species but increased the GP expression from Marburg virus (MARV), which is consistent with the observation that MARV-GP does not cause cell rounding and detachment, and MARV does not regulate its GP expression via RNA editing during infection. Furthermore, five other PDIs also had a similar inhibitory activity to EBOV-GP. Thus, PDIs negatively regulate ebolavirus glycoprotein expression, which balances the viral life cycle by maximizing their infection but minimizing their cellular effect. We suggest that ebolaviruses hijack the host protein folding and ERAD machinery to increase their fitness via reticulophagy during infection.Abbreviations: 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; ACTB: ß-actin; ATF: activating transcription factor; ATG: autophagy-related; BafA1: bafilomycin A1; BDBV: Bundibugyo ebolavirus; CALR: calreticulin; CANX: calnexin; CHX: cycloheximide; CMA: chaperone-mediated autophagy; ConA: concanamycin A; CRISPR: clusters of regularly interspaced short palindromic repeats; Cas9: CRISPR-associated protein 9; dsRNA: double-stranded RNA; EBOV: Zaire ebolavirus; EDEM: ER degradation enhancing alpha-mannosidase like protein; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; Env: envelope glycoprotein; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GP: glycoprotein; HA: hemagglutinin; HDAC6: histone deacetylase 6; HMM: high-molecular-mass; HIV-1: human immunodeficiency virus type 1; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IAV: influenza A virus; IP: immunoprecipitation; KIF: kifenesine; Lac: lactacystin; LAMP: lysosomal associated membrane protein; MAN1B1/ERManI: mannosidase alpha class 1B member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARV: Marburg virus; MLD: mucin-like domain; NHK/SERPINA1: alpha1-antitrypsin variant null (Hong Kong); NTZ: nitazoxanide; PDI: protein disulfide isomerase; RAVV: Ravn virus; RESTV: Reston ebolavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SBOV: Sudan ebolavirus; sGP: soluble GP; SQSTM1/p62: sequestosome 1; ssGP: small soluble GP; TAFV: Taï Forest ebolavirus; TIZ: tizoxanide; TGN: thapsigargin; TLD: TXN (thioredoxin)-like domain; Ub: ubiquitin; UPR: unfolded protein response; VLP: virus-like particle; VSV: vesicular stomatitis virus; WB: Western blotting; WT: wild-type; XBP1: X-box binding protein 1.


Assuntos
Autofagia , Ebolavirus , Actinas/metabolismo , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/farmacologia , Calnexina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Calreticulina/farmacologia , Cicloeximida , Cisteína/metabolismo , Dissulfetos , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/metabolismo , Hemaglutininas/metabolismo , Hemaglutininas/farmacologia , Desacetilase 6 de Histona/genética , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mucinas/genética , Mucinas/metabolismo , Mucinas/farmacologia , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Fator de Iniciação 2 em Procariotos/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/farmacologia , Proteína Sequestossoma-1/metabolismo , Tapsigargina/metabolismo , Tapsigargina/farmacologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacologia , Ubiquitinas/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , alfa-Manosidase/genética , alfa-Manosidase/metabolismo , alfa-Manosidase/farmacologia
20.
Pest Manag Sci ; 78(9): 3836-3848, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35166021

RESUMO

BACKGROUND: The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) is one of the most notorious pests of the potato, Solanum tuberosum. Potato beetles are capable of developing resistance to various insecticides in relatively few generations. Novel and effective means of controlling Colorado potato beetle populations are constantly required to protect potato crops and prevent loss of yield. The knockdown of gene function through ribonucleic acid interference has been demonstrated in Colorado potato beetles, suggesting the use of this technology as a means of beetle management. A novel double-stranded RNA-based insecticide with the active ingredient, ledprona, has been tested in variable dose laboratory bioassays, followed by field studies. RESULTS: Exposure to ledprona resulted in both increased beetle mortality and decreased foliage consumption in all four instars and adult beetles. Effects decreased from earlier to later life stages. No ovicidal activity was detected. Onset of mortality was slower compared with existing chemical insecticides. Nevertheless, field applications of formulated ledprona to potato plots resulted in their protection comparable with that provided by spinosad and chlorantraniliprole. CONCLUSION: Based on the results of this study, formulated ledprona has attributes to become a useful tool in controlling Colorado potato beetle populations that is likely to be a good fit in integrated pest management protocols. © 2022 Society of Chemical Industry.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Inseticidas/farmacologia , Controle de Pragas , RNA de Cadeia Dupla/farmacologia , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...