Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Nature ; 613(7945): 751-758, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631608

RESUMO

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Assuntos
Anticódon , Códon de Terminação , Células Eucarióticas , Código Genético , Mutação , Fatores de Terminação de Peptídeos , RNA de Transferência , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Cilióforos/genética , Códon de Terminação/genética , Código Genético/genética , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Triptofano/genética , Saccharomyces cerevisiae/genética , RNA de Transferência de Ácido Glutâmico/genética , Trypanosoma brucei brucei/genética
2.
Eur J Med Genet ; 64(10): 104306, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34400372

RESUMO

BACKGROUND: Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial disorder associated with variable penetrance and partial to full remission of symptoms. OBJECTIVE: To describe features of maternally related individuals with a novel variant associated with RIRCD. MATERIALS AND METHODS: Nine maternally related individuals aged 23 months to 64 years are described through physical examinations, muscle biopsies, histochemical and biochemical analyses, genome sequencing, and cerebral imaging. RESULTS: A homoplasmic mitochondrial transfer ribonucleic acid for glutamic acid (mt-tRNAGlu) m.14701C>T variant was identified in eight tested individuals out of nine maternally related individuals. Two individuals presented with hypotonia, muscle weakness, feeding difficulties and lactic acidosis at age 3-4 months, and improvement around age 15-23 months with mild residual symptoms at last examination. One individual with less severe symptoms had unknown age at onset and improved around age 4-5 years. Five individuals developed lipoma on the upper back, and one adult individual developed ataxia, while one was unaffected. CONCLUSIONS: We have identified a novel homoplasmic mt-tRNAGlu m.14701C>T variant presenting with phenotypic and paraclinical features associated with RIRCD as well as ataxia and lipomas, which to our knowledge are new features associated to RIRCD.


Assuntos
Heteroplasmia , Doenças Mitocondriais/genética , Penetrância , RNA de Transferência de Ácido Glutâmico/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/patologia , Mutação , Linhagem
3.
FASEB J ; 33(12): 13228-13240, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560576

RESUMO

tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.


Assuntos
Neoplasias da Mama/metabolismo , Fosfoproteínas/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Western Blotting , Neoplasias da Mama/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Fosfoproteínas/genética , RNA de Transferência de Ácido Glutâmico/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nucleolina
4.
Nucleic Acids Res ; 45(22): 12601-12610, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29155943

RESUMO

A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA's D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.


Assuntos
Aminoácidos/genética , DNA Recombinante/genética , Aminoacil-RNA de Transferência/genética , RNA de Transferência/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo
5.
J Biol Chem ; 291(40): 21029-21041, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27519417

RESUMO

Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu.


Assuntos
Surdez , Diabetes Mellitus , Mutação Puntual , Pseudouridina , RNA de Transferência de Ácido Glutâmico , RNA , Povo Asiático , Pareamento de Bases , Linhagem Celular , China , Surdez/genética , Surdez/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Humanos , Masculino , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Biossíntese de Proteínas/genética , Pseudouridina/genética , Pseudouridina/metabolismo , RNA/genética , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo
6.
RNA ; 22(3): 467-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26729921

RESUMO

In mammalian cells under oxidative stress, the methionyl-tRNA synthetase (MetRS) misacylates noncognate tRNAs at frequencies as high as 10% distributed among up to 28 tRNA species. Instead of being detrimental for the cell, misincorporation of methionine residues in the proteome reduces the risk of oxidative damage to proteins, which aids the oxidative stress response. tRNA microarrays have been essential for the detection of the full pattern of misacylated tRNAs, but have limited capacity to investigate the misacylation and mistranslation mechanisms in live cells. Here we develop a dual-fluorescence reporter to specifically measure methionine misincorporation at glutamic acid codons GAA and GAG via tRNA(Glu) mismethionylation in human cells. Our method relies on mutating a specific Met codon in the active site of the fluorescent protein mCherry to a Glu codon that renders mCherry nonfluorescent when translation follows the genetic code. Mistranslation utilizing mismethionylated tRNA(Glu) restores fluorescence in proportion to the amount of misacylated tRNA(Glu). This cellular approach works well for both transient transfection and established stable HEK293 lines. It is rapid, straightforward, and well suited for high-throughput activity analysis under a wide range of physiological conditions. As a proof of concept, we apply this method to characterize the effect of human tRNA(Glu) isodecoders on mistranslation and discuss the implications of our findings.


Assuntos
Corantes Fluorescentes , Metionina/genética , Biossíntese de Proteínas , Sequência de Bases , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética
7.
Nature ; 517(7535): 509-12, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25363770

RESUMO

Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNA(Glu) to activate Ser/Thr residues. In addition, the 2.9-Å crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Bactérias/classificação , Bacteriocinas/biossíntese , Cristalografia por Raios X , Escherichia coli/genética , Ácido Glutâmico/metabolismo , Hidroliases/classificação , Lactococcus lactis/genética , Proteínas de Membrana/classificação , Modelos Moleculares , Nisina/biossíntese , Nisina/metabolismo , Filogenia , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/genética , Serina/metabolismo , Treonina/metabolismo
8.
Mol Biol Cell ; 26(2): 270-82, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392298

RESUMO

Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGlu(UUC), tGln(UUG), and tLys(UUU) in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.


Assuntos
Resposta ao Choque Térmico/genética , Biossíntese de Proteínas/genética , RNA Fúngico/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Northern Blotting , Western Blotting , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Modelos Genéticos , Mutação , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Compostos de Sulfidrila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Tunicamicina/farmacologia
9.
Int J Mol Sci ; 15(12): 23011-23, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25514408

RESUMO

Glutamyl-tRNA (Glu-tRNA(Glu)) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNA(Glu) can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNA(Glu). Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNA(Glu) distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions.


Assuntos
Heme/biossíntese , Peróxido de Hidrogênio/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Acidithiobacillus/efeitos dos fármacos , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glutamato-tRNA Ligase/antagonistas & inibidores , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Aminoacilação de RNA de Transferência/efeitos dos fármacos
10.
G3 (Bethesda) ; 4(6): 1047-57, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24727290

RESUMO

In Aspergillus nidulans, after extensive mutagenesis, a collection of mutants was obtained and four suppressor loci were identified genetically that could suppress mutations in putative chain termination mutations in different genes. Suppressor mutations in suaB and suaD have a similar restricted spectrum of suppression and suaB111 was previously shown to be an alteration in the anticodon of a gln tRNA. We have shown that like suaB, a suaD suppressor has a mutation in the anticodon of another gln tRNA allowing suppression of UAG mutations. Mutations in suaA and suaC had a broad spectrum of suppression. Four suaA mutations result in alterations in the coding region of the eukaryotic release factor, eRF1, and another suaA mutation has a mutation in the upstream region of eRF1 that prevents splicing of the first intron within the 5'UTR. Epitope tagging of eRF1 in this mutant results in 20% of the level of eRF1 compared to the wild-type. Two mutations in suaC result in alterations in the eukaryotic release factor, eRF3. This is the first description in Aspergillus nidulans of an alteration in eRF3 leading to suppression of chain termination mutations.


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Genes Supressores , RNA de Transferência de Ácido Glutâmico/genética , Alelos , Sequência de Aminoácidos , Aspergillus nidulans/crescimento & desenvolvimento , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Marcação de Genes , Loci Gênicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Conformação Proteica , Transporte Proteico , Alinhamento de Sequência
11.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24095282

RESUMO

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Assuntos
Tolerância a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoacilação , Antibacterianos/farmacologia , Sítios de Ligação/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutação , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
12.
J Biol Chem ; 288(45): 32539-32552, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24072705

RESUMO

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.


Assuntos
Apicoplastos/enzimologia , Glutamato-tRNA Ligase/metabolismo , Plasmodium berghei/enzimologia , Plasmodium falciparum/enzimologia , Biossíntese de Proteínas/fisiologia , Proteínas de Protozoários/metabolismo , Aminoacilação de RNA de Transferência/fisiologia , Apicoplastos/genética , Glutamato-tRNA Ligase/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(31): 12756-61, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858450

RESUMO

T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.


