Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2319569121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683985

RESUMO

Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.


Assuntos
Macrófagos , Receptor 7 Toll-Like , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Ligantes , Mycobacterium tuberculosis/imunologia , RNA de Transferência de Histidina/metabolismo , RNA de Transferência de Histidina/genética , Lipopolissacarídeos
2.
Nucleic Acids Res ; 50(17): 10015-10025, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107775

RESUMO

tRNAHis guanylyltransferase (Thg1) catalyzes the 3'-5' incorporation of guanosine into position -1 (G-1) of tRNAHis. G-1 is unique to tRNAHis and is crucial for recognition by histidyl-tRNA synthetase (HisRS). Yeast Thg1 requires ATP for G-1 addition to tRNAHis opposite A73, whereas archaeal Thg1 requires either ATP or GTP for G-1 addition to tRNAHis opposite C73. Paradoxically, human Thg1 (HsThg1) can add G-1 to tRNAsHis with A73 (cytoplasmic) and C73 (mitochondrial). As N73 is immediately followed by a CCA end (positions 74-76), how HsThg1 prevents successive 3'-5' incorporation of G-1/G-2/G-3 into mitochondrial tRNAHis (tRNAmHis) through a template-dependent mechanism remains a puzzle. We showed herein that mature native human tRNAmHis indeed contains only G-1. ATP was absolutely required for G-1 addition to tRNAmHis by HsThg1. Although HsThg1 could incorporate more than one GTP into tRNAmHisin vitro, a single-GTP incorporation prevailed when the relative GTP level was low. Surprisingly, HsThg1 possessed a tRNA-inducible GTPase activity, which could be inhibited by ATP. Similar activity was found in other high-eukaryotic dual-functional Thg1 enzymes, but not in yeast Thg1. This study suggests that HsThg1 may downregulate the level of GTP through its GTPase activity to prevent multiple-GTP incorporation into tRNAmHis.


Assuntos
Nucleotidiltransferases/metabolismo , RNA de Transferência de Histidina , Trifosfato de Adenosina , GTP Fosfo-Hidrolases/genética , Guanosina , Guanosina Trifosfato/metabolismo , Histidina-tRNA Ligase , Humanos , RNA de Transferência , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
RNA ; 27(6): 683-693, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790044

RESUMO

The tRNAHis guanylyltransferase (Thg1) was originally discovered in Saccharomyces cerevisiae where it catalyzes 3'-5' addition of a single nontemplated guanosine (G-1) to the 5' end of tRNAHis In addition to this activity, S. cerevisiae Thg1 (SceThg1) also catalyzes 3'-5' polymerization of Watson-Crick (WC) base pairs, utilizing nucleotides in the 3'-end of a tRNA as the template for addition. Subsequent investigation revealed an entire class of enzymes related to Thg1, called Thg1-like proteins (TLPs). TLPs are found in all three domains of life and preferentially catalyze 3'-5' polymerase activity, utilizing this unusual activity to repair tRNA, among other functions. Although both Thg1 and TLPs utilize the same chemical mechanism, the molecular basis for differences between WC-dependent (catalyzed by Thg1 and TLPs) and non-WC-dependent (catalyzed exclusively by Thg1) reactions has not been fully elucidated. Here we investigate the mechanism of base-pair recognition by 3'-5' polymerases using transient kinetic assays, and identify Thg1-specific residues that play a role in base-pair discrimination. We reveal that, regardless of the identity of the opposing nucleotide in the RNA "template," addition of a non-WC G-1 residue is driven by a unique kinetic preference for GTP. However, a secondary preference for forming WC base pairs is evident for all possible templating residues. Similar to canonical 5'-3' polymerases, nucleotide addition by SceThg1 is driven by the maximal rate rather than by NTP substrate affinity. Together, these data provide new insights into the mechanism of base-pair recognition by 3'-5' polymerases.


Assuntos
Nucleotidiltransferases/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Pareamento de Bases , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Cinética , Nucleotídeos/metabolismo , Nucleotidiltransferases/química , RNA de Transferência de Histidina/metabolismo , Alinhamento de Sequência
4.
RNA ; 27(6): 653-664, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811147

RESUMO

Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.


Assuntos
Vírus de RNA de Cadeia Positiva/química , RNA de Transferência de Histidina/química , Aminoacilação , Conformação de Ácido Nucleico , Filogenia , Vírus de RNA de Cadeia Positiva/classificação , Vírus de RNA de Cadeia Positiva/genética , Vírus de RNA de Cadeia Positiva/metabolismo , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , Saccharomyces cerevisiae
5.
RNA ; 27(6): 665-675, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33758037

RESUMO

Human tRNAHis guanylyltransferase (HsThg1) catalyzes the 3'-5' addition of guanosine triphosphate (GTP) to the 5'-end (-1 position) of tRNAHis, producing mature tRNAHis In human cells, cytoplasmic and mitochondrial tRNAHis have adenine (A) or cytidine (C), respectively, opposite to G-1 Little attention has been paid to the structural requirements of incoming GTP in 3'-5' nucleotidyl addition by HsThg1. In this study, we evaluated the incorporation efficiencies of various GTP analogs by HsThg1 and compared the reaction mechanism with that of Candida albicans Thg1 (CaThg1). HsThg1 incorporated GTP opposite A or C in the template most efficiently. In contrast to CaThg1, HsThg1 could incorporate UTP opposite A, and guanosine diphosphate (GDP) opposite C. These results suggest that HsThg1 could transfer not only GTP, but also other NTPs, by forming Watson-Crick (WC) hydrogen bonds between the incoming NTP and the template base. On the basis of the molecular mechanism, HsThg1 succeeded in labeling the 5'-end of tRNAHis with biotinylated GTP. Structural analysis of HsThg1 was also performed in the presence of the mitochondrial tRNAHis Structural comparison of HsThg1 with other Thg1 family enzymes suggested that the structural diversity of the carboxy-terminal domain of the Thg1 enzymes might be involved in the formation of WC base-pairing between the incoming GTP and template base. These findings provide new insights into an unidentified biological function of HsThg1 and also into the applicability of HsThg1 to the 5'-terminal modification of RNAs.


Assuntos
Guanosina Trifosfato/metabolismo , Nucleotidiltransferases/metabolismo , Biotinilação , Candida albicans/enzimologia , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Humanos , Methanosarcina/enzimologia , Mitocôndrias/enzimologia , Modelos Moleculares , Nucleotídeos/metabolismo , Nucleotidiltransferases/química , RNA de Transferência de Histidina/metabolismo
6.
PLoS Biol ; 18(12): e3000982, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332353

RESUMO

Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5'-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5'-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5'-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5'-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5'-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5'-tRNA half species into EVs. The EV-5'-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5'-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of "immune activators" to 5'-tRNA half molecules.


Assuntos
Vesículas Extracelulares/genética , RNA de Transferência de Histidina/metabolismo , Receptor 7 Toll-Like/metabolismo , Endossomos/metabolismo , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Imunidade Inata/genética , Imunidade Inata/fisiologia , Macrófagos/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/fisiologia , Células THP-1 , Receptor 7 Toll-Like/fisiologia
7.
Mol Ther ; 28(11): 2442-2457, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32966775

RESUMO

High plasma lactate is emerging as a critical regulator in development and progression of many human malignancies. Small RNAs derived from cleavage of mature tRNAs have been implicated in many cellular stresses, but the detailed mechanisms that respond to lactic acid (LA; acidic lactate) are not well defined. Here, using an Epstein-Barr virus (EBV)-immortalized B lymphoblastic cell line (LCL) as a model, we report that LA induces cleavage of mature tRNA at the anticodon loop, particularly production of three 5'-tRNA halves (5'-HisGUG, 5'-ValAAC, and 5'-GlyGCC), along with increased expression of RNA polymerase III and angiogenin (ANG). Of these, only the 5'-HisGUG half binds to the chromatin regulator argonaute-2 (AGO2) instead of the AGO1 protein for stability. Notably, the levels of ANG and 5'-HisGUG half expression in peripheral blood mononuclear cells from B cell lymphoma patients are tightly correlated with lactate dehydrogenase (LDH; a lactate indicator) in plasma. Silencing production of the 5'-HisGUG half by small interfering RNA or inhibition of ANG significantly reduces colony formation and growth of LA-induced tumor cells in vitro and in vivo using a murine xenograft model. Overall, our findings identify a novel molecular therapeutic target for the diagnosis and treatment of B cell lymphoma.


Assuntos
Linfócitos B/metabolismo , Ácido Láctico/metabolismo , Pequeno RNA não Traduzido/genética , RNA de Transferência de Histidina/genética , Linfócitos B/imunologia , Linfócitos B/patologia , Biomarcadores , Linhagem Celular Transformada , Proliferação de Células , Células Cultivadas , Humanos , L-Lactato Desidrogenase/metabolismo , Linfoma de Células B/etiologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Ligação Proteica , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência de Histidina/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
J Biol Chem ; 295(4): 940-954, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31819004

RESUMO

The deafness-associated m.12201T>C mutation affects the A5-U68 base-pairing within the acceptor stem of mitochondrial tRNAHis The primary defect in this mutation is an alteration in tRNAHis aminoacylation. Here, we further investigate the molecular mechanism of the deafness-associated tRNAHis 12201T>C mutation and test whether the overexpression of the human mitochondrial histidyl-tRNA synthetase gene (HARS2) in cytoplasmic hybrid (cybrid) cells carrying the m.12201T>C mutation reverses mitochondrial dysfunctions. Using molecular dynamics simulations, we demonstrate that the m.12201T>C mutation perturbs the tRNAHis structure and function, supported by decreased melting temperature, conformational changes, and instability of mutated tRNA. We show that the m.12201T>C mutation-induced alteration of aminoacylation tRNAHis causes mitochondrial translational defects and respiratory deficiency. We found that the transfer of HARS2 into the cybrids carrying the m.12201T>C mutation raises the levels of aminoacylated tRNAHis from 56.3 to 75.0% but does not change the aminoacylation of other tRNAs. Strikingly, HARS2 overexpression increased the steady-state levels of tRNAHis and of noncognate tRNAs, including tRNAAla, tRNAGln, tRNAGlu, tRNALeu(UUR), tRNALys, and tRNAMet, in cells bearing the m.12201T>C mutation. This improved tRNA metabolism elevated the efficiency of mitochondrial translation, activities of oxidative phosphorylation complexes, and respiration capacity. Furthermore, HARS2 overexpression markedly increased mitochondrial ATP levels and membrane potential and reduced production of reactive oxygen species in cells carrying the m.12201T>C mutation. These results indicate that HARS2 overexpression corrects the mitochondrial dysfunction caused by the tRNAHis mutation. These findings provide critical insights into the pathophysiology of mitochondrial disease and represent a step toward improved therapeutic interventions for mitochondrial disorders.


Assuntos
Aminoacil-tRNA Sintetases/genética , Surdez/enzimologia , Surdez/genética , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Mutação/genética , RNA de Transferência de Histidina/genética , Trifosfato de Adenosina/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Linhagem Celular , Respiração Celular , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Humanos , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frações Subcelulares/metabolismo
9.
PLoS Genet ; 15(7): e1008273, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329584

RESUMO

5' ends are important for determining the fate of RNA molecules. BCDIN3D is an RNA phospho-methyltransferase that methylates the 5' monophosphate of specific RNAs. In order to gain new insights into the molecular function of BCDIN3D, we performed an unbiased analysis of its interacting RNAs by Thermostable Group II Intron Reverse Transcriptase coupled to next generation sequencing (TGIRT-seq). Our analyses showed that BCDIN3D interacts with full-length phospho-methylated tRNAHis and miR-4454. Interestingly, we found that miR-4454 is not synthesized from its annotated genomic locus, which is a primer-binding site for an endogenous retrovirus, but rather by Dicer cleavage of mature tRNAHis. Sequence analysis revealed that miR-4454 is identical to the 3' end of tRNAHis. Moreover, we were able to generate this 'miRNA' in vitro through incubation of mature tRNAHis with Dicer. As found previously for several pre-miRNAs, a 5'P-tRNAHis appears to be a better substrate for Dicer cleavage than a phospho-methylated tRNAHis. Moreover, tRNAHis 3'-fragment/'miR-4454' levels increase in cells depleted for BCDIN3D. Altogether, our results show that in addition to microRNAs, BCDIN3D regulates tRNAHis 3'-fragment processing without negatively affecting tRNAHis's canonical function of aminoacylation.


Assuntos
RNA Helicases DEAD-box/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metiltransferases/genética , RNA de Transferência de Histidina/metabolismo , Ribonuclease III/genética , Linhagem Celular , Humanos , MicroRNAs/genética , Análise de Sequência de RNA , Aminoacilação de RNA de Transferência
10.
RNA Biol ; 16(9): 1275-1285, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31179821

RESUMO

The extra 5' guanine nucleotide (G-1) on tRNAHis is a nearly universal feature that specifies tRNAHis identity. The G-1 residue is either genome encoded or post-transcriptionally added by tRNAHis guanylyltransferase (Thg1). Despite Caenorhabditis elegans being a Thg1-independent organism, its cytoplasmic tRNAHis (CetRNAnHis) retains a genome-encoded G-1. Our study showed that this eukaryote possesses a histidyl-tRNA synthetase (CeHisRS) gene encoding two distinct HisRS isoforms that differ only at their N-termini. Most interestingly, its mitochondrial tRNAHis (CetRNAmHis) lacks G-1, a scenario never observed in any organelle. This tRNA, while lacking the canonical identity element, can still be efficiently aminoacylated in vivo. Even so, addition of G-1 to CetRNAmHis strongly enhanced its aminoacylation efficiency in vitro. Overexpression of CeHisRS successfully bypassed the requirement for yeast THG1 in the presence of CetRNAnHis without G-1. Mutagenesis assays showed that the anticodon takes a primary role in CetRNAHis identity recognition, being comparable to the universal identity element. Consequently, simultaneous introduction of both G-1 and the anticodon of tRNAHis effectively converted a non-cognate tRNA to a tRNAHis-like substrate. Our study suggests that a new balance between identity elements of tRNAHis relieves HisRS from the absolute requirement for G-1.


Assuntos
Caenorhabditis elegans/genética , Nucleotídeos/genética , RNA Mitocondrial/genética , RNA de Transferência de Histidina/metabolismo , Sequência de Aminoácidos , Aminoacilação , Animais , Anticódon/genética , Sequência de Bases , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estabilidade Enzimática , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/genética , Cinética , Nucleotidiltransferases , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidade por Substrato , Temperatura
11.
J Biol Chem ; 294(22): 8885-8893, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31000629

RESUMO

tRNAHis guanylyltransferase (Thg1) adds a single guanine to the -1 position of tRNAHis as part of its maturation. This seemingly modest addition of one nucleotide to tRNAHis ensures translational fidelity by providing a critical identity element for the histidyl aminoacyl tRNA synthetase (HisRS). Like HisRS, Thg1 utilizes the GUG anticodon for selective tRNAHis recognition, and Thg1-tRNA complex structures have revealed conserved residues that interact with anticodon nucleotides. Separately, kinetic analysis of alanine variants has demonstrated that many of these same residues are required for catalytic activity. A model in which loss of activity with the variants was attributed directly to loss of the critical anticodon interaction has been proposed to explain the combined biochemical and structural results. Here we used RNA chemical footprinting and binding assays to test this model and further probe the molecular basis for the requirement for two critical tRNA-interacting residues, His-152 and Lys-187, in the context of human Thg1 (hThg1). Surprisingly, we found that His-152 and Lys-187 alanine-substituted variants maintain a similar overall interaction with the anticodon region, arguing against the sufficiency of this interaction for driving catalysis. Instead, conservative mutagenesis revealed a new direct function for these residues in recognition of a non-Watson-Crick G-1:A73 bp, which had not been described previously. These results have important implications for the evolution of eukaryotic Thg1 from a family of ancestral promiscuous RNA repair enzymes to the highly selective enzymes needed for their essential function in tRNAHis maturation.


Assuntos
Proteínas de Homeodomínio/metabolismo , RNA de Transferência de Histidina/metabolismo , Anticódon/química , Anticódon/metabolismo , Biocatálise , Domínio Catalítico , Evolução Molecular , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Cinética , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
12.
Biochem Biophys Res Commun ; 503(3): 2015-2021, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093107

RESUMO

Mitochondria contain their own protein synthesis machinery, which includes mitochondrial tRNA maturation. It has been suggested that mammalian mitochondrial tRNAHis (mtRNAHis) is matured by post-transcriptional addition of guanosine at the -1 position (G-1), which serves as an identity element for mitochondrial histidyl-tRNA synthetase. However, the exact maturation process of mammalian mtRNAHis remains unclear. In cytoplasmic tRNAHis (ctRNAHis) maturation, tRNAHis guanylyltransferase (Thg1) adds a GTP onto the 5'-terminal of ctRNAHis and then removes the 5'-pyrophosphate to yield the mature 5'-monophospholylated G-1-ctRNAHis (pG-1-ctRNAHis). Although mammalian Thg1 is localized to both the cytoplasm and mitochondria, it remains unclear whether mammalian Thg1 plays a role in mtRNAHis maturation in mitochondria. Here, we demonstrated that human Thg1 (hThg1) catalyzes the G-1 addition reaction for both human ctRNAHis and mtRNAHis through recognition of the anticodon. While hThg1 catalyzed consecutive GTP additions to mtRNAHisin vitro, it did not exhibit any activity toward mature pG-1-mtRNAHis. We further found that hThg1 could add a GMP directly to the 5'-terminal of mtRNAHis in a template-dependent manner, but fungal Thg1 could not. Therefore, we hypothesized that acceleration of the pyrophosphate removal activity before or after the G-1 addition reaction is a key feature of hThg1 for maintaining a normal 5'-terminal of mtRNAHis in human mitochondria. This study provided a new insight into the differences between tRNAHis maturation in the cytoplasm and mitochondria of humans.


Assuntos
Mitocôndrias/enzimologia , Nucleotidiltransferases/metabolismo , RNA de Transferência de Histidina/metabolismo , Humanos , Mitocôndrias/metabolismo
13.
RNA ; 24(11): 1583-1593, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111535

RESUMO

The tRNAHis guanylyltransferase (Thg1) transfers a guanosine triphosphate (GTP) in the 3'-5' direction onto the 5'-terminal of tRNAHis, opposite adenosine at position 73 (A73). The guanosine at the -1 position (G-1) serves as an identity element for histidyl-tRNA synthetase. To investigate the mechanism of recognition for the insertion of GTP opposite A73, first we constructed a two-stranded tRNAHis molecule composed of a primer and a template strand through division at the D-loop. Next, we evaluated the structural requirements of the incoming GTP from the incorporation efficiencies of GTP analogs into the two-piece tRNAHis Nitrogen at position 7 and the 6-keto oxygen of the guanine base were important for G-1 addition; however, interestingly, the 2-amino group was found not to be essential from the highest incorporation efficiency of inosine triphosphate. Furthermore, substitution of the conserved A73 in tRNAHis revealed that the G-1 addition reaction was more efficient onto the template containing the opposite A73 than onto the template with cytidine (C73) or other bases forming canonical Watson-Crick base-pairing. Some interaction might occur between incoming GTP and A73, which plays a role in the prevention of continuous templated 3'-5' polymerization. This study provides important insights into the mechanism of accurate tRNAHis maturation.


Assuntos
Nucleotidiltransferases/metabolismo , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/metabolismo , Pareamento de Bases , Sequência de Bases , Guanosina Trifosfato/metabolismo , Histidina-tRNA Ligase , Humanos , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA , Moldes Genéticos
14.
RNA Biol ; 15(4-5): 614-622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28901837

RESUMO

tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.


Assuntos
Desulfurococcaceae/enzimologia , Methanosarcina/enzimologia , Nucleotidiltransferases/metabolismo , Pyrobaculum/enzimologia , RNA de Transferência de Histidina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Desulfurococcaceae/genética , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Methanosarcina/genética , Modelos Moleculares , Mutação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Polimerização , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Pyrobaculum/genética , RNA de Transferência de Histidina/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
15.
Nucleic Acids Res ; 45(15): 9108-9120, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28645172

RESUMO

Transfer RNAs (tRNAs) function in translational machinery and further serves as a source of short non-coding RNAs (ncRNAs). tRNA-derived ncRNAs show differential expression profiles and play roles in many biological processes beyond translation. Molecular mechanisms that shape and regulate their expression profiles are largely unknown. Here, we report the mechanism of biogenesis for tRNA-derived Piwi-interacting RNAs (td-piRNAs) expressed in Bombyx BmN4 cells. In the cells, two cytoplasmic tRNA species, tRNAAspGUC and tRNAHisGUG, served as major sources for td-piRNAs, which were derived from the 5'-part of the respective tRNAs. cP-RNA-seq identified the two tRNAs as major substrates for the 5'-tRNA halves as well, suggesting a previously uncharacterized link between 5'-tRNA halves and td-piRNAs. An increase in levels of the 5'-tRNA halves, induced by BmNSun2 knockdown, enhanced the td-piRNA expression levels without quantitative change in mature tRNAs, indicating that 5'-tRNA halves, not mature tRNAs, are the direct precursors for td-piRNAs. For the generation of tRNAHisGUG-derived piRNAs, BmThg1l-mediated nucleotide addition to -1 position of tRNAHisGUG was required, revealing an important function of BmThg1l in piRNA biogenesis. Our study advances the understanding of biogenesis mechanisms and the genesis of specific expression profiles for tRNA-derived ncRNAs.


Assuntos
Proteínas Argonautas/genética , Bombyx/genética , Proteínas de Insetos/genética , RNA Interferente Pequeno/genética , RNA de Transferência de Ácido Aspártico/genética , RNA de Transferência de Histidina/genética , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Proteínas de Insetos/metabolismo , Conformação de Ácido Nucleico , RNA Interferente Pequeno/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Histidina/metabolismo
16.
Genes Cells ; 22(7): 628-645, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28544195

RESUMO

Thermus thermophilus is an extremely thermophilic eubacterium that produces various polyamines. Aminopropylagmatine ureohydrolase (SpeB) and SAM decarboxylase-like protein 1 (SpeD1) are involved in the biosynthesis of spermidine from arginine. Because long and branched polyamines in T. thermophilus are synthesized from spermidine, the speB and speD1 gene-deleted strains (ΔspeB and ΔspeD1, respectively) cannot synthesize long and branched polyamines. Although neither strain grew at high temperatures (>75°C) in minimal medium, both strains survived at 80°C when they were cultured at 70°C until the mid-log phase and then shifted to 80°C. We therefore prepared the ΔspeB and ΔspeD1 cells using this culture method. Microscopic analysis showed that both strains can survive for 10 h after the temperature shift. Although the modification levels of 2'-O-methylguanosine at position 18, N7 -methylguanosine at position 46, 5-methyluridine at position 54 and N1 -methyladenosine at position 58 in the class I tRNA from both strains were normal, amounts of tRNATyr , tRNAHis , rRNAs and 70S ribosomes were decreased after the temperature shift. Furthermore, in vivo protein synthesis in both strains was completely lost 10 h after the temperature shift. Thus, long and branched polyamines are required for at least the maintenance of 70S ribosome and some tRNA species at high temperatures.


Assuntos
Poliaminas/metabolismo , RNA de Transferência de Histidina/metabolismo , RNA de Transferência de Tirosina/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Poliaminas/química , RNA de Transferência de Histidina/química , RNA de Transferência de Tirosina/química , Ribossomos/química , Temperatura , Thermus thermophilus/citologia , Thermus thermophilus/crescimento & desenvolvimento
17.
Nucleic Acids Res ; 45(12): 7441-7454, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499021

RESUMO

The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Precursores de RNA/genética , Ribonuclease P/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pareamento de Bases , Sequência de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Viabilidade Microbiana , Conformação de Ácido Nucleico , Precursores de RNA/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Ácido Aspártico/genética , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Ribonuclease P/deficiência , Ribonuclease P/metabolismo , Transgenes
18.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt B): 3009-3015, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28288813

