Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Nat Commun ; 13(1): 209, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017528

RESUMO

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Assuntos
Anticódon/química , Metiltransferases/genética , Mitocôndrias/genética , RNA Mitocondrial/química , RNA de Transferência de Serina/química , RNA de Transferência de Treonina/química , Anticódon/metabolismo , Pareamento de Bases , Citosina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Transdução de Sinais
2.
Mitochondrion ; 57: 1-8, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279600

RESUMO

BACKGROUND: Mitochondrial disorders are a group of heterogeneous diseases characterized by biochemical disturbances in oxidative phosphorylation (OXPHOS). Mutations in mitochondrial transfer RNA (mt-tRNA) genes are the most frequently in mitochondrial disease. However, few studies have detailed the molecular mechanisms behind these mutations. METHODS: We performed clinical evaluation, genetic analysis, muscle histochemistry, and molecular and biochemical investigations in muscle tissue and proband-derived cybrid cell lines. RESULTS: We found a mitochondrial tRNASer(UCN) mutation (m.7453G>A) in a 15-year-old patient with severe mitochondrial myopathy. We demonstrated that this mutation caused impairment of mitochondrial translation, respiratory deficiency, overproduction of reactive oxygen species (ROS), and decreased mitochondrial membrane potential (MMP), which ultimately led to severe mitochondrial myopathy. CONCLUSION: Our findings offer valuable new insights into the tRNASer(UCN) m.7453G>A mutation for both the pathogenic mechanism and functional consequences.


Assuntos
Miopatias Mitocondriais/genética , Polimorfismo de Nucleotídeo Único , RNA de Transferência de Serina/genética , Análise de Sequência de DNA/métodos , Adolescente , Linhagem Celular , Feminino , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Potencial da Membrana Mitocondrial , Miopatias Mitocondriais/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência de Serina/química , Espécies Reativas de Oxigênio/metabolismo
3.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848288

RESUMO

Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others are clearly detrimental. Here, we show that while it has been suggested that regulated Thr-to-Ser substitutions may be beneficial, there is a threshold beyond which these errors are detrimental. In contrast, we show that errors mediated by alanyl-tRNA synthetase (AlaRS) are not well tolerated and induce a global stress response that leads to gross perturbation of the Escherichia coli proteome, with potentially catastrophic effects on fitness and viability. Tolerance for Ala mistranslation appears to be much lower than with other translational errors, consistent with previous reports of multiple proofreading mechanisms targeting mischarged tRNAAla These results demonstrate the essential role of aminoacyl-tRNA proofreading in optimizing cellular fitness and suggest that any potentially beneficial effects of mistranslation may be confined to specific amino acid substitutions.IMPORTANCE Errors in protein synthesis have historically been assumed to be detrimental to the cell. While there are many reports that translational errors are consequential, there is a growing body of evidence that some mistranslation events may be tolerated or even beneficial. Using two models of mistranslation, we compare the direct phenotypic effects of these events in Escherichia coli This work provides insight into the threshold for tolerance of specific mistranslation events that were previously predicted to be broadly neutral to proteome integrity. Furthermore, these data reveal the effects of mistranslation beyond the general unfolded stress response, leading to global translational reprogramming.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma , Proteômica , Membrana Celular/metabolismo , Biossíntese de Proteínas , Proteômica/métodos , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética , Especificidade por Substrato , Aminoacilação de RNA de Transferência
4.
Biomolecules ; 9(11)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752208

RESUMO

In-frame decoding in the ribosome occurs through canonical or wobble Watson-Crick pairing of three mRNA codon bases (a triplet) with a triplet of anticodon bases in tRNA. Departures from the triplet-triplet interaction can result in frameshifting, meaning downstream mRNA codons are then read in a different register. There are many mechanisms to induce frameshifting, and most are insufficiently understood. One previously proposed mechanism is doublet decoding, in which only codon bases 1 and 2 are read by anticodon bases 34 and 35, which would lead to -1 frameshifting. In E. coli, tRNASer3GCU can induce -1 frameshifting at alanine (GCA) codons. The logic of the doublet decoding model is that the Ala codon's GC could pair with the tRNASer3's GC, leaving the third anticodon residue U36 making no interactions with mRNA. Under that model, a U36C mutation would still induce -1 frameshifting, but experiments refute this. We perform all-atom simulations of wild-type tRNASer3, as well as a U36C mutant. Our simulations revealed a hydrogen bond between U36 of the anticodon and G1 of the codon. The U36C mutant cannot make this interaction, as it lacks the hydrogen-bond-donating H3. The simulation thus suggests a novel, non-doublet decoding mechanism for -1 frameshifting by tRNASer3 at Ala codons.


Assuntos
Códon/química , Escherichia coli/química , Mudança da Fase de Leitura do Gene Ribossômico , Simulação de Dinâmica Molecular , RNA Bacteriano/química , RNA de Transferência de Serina/química , Códon/genética , Escherichia coli/genética , Mutação Puntual , RNA Bacteriano/genética , RNA de Transferência de Serina/genética
5.
RNA ; 25(5): 645-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30803999

RESUMO

External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.


Assuntos
Proteínas do Capsídeo/genética , Citomegalovirus/genética , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , RNA de Transferência de Serina/genética , RNA Viral/genética , Ribonuclease P/metabolismo , Pareamento de Bases , Proteínas do Capsídeo/biossíntese , Linhagem Celular Transformada , Linhagem Celular Tumoral , Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Marcação de Genes/métodos , Engenharia Genética/métodos , Interações Hospedeiro-Patógeno/genética , Humanos , Terapia de Alvo Molecular , Neuroglia/metabolismo , Neuroglia/virologia , Conformação de Ácido Nucleico , Cultura Primária de Células , Clivagem do RNA , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Replicação Viral/fisiologia
6.
Mitochondrion ; 46: 370-379, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30336267

RESUMO

Mutations in mitochondrial DNA (mtDNA) have been associated with deafness and their pathophysiology remains poorly understood. In this study, we investigated the pathogenic mechanism of deafness-associated 7505A > G variant in the mitochondrial tRNASer(UCN). The m.7505A > G variant affected the highly conserved adenine at position 11 (A11), disrupted the highly conserved A11-U24 base-pairing of DHU stem of tRNASer(UCN) and introduced a tertiary base pairing (G11-C56) with the C56 in the TΨC loop. We therefore hypothesized that the m.7505A > G variant altered both structure and function of tRNASer(UCN). We demonstrated that the m.7505A > G variant perturbed the conformation and stability of tRNASer(UCN), as indicated by an increased melting temperature and electrophoretic mobility of the mutated tRNA compared with the wild type molecule. Using the cybrids constructed by transferring mitochondria from the Chinese family into mitochondrial DNA (mtDNA)-less cells, we demonstrated the m.7505A > G variant led to significantly decreased steady-state levels of tRNASer(UCN) in the mutant cybrids, as compared with those of control cybrids. The aberrant tRNASer(UCN) metabolism resulted in the variable decreases in mtDNA-encoded polypeptides in the mutant cybrids. Furthermore, we demonstrated that the m.7505A > G variant decreased the activities of mitochondrial respiratory complexes I, III and IV, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in the mutant cybrids. These results demonstrated that the m.7505A > G variant affected both structure and function of tRNASer(UCN) and consequently altered mitochondrial function. Our findings highlighted critical insights into the pathophysiology of maternally inherited deafness, which is manifested by the aberrant tRNA metabolism.


Assuntos
DNA Mitocondrial/genética , Surdez/genética , Surdez/patologia , Mitocôndrias/metabolismo , Mutação , RNA de Transferência de Serina/genética , Adolescente , Criança , Pré-Escolar , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Humanos , Masculino , Estabilidade de RNA , RNA de Transferência de Serina/química , Temperatura de Transição , Adulto Jovem
7.
FEBS Lett ; 592(22): 3759-3768, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30317559

RESUMO

Selenocysteine (Sec) lacks a cognate aminoacyl-tRNA synthetase. Instead, seryl-tRNA synthetase (SerRS) produces Ser-tRNASec , which is subsequently converted by selenocysteine synthase to Sec-tRNASec . Escherichia coli SerRS serylates tRNASec poorly; this may hinder efficient production of designer selenoproteins in vivo. Guided by structural modelling and selection for chloramphenicol acetyltransferase activity, we evolved three SerRS variants capable of improved Ser-tRNASec synthesis. They display 10-, 8-, and 4-fold increased kcat /KM values compared to wild-type SerRS using synthetic tRNASec species as substrates. The enzyme variants also facilitate in vivo read-through of a UAG codon in the position of the critical serine146 of chloramphenicol acetyltransferase. These results indicate that the naturally evolved SerRS is capable of further evolution for increased recognition of a specific tRNA isoacceptor.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Serina/genética , Serina-tRNA Ligase/genética , Sequência de Bases , Códon de Terminação/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Domínios Proteicos , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Serina/genética , Serina/metabolismo , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo , Especificidade por Substrato
8.
RNA ; 23(11): 1685-1699, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808125

RESUMO

Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNASer) and the noncognate selenocysteine tRNA (tRNASec). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNASer, tRNASec, and 10 mutant and chimeric constructs in which elements of tRNASer were transposed onto tRNASec We show that human SerRS only subtly prefers tRNASer to tRNASec, and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNASec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNASec and tRNASer dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNASec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis.


Assuntos
RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência de Serina/metabolismo , Serina-tRNA Ligase/metabolismo , Sequência de Bases , Sítios de Ligação , Citosol/enzimologia , Humanos , Cinética , Modelos Moleculares , Mutagênese , Conformação de Ácido Nucleico , Dobramento de RNA , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética , Especificidade por Substrato
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 34(1): 128-132, 2017 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-28186612

RESUMO

Mitochondrial tRNASer(UCN) gene mutation is closely related to acoustic nerve deafness. Some mutations can affect the structure and transcriptional processing of tRNASer(UCN), for instance m.7444G>A mutation in tRNASer(UCN) precursor 3' side, m.7472 insC as well as m.7511T>C mutations in the stem and ring of tRNASer(UCN), may influence tRNASer(UCN) stability, thus affect the synthesis of mitochondrial peptides, reduce the production of ATP and cause deafness. This article focuses on mitochondrial tRNASer(UCN) gene mutations as well as the mechanism underlying hearing loss.


Assuntos
Perda Auditiva/genética , Mutação , RNA de Transferência de Serina/genética , RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Predisposição Genética para Doença/genética , Humanos , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Conformação de Ácido Nucleico , RNA/química , RNA Mitocondrial , RNA de Transferência de Serina/química
10.
RNA ; 23(3): 406-419, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28003514

RESUMO

The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.


Assuntos
Anticódon/química , Citidina/análogos & derivados , Proteínas dos Microfilamentos/metabolismo , RNA de Transferência de Serina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/metabolismo , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Citidina/genética , Citidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas dos Microfilamentos/genética , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , tRNA Metiltransferases/genética
11.
PLoS One ; 11(8): e0160246, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494328

RESUMO

Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ribonuclease P/metabolismo , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Polarização de Fluorescência , Magnésio/química , Magnésio/metabolismo , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Plantas/química , RNA de Plantas/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , Ribonuclease P/genética , Especificidade por Substrato
12.
J Biol Chem ; 291(7): 3613-25, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26677220

RESUMO

Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNA(Leu) formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNA(Leu) through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNA(Ser) (CatRNA(Ser)(CAG)) in addition to its cognate CatRNA(Leu), leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNA(Ser), suggesting the significance of their highly divergent CTDs in tRNA(Ser) recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNA(Ser) and cognate CatRNA(Leu). Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.


Assuntos
Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , RNA Fúngico/metabolismo , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Serina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Candida albicans/metabolismo , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Lisina/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/química , RNA de Transferência de Leucina/química , RNA de Transferência de Serina/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
13.
Artigo em Inglês | MEDLINE | ID: mdl-24491108

RESUMO

Mitochondrial DNA mutations are increasingly recognized as an important cause of cardiovascular diseases, point mutations in mitochondrial tRNA genes being the largest group among them. Most recently, mutation at position 7501 in mt-tRNA(Ser(UCN)) gene has been reported to be associated with human cardiovascular diseases including cardiomyopathy, sudden cardiac death (SCD) and Tetralogy of Fallot (TOF). However, its direct pathogenic role remained poorly understood. In this study, we performed an extensive web-based search for the published resources concerning this association. Through the application of bioinformatics tool, we observed that this mutation altered the mt-tRNA(Ser(UCN)) secondary structure, in addition, evolutionary conservation analysis of this mutation indicated that this mutation is highly conserved between different species. Notably, the T7501C mutation belonging to human mitochondrial haplogroup U8a1a1, a rare subgroup of U8, was present only in European population and was absent in Han Chinese population. Taken together, our result indicated that the T7501C mutation may occur infrequently and was probably pathogenic in cardiovascular disease development.


Assuntos
Doenças Cardiovasculares/genética , Mitocôndrias/genética , Mutação/genética , RNA de Transferência de Serina/genética , Sequência de Bases , Sequência Conservada/genética , Evolução Molecular , Haplótipos/genética , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência de Serina/química
14.
Nature ; 500(7460): 107-10, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23812587

RESUMO

During normal translation, the binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in the termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Ψ) allows efficient recognition and read-through of these stop codons by a transfer RNA (tRNA), although it requires the formation of two normally forbidden purine-purine base pairs. Here we determined the crystal structure at 3.1 Å resolution of the 30S ribosomal subunit in complex with the anticodon stem loop of tRNA(Ser) bound to the ΨAG stop codon in the A site. The ΨA base pair at the first position is accompanied by the formation of purine-purine base pairs at the second and third positions of the codon, which show an unusual Watson-Crick/Hoogsteen geometry. The structure shows a previously unsuspected ability of the ribosomal decoding centre to accommodate non-canonical base pairs.


Assuntos
Pareamento de Bases , Códon de Terminação/genética , Códon de Terminação/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Sequência de Bases , Códon de Terminação/química , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Pseudouridina/química , Pseudouridina/genética , Pseudouridina/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/genética
15.
Biochem Biophys Res Commun ; 427(1): 148-53, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22989754

RESUMO

A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA(Ser)(AAU) is an engineered human tRNA(Ser) with an anticodon coding for isoleucine. Here we test the possibility that tRNA(Ser)(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA(Ser)(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA(Ser)(AAU) in both tumorigenic and non-tumorigenic cells. tRNA(Ser)(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA(Ser)(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA(Ser)(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA(Ser)(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.


Assuntos
Neoplasias da Mama/terapia , RNA de Transferência de Serina/uso terapêutico , Animais , Apoptose , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Camundongos Nus , Plasmídeos/química , Plasmídeos/uso terapêutico , Biossíntese de Proteínas/genética , RNA de Transferência de Serina/química , Transfecção
16.
Mitochondrial DNA ; 23(3): 208-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22651232

RESUMO

The nucleotide variation and structural patterns of mitochondrial RNA molecule have been proposed as useful tools in molecular systematics; however, their usefulness is always subject to a proper assessment of homology in the sequence alignment. The present study describes the secondary structure of mitochondrial tRNA for the amino acid serine (UCN) on 13 Euptychiina species and the evaluation of its potential use for evolutionary studies in this group of butterflies. The secondary structure of tRNAs showed variation among the included species except between Hermeuptychia sp1 and sp2. Variation was concentrated in the ribotimidina-pseudouridine-cystosine (TψC), dihydrouridine (DHU) and variable loops and in the DHU and TψC arms. These results suggest this region as a potential marker useful for taxonomic differentiation of species in this group and also confirm the importance of including information from the secondary structure of tRNA to optimize the alignments.


Assuntos
Borboletas/genética , Variação Genética , Mitocôndrias/genética , Conformação de Ácido Nucleico , RNA de Transferência de Serina/genética , Alinhamento de Sequência , Animais , Sequência de Bases , Borboletas/classificação , Dados de Sequência Molecular , Filogenia , RNA de Transferência de Serina/química , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
17.
Nucleic Acids Res ; 40(5): 2107-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22102571

RESUMO

Pseudouridine synthase 1 (Pus1p) is an unusual site-specific modification enzyme in that it can modify a number of positions in tRNAs and can recognize several other types of RNA. No consensus recognition sequence or structure has been identified for Pus1p. Human Pus1p was used to determine which structural or sequence elements of human tRNA(Ser) are necessary for pseudouridine (Ψ) formation at position 28 in the anticodon stem-loop (ASL). Some point mutations in the ASL stem of tRNA(Ser) had significant effects on the levels of modification and compensatory mutation, to reform the base pair, restored a wild-type level of Ψ formation. Deletion analysis showed that the tRNA(Ser) TΨC stem-loop was a determinant for modification in the ASL. A mini-substrate composed of the ASL and TΨC stem-loop exhibited significant Ψ formation at position 28 and a number of mutants were tested. Substantial base pairing in the ASL stem (3 out of 5 bp) is required, but the sequence of the TΨC loop is not required for modification. When all nucleotides in the ASL stem other than U28 were changed in a single mutant, but base pairing was retained, a near wild-type level of modification was observed.


Assuntos
Hidroliases/metabolismo , RNA de Transferência de Serina/química , Pareamento de Bases , Sequência de Bases , Humanos , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Pseudouridina/metabolismo , RNA de Transferência de Serina/metabolismo
18.
Science ; 334(6057): 817-21, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22076379

RESUMO

The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] adds CCA to the 3' ends of transfer RNAs (tRNAs), a critical step in tRNA biogenesis that generates the amino acid attachment site. We found that the CCA-adding enzyme plays a key role in tRNA quality control by selectively marking structurally unstable tRNAs and tRNA-like small RNAs for degradation. Instead of adding CCA to the 3' ends of these transcripts, CCA-adding enzymes from all three kingdoms of life add CCACCA. In addition, hypomodified mature tRNAs are subjected to CCACCA addition as part of a rapid tRNA decay pathway in vivo. We conjecture that CCACCA addition is a universal mechanism for controlling tRNA levels and preventing errors in translation.


Assuntos
Processamento de Terminações 3' de RNA , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA , RNA de Transferência/metabolismo , Animais , Proteínas Arqueais/metabolismo , Sequência de Bases , Proteínas de Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Camundongos , Conformação de Ácido Nucleico , Poliadenilação , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sulfolobus/enzimologia
19.
Biochem Biophys Res Commun ; 412(4): 532-6, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21787751

RESUMO

tRNAs are aminoacylated by the aminoacyl-tRNA synthetases. There are at least 20 natural amino acids, but due to the redundancy of the genetic code, 64 codons on the mRNA. Therefore, there exist tRNA isoacceptors that are aminoacylated with the same amino acid, but differ in their sequence and in the anticodon. tRNA identity elements, which are sequence or structure motifs, assure the amino acid specificity. The Seryl-tRNA synthetase is an enzyme that depends on rather few and simple identity elements in tRNA(Ser). The Seryl-tRNA-synthetase interacts with the tRNA(Ser) acceptor stem, which makes this part of the tRNA a valuable structural element for investigating motifs of the protein-RNA complex. We solved the high resolution crystal structures of two tRNA(Ser) acceptor stem microhelices and investigated their interaction with the Seryl-tRNA-synthetase by superposition experiments. The results presented here show that the amino acid side chains Ser151 and Ser156 of the synthetase are interacting in a very similar way with the RNA backbone of the microhelix and that the involved water molecules have almost identical positions within the tRNA/synthetase interface.


Assuntos
RNA de Transferência de Serina/química , Serina-tRNA Ligase/química , Água/química , Sítios de Ligação , Cristalografia por Raios X , Conformação de Ácido Nucleico , Conformação Proteica
20.
Nucleic Acids Res ; 39(11): 4728-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21317186

RESUMO

We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNA(Ser)UCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing. One synonymous single-nucleotide polymorphism (SNP), unrelated to the phenotype, was identified. Further sequence analyses found a duplication of the tRNA(Ser)UCA-C47:6U gene, which was shown to cause the phenotype. Ninety percent of 28 isolated mutants contain duplicated tRNA(Ser)UCA-C47:6U genes. The tRNA gene duplication led to a disproportionately large increase in tRNA(Ser)UCA-C47:6U levels in sla1-rrm but not sla1-null cells, consistent with non-specific low-affinity interactions contributing to the RNA chaperone-like activity of La, similar to other RNA chaperones. Our analysis also identified 24 SNPs between ours and S. pombe 972h- strain yFS101 that was recently sequenced using Solexa. By including mitochondrial (mt) DNA in our analysis, overall coverage increased from 52% to 96%. mtDNA from our strain and yFS101 shared 14 mtSNPs relative to a 'reference' mtDNA, providing the first identification of these S. pombe mtDNA discrepancies. Thus, strain-specific and spontaneous phenotypic mutations can be mapped in S. pombe by Solexa sequencing.


Assuntos
Duplicação Gênica , Polimorfismo de Nucleotídeo Único , RNA de Transferência de Serina/genética , Proteínas de Ligação a RNA/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Alelos , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/química , Genes Fúngicos , Genoma Fúngico , Dados de Sequência Molecular , Mutação , Fenótipo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , Análise de Sequência de DNA , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...