Assuntos
Anticódon/metabolismo , Clostridium acetobutylicum/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência de Asparagina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Riboswitch/fisiologia , Anticódon/química , Anticódon/genética , Asparagina/biossíntese , Asparagina/genética , Clostridium acetobutylicum/química , Clostridium acetobutylicum/genética , Ácido Glutâmico/biossíntese , Ácido Glutâmico/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Transferência de Asparagina/química , RNA de Transferência de Asparagina/genética , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética
15.
J Neuropathol Exp Neurol ; 72(2): 164-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334599

RESUMO

Mitochondrial respiratory chain disease is associated with a spectrum of clinical presentations and considerable genetic heterogeneity. Here we report molecular genetic and neuropathologic findings from an adult with an unusual manifestation of mitochondrial DNA disease. Clinical features included early-onset cataracts, ataxia, and progressive paraparesis, with sequencing revealing the presence of a novel de novo m.14685G>A mitochondrial tRNA(Glu) (MT-TE) gene mutation. Muscle biopsy showed that 13% and 34% of muscle fibers lacked cytochrome c oxidase activity and complex I subunit expression, respectively. Biochemical studies confirmed a marked decrease in complex I activity. Neuropathologic investigation revealed a large cystic lesion affecting the left putamen, caudate nucleus, and internal capsule, with evidence of marked microvacuolation, neuron loss, perivascular lacunae, and blood vessel mineralization. The internal capsule showed focal axonal loss, whereas brainstem and spinal cord showed descending anterograde degeneration in medullary pyramids and corticospinal tracts. In agreement with muscle biopsy findings, reduced complex I immunoreactivity was detected in the remaining neuronal populations, particularly in the basal ganglia and cerebellum, correlating with the neurologic dysfunction exhibited by the patient. This study emphasizes the importance of molecular genetic and postmortem neuropathologic analyses for furthering our understanding of underlying mechanisms of mitochondrial disorders.


Assuntos
Ataxia/genética , Catarata/genética , Complexo I de Transporte de Elétrons/deficiência , Mutação/genética , Paraparesia Espástica/genética , RNA de Transferência de Ácido Glutâmico/genética , Ataxia/complicações , Ataxia/patologia , Encéfalo/patologia , Catarata/complicações , Catarata/patologia , Análise Mutacional de DNA , Complexo I de Transporte de Elétrons/genética , Eletrorretinografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Proteínas Mitocondriais/deficiência , Nervo Óptico/patologia , Paraparesia Espástica/complicações , Paraparesia Espástica/patologia
16.
PLoS Genet ; 7(9): e1002258, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21912530

RESUMO

Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm5U34), 5-methoxycarbonylmethyluridine (mcm5U34), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s²U34) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNA(Lys)(s²UUU), tRNA(Gln)(s²UUG), and tRNA(Glu)(s²UUC), which in a wild-type background contain the mcm5s²U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U34. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm5s²U nucleoside in tRNA(Lys)(mcm5s²UUU), tRNA(Gln)(mcm5s²UUG), and tRNA(Glu)(mcm5s²UUC). These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U34 are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants.


Assuntos
RNA de Transferência de Glutamina/genética , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Lisina/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA/genética , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/genética
17.
J Neurol Sci ; 298(1-2): 140-4, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20810132

RESUMO

Mitochondrial respiratory chain defects are associated with diverse clinical phenotypes in both adults and children, and may be caused by mutations in either nuclear or mitochondrial DNA (mtDNA). We report the molecular genetic investigations of a patient with chronic progressive external ophthalmoplegia (CPEO) and myopathy where muscle biopsies taken 11 years apart revealed a progressive increase in the proportion of cytochrome c oxidase (COX)-deficient fibres. Mitochondrial genetic analysis of the early biopsy had seemingly excluded both mtDNA rearrangements and mtDNA point mutations. Sequencing mtDNA from individual COX-deficient muscle fibres in the second biopsy, however, identified an unreported m.14723T>C substitution within the mitochondrial tRNAGlu (MTTE) gene, which fulfilled all canonical criteria for pathogenicity. The m.14723T>C mutation was absent from several tissues, including muscle, from maternal relatives suggesting a de novo event, whilst quantitative analysis of the first muscle biopsy confirmed a very low level of the mutation (7% mutated mtDNA), highlighting a potential problem whereby pathogenic mtDNA mutations may remain undetected using established screening methodologies.


Assuntos
Doenças Musculares/genética , Mutação/fisiologia , Oftalmoplegia Externa Progressiva Crônica/genética , RNA de Transferência de Ácido Glutâmico/genética , Biópsia , DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doenças Musculares/patologia , Oftalmoplegia Externa Progressiva Crônica/patologia , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transtornos da Visão/genética , Transtornos da Visão/patologia
18.
Mol Biol Evol ; 27(6): 1391-403, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20106908

RESUMO

Evolution of Antarctic notothenioids in the frigid and oxygen-rich Southern Ocean had led to remarkable genomic changes, most notably the gain of novel antifreeze glycoproteins and the loss of oxygen-binding hemoproteins in the icefish family. Recently, the mitochondrial (mt) NADH dehydrogenase subunit 6 (ND6) gene and the adjacent transfer RNA(Glu) (tRNA(Glu)) were also reportedly lost. ND6 protein is crucial for the assembly and function of Complex I of the mt electron transport chain that produces adenosine triphosphate (ATP) essential for life; thus, ND6 absence would be irreconcilable with Antarctic notothenioids being thriving species. Here we report our discovery that the ND6 gene and tRNA(Glu) were not lost but had been translocated to the control region (CR) from their canonical location between ND5 and cytochrome b genes. We characterized the CR and adjacent sequences of 22 notothenioid species representing all eight families of Notothenioidei to elucidate the mechanism and evolutionary history of this mtDNA rearrangement. Species of the three basal non-Antarctic families have the canonical vertebrate mt gene order, whereas species of all five Antarctic families have a rearranged CR bearing the embedded ND6 (ND6(CR)) and tRNA(Glu), with additional copies of tRNA(Thr), tRNA(Pro), and noncoding region in various lineages. We hypothesized that an initial duplication of the canonical mt region from ND6 through CR occurred in the common ancestor to the Antarctic clade, and we deduced the succession of loss or modification of the duplicated region leading to the extant patterns of mt DNA reorganization that is consistent with notothenioid evolutionary history. We verified that the ND6(CR) gene in Antarctic notothenioids is transcribed and therefore functional. However, ND6(CR)-encoded protein sequences differ substantially from basal non-Antarctic notothenioid ND6, and we detected lineage-specific positive selection on the branch leading to the Antarctic clade of ND6(CR) under the branch-site model. Collectively, the novel mt ND6(CR) genotype of the Antarctic radiation represents another major molecular change in Antarctic notothenioid evolution and may reflect an adaptive change conducive to the functioning of the protein (Complex I) machinery of mt respiration in the polar environment, driven by the advent of freezing, oxygen-rich conditions in the Southern Ocean.


Assuntos
Rearranjo Gênico , Genes Mitocondriais , NADH Desidrogenase/genética , Perciformes/genética , Sequência de Aminoácidos , Animais , Regiões Antárticas , Sequência de Bases , Evolução Molecular , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , RNA de Transferência de Ácido Glutâmico/genética , Sequências Reguladoras de Ácido Nucleico
19.
J Diabetes Complications ; 24(4): 270-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20045353

RESUMO

UNLABELLED: Diabetes mellitus (DM) is a heterogeneous disorder characterized by the presence of chronic hyperglycemia. Genetic factors play an important role in the development of this disorder, and several studies reported mutations in nuclear genes implicated in the insulin function. Besides, DM can be maternally transmitted in some families, possibly due to the maternal mitochondrial inheritance. In fact, mitochondrial genes may be plausible causative agents for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. MATERIALS AND METHODS: In this report, we screened two Tunisian families with mitochondrial diabetes for the m.3243A>G and the m.14709T>C mutations, respectively, in the tRNA(Leu(UUR)) and the tRNA(Glu) genes. RESULTS: The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the sequence-specific primers by polymerase chain reaction (SSP-PCR) analysis in the leucocytes and the buccal mucosa in the members of the two families showed the absence of the m.3243A>G mutation and the presence of the heteroplasmic m.14709T>C mutation in the tRNA(Glu) gene in the two tested tissues. CONCLUSIONS: We conclude that the m.14709T>C mutation in the tRNA(Glu) gene could be a cause of mitochondrial diabetes in Tunisian affected families. In addition, the heteroplasmic loads correlated with the severity and the onset of mitochondrial diabetes in one family but not in the other, suggesting the presence of environmental factors or nuclear modifier genes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Doenças Mitocondriais/genética , Mutação Puntual , RNA de Transferência de Ácido Glutâmico/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Mutação Puntual/fisiologia , Polimorfismo de Nucleotídeo Único/fisiologia , Tunísia , Adulto Jovem
20.
J Mol Biol ; 395(5): 1038-48, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20004207

RESUMO

Yeast Saccharomyces cerevisiae MTO2, MTO1, and MSS1 genes encoded highly conserved tRNA modifying enzymes for the biosynthesis of carboxymethylaminomethyl (cmnm)(5)s(2)U(34) in mitochondrial tRNA(Lys), tRNA(Glu), and tRNA(Gln). In fact, Mto1p and Mss1p are involved in the biosynthesis of the cmnm(5) group (cmnm(5)U(34)), while Mto2p is responsible for the 2-thiouridylation (s(2)U(34)) of these tRNAs. Previous studies showed that partial modifications at U(34) in mitochondrial tRNA enabled mto1, mto2, and mss1 strains to respire. In this report, we investigated the functional interaction between MTO2, MTO1, and MSS1 genes by using the mto2, mto1, and mss1 single, double, and triple mutants. Strikingly, the deletion of MTO2 was synthetically lethal with a mutation of MSS1 or deletion of MTO1 on medium containing glycerol but not on medium containing glucose. Interestingly, there were no detectable levels of nine tRNAs including tRNA(Lys), tRNA(Glu), and tRNA(Gln) in mto2/mss1, mto2/mto1, and mto2/mto1/mss1 strains. Furthermore, mto2/mss1, mto2/mto1, and mto2/mto1/mss1 mutants exhibited extremely low levels of COX1 and CYTB mRNA and 15S and 21S rRNA as well as the complete loss of mitochondrial protein synthesis. The synthetic enhancement combinations likely resulted from the completely abolished modification at U(34) of tRNA(Lys), tRNA(Glu), and tRNA(Gln), caused by the combination of eliminating the 2-thiouridylation by the mto2 mutation with the absence of the cmnm(5)U(34) by the mto1 or mss1 mutation. The complete loss of modifications at U(34) of tRNAs altered mitochondrial RNA metabolisms, causing a degradation of mitochondrial tRNA, mRNA, and rRNAs. As a result, failures in mitochondrial RNA metabolisms were responsible for the complete loss of mitochondrial translation. Consequently, defects in mitochondrial protein synthesis caused the instability of their mitochondrial genomes, thus producing the respiratory-deficient phenotypes. Therefore, our findings demonstrated a critical role of modifications at U(34) of tRNA(Lys), tRNA(Glu), and tRNA(Gln) in maintenance of mitochondrial genome, mitochondrial RNA stability, translation, and respiratory function.


Assuntos
Mitocôndrias/metabolismo , RNA Fúngico/metabolismo , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Lisina/metabolismo , RNA/metabolismo , Alelos , Sequência de Bases , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Genes Fúngicos , Genoma Mitocondrial , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Consumo de Oxigênio , Fenótipo , RNA/química , RNA/genética , RNA Fúngico/química , RNA Fúngico/genética , RNA Mitocondrial , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoacilação de RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...