RESUMO

BACKGROUND: Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNAHis recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNAHis pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. METHODS: E. coli was genetically engineered to use a C. crescentus HisRS•tRNAHis pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. RESULTS: A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNAHis pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNAHis pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNAHisCUA elevated its suppression efficiency by 2-fold. CONCLUSIONS: The C. crescentus HisRS•tRNAHis pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNAHis is orthogonal in MEOV1 cells. E. coli tRNAHisCUA is an efficient amber suppressor in MEOV1. GENERAL SIGNIFICANCE: We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Histidina-tRNA Ligase/metabolismo , Engenharia de Proteínas/métodos , RNA de Transferência de Histidina/metabolismo , Clonagem Molecular/métodos , Biblioteca Gênica , Engenharia Genética/métodos , Histidina-tRNA Ligase/genética , Mutagênese Sítio-Dirigida , RNA de Transferência de Histidina/genética
19.
Nucleic Acids Res ; 45(9): 5423-5436, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28119416

RESUMO

Human RNA methyltransferase BCDIN3D is overexpressed in breast cancer cells, and is related to the tumorigenic phenotype and poor prognosis of breast cancer. Here, we show that cytoplasmic tRNAHis is the primary target of BCDIN3D in human cells. Recombinant human BCDIN3D, expressed in Escherichia coli, monomethylates the 5΄-monophosphate of cytoplasmic tRNAHis efficiently in vitro. In BCDN3D-knockout cells, established by CRISPR/Cas9 editing, the methyl moiety at the 5΄-monophosphate of cytoplasmic tRNAHis is lost, and the exogenous expression of BCDIN3D in the knockout cells restores the modification in cytoplasmic tRNAHis. BCIDN3D recognizes the 5΄-guanosine nucleoside at position -1 (G-1) and the eight-nucleotide acceptor helix with the G-1-A73 mis-pair at the top of the acceptor stem of cytoplasmic tRNAHis, which are exceptional structural features among cytoplasmic tRNA species. While the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis affects neither the overall aminoacylation process in vitro nor the steady-state level of cytoplasmic tRNAHisin vivo, it protects the cytoplasmic tRNAHis transcript from degradation in vitro. Thus, BCDIN3D acts as a cytoplasmic tRNAHis-specific 5΄-methylphosphate capping enzyme. The present results also suggest the possible involvement of the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis and/or cytoplasmic tRNAHis itself in the tumorigenesis of breast cancer cells.


Assuntos
Metiltransferases/metabolismo , RNA de Transferência de Histidina/metabolismo , Aminoacilação , Sequência de Bases , Citoplasma/metabolismo , Células HEK293 , Humanos , Metilação , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/genética
20.
RNA ; 23(2): 161-168, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27879434

RESUMO

Transfer RNAs (tRNAs) are fundamental adapter components of translational machinery. tRNAs can further serve as a source of tRNA-derived noncoding RNAs that play important roles in various biological processes beyond translation. Among all species of tRNAs, tRNAHisGUG has been known to uniquely contain an additional guanosine residue at the -1 position (G-1) of its 5'-end. To analyze this -1 nucleotide in detail, we developed a TaqMan qRT-PCR method that can distinctively quantify human mature cytoplasmic tRNAHisGUG containing G-1, U-1, A-1, or C-1 or lacking the -1 nucleotide (starting from G1). Application of this method to the mature tRNA fraction of BT-474 breast cancer cells revealed the presence of tRNAHisGUG containing U-1 as well as the one containing G-1 Moreover, tRNA lacking the -1 nucleotide was also detected, thus indicating the heterogeneous expression of 5'-tRNAHisGUG variants. A sequence library of sex hormone-induced 5'-tRNA halves (5'-SHOT-RNAs), identified via cP-RNA-seq of a BT-474 small RNA fraction, also demonstrated the expression of 5'-tRNAHisGUG halves containing G-1, U-1, or G1 as 5'-terminal nucleotides. Although the detected 5'-nucleotide species were identical, the relative abundances differed widely between mature tRNA and 5'-half from the same BT-474 cells. The majority of mature tRNAs contained the -1 nucleotide, whereas the majority of 5'-halves lacked this nucleotide, which was biochemically confirmed using a primer extension assay. These results reveal the novel identities of tRNAHisGUG molecules and provide insights into tRNAHisGUG maturation and the regulation of tRNA half production.


Assuntos
Anticódon/química , Células Epiteliais/metabolismo , Variação Genética , Nucleotídeos/química , RNA de Transferência de Histidina/química , Anticódon/metabolismo , Pareamento de Bases , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Reação em Cadeia da Polimerase/métodos , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , Taq Polimerase/genética , Taq Polimerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...