Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676737

RESUMO

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Assuntos
Thermotoga , Thermotoga/enzimologia , Thermotoga/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/biossíntese , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Racemases e Epimerases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/biossíntese , Frutose/metabolismo , Frutose/biossíntese , Frutose/química , Estabilidade Enzimática , Biocatálise , Mutagênese Sítio-Dirigida , Temperatura Alta
2.
Enzyme Microb Technol ; 178: 110448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657401

RESUMO

D-allulose is a naturally occurring rare sugar and beneficial to human health. However, the efficient biosynthesis of D-allulose remains a challenge. Here, we mined a new D-tagatose 3-epimerase from Kroppenstedtia eburnean (KeDt3e) with high catalytic efficiency. Initially, crucial factors contributing to the low conversion of KeDt3e were identified through crystal structure analysis, density functional theory calculations (DFT), and molecular dynamics (MD) simulations. Subsequently, based on the mechanism, combining restructuring the flexible region, proline substitution based onconsensus sequence analysis, introducing disulfide bonds, and grafting properties, and reshaping the active center, the optimal mutant M5 of KeDt3e was obtained with enhanced thermostability and activity. The optimal mutant M5 exhibited an enzyme activity of 130.8 U/mg, representing a 1.2-fold increase; Tm value increased from 52.7 °C to 71.2 °C; and half-life at 55 °C extended to 273.7 min, representing a 58.2-fold improvement, and the detailed mechanism of performance improvement was analyzed. Finally, by screening the ribosome-binding site (RBS) of the optimal mutant M5 recombinant bacterium (G01), the engineered strain G08 with higher expression levels was obtained. The engineered strain G08 catalyzed 500 g/L D-fructose to produce 172.4 g/L D-allulose, with a conversion of 34.4% in 0.5 h and productivity of 344.8 g/L/h on a 1 L scale. This study presents a promising approach for industrial-scale production of D-allulose.


Assuntos
Carboidratos Epimerases , Estabilidade Enzimática , Hexoses , Hexoses/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/química , Simulação de Dinâmica Molecular , Frutose/metabolismo , Cinética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Especificidade por Substrato , Engenharia de Proteínas , Racemases e Epimerases/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/química
3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628886

RESUMO

The rare sugar D-allulose is a potential replacement for sucrose with a wide range of health benefits. Conventional production involves the employment of the Izumoring strategy, which utilises D-allulose 3-epimerase (DAEase) or D-psicose 3-epimerase (DPEase) to convert D-fructose into D-allulose. Additionally, the process can also utilise D-tagatose 3-epimerase (DTEase). However, the process is not efficient due to the poor thermotolerance of the enzymes and low conversion rates between the sugars. This review describes three newly identified DAEases that possess desirable properties for the industrial-scale manufacturing of D-allulose. Other methods used to enhance process efficiency include the engineering of DAEases for improved thermotolerance or acid resistance, the utilization of Bacillus subtilis for the biosynthesis of D-allulose, and the immobilization of DAEases to enhance its activity, half-life, and stability. All these research advancements improve the yield of D-allulose, hence closing the gap between the small-scale production and industrial-scale manufacturing of D-allulose.


Assuntos
Engenharia de Proteínas , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Engenharia de Proteínas/métodos , Expressão Gênica , Modelos Moleculares , Estrutura Terciária de Proteína , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
4.
Int J Biol Macromol ; 214: 426-438, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750099

RESUMO

A novel D-allulose 3-epimerase (DAEase) from Arthrobacter psychrolactophilus (Ap DAEase) was first characterized in this study. The enzyme catalyzes the epimerization of d-fructose into a functional rare sugar, D-allulose. Ap DAEase was the first record of DAEase identified as a homotrimer with the molecular weight of its subunit at approximately 34 kDa. It had an optimum activity at pH 8.5 and 70 °C in the presence of 1 mM Mg2+. Ap DAEase was found to be an excellent thermostable enzyme. The half-life value at 70 °C was 128.4 min. The kcat and catalytic efficiency of the enzyme toward d-fructose were 2920.00 s-1 and 3.953 mM-1 s-1, respectively. To the best of our knowledge, Ap DAEase possesses the highest kcat among the previously reported DAEases. The conversion ratio of 500 and 100 mg L-1d-fructose to D-allulose was approximately 27 % in 15 and 90 min, respectively. These research findings suggest that Ap DAEase is a promising candidate for the industrial production of D-allulose.


Assuntos
Arthrobacter , Racemases e Epimerases , Arthrobacter/química , Frutose/química , Concentração de Íons de Hidrogênio , Racemases e Epimerases/química
5.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563349

RESUMO

Human serine racemase (hSR) is a pyridoxal-5'-phosphate (PLP)-dependent dimer that catalyzes the formation of D-serine from L-serine, as well as the dehydration of both L- and D-serine to pyruvate and ammonia. As D-serine is a co-agonist of N-methyl-D-aspartate receptors (NMDARs), hSR is a key enzyme in glutamatergic neurotransmission. hSR activity is finely regulated by Mg2+, ATP, post-translational modifications, and the interaction with protein partners. In particular, the C-terminus of murine SR binds the third PDZ domain (PDZ3) of postsynaptic density protein 95 (PSD-95), a member of the membrane-associated guanylate kinase (MAGUK) family involved in the trafficking and localization of glutamate receptors. The structural details of the interaction and the stability of the complex have not been elucidated yet. We evaluated the binding of recombinant human PSD-95 PDZ3 to hSR by glutaraldehyde cross-linking, pull-down assays, isothermal titration calorimetry, nuclear magnetic resonance, and enzymatic assays. Overall, a weak interaction was observed, confirming the binding for the human orthologs but supporting the hypothesis that a third protein partner (i.e., stargazin) is required for the regulation of hSR activity by PSD-95 and to stabilize their interaction.


Assuntos
Proteína 4 Homóloga a Disks-Large , Domínios PDZ , Racemases e Epimerases , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Humanos , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina
6.
Nat Commun ; 13(1): 592, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105906

RESUMO

Nonribosomal peptide synthetases (NRPSs) are modular assembly-line megaenzymes that synthesize diverse metabolites with wide-ranging biological activities. The structural dynamics of synthetic elongation has remained unclear. Here, we present cryo-EM structures of PchE, an NRPS elongation module, in distinct conformations. The domain organization reveals a unique "H"-shaped head-to-tail dimeric architecture. The capture of both aryl and peptidyl carrier protein-tethered substrates and intermediates inside the heterocyclization domain and L-cysteinyl adenylate in the adenylation domain illustrates the catalytic and recognition residues. The multilevel structural transitions guided by the adenylation C-terminal subdomain in combination with the inserted epimerase and the conformational changes of the heterocyclization tunnel are controlled by two residues. Moreover, we visualized the direct structural dynamics of the full catalytic cycle from thiolation to epimerization. This study establishes the catalytic trajectory of PchE and sheds light on the rational re-engineering of domain-inserted dimeric NRPSs for the production of novel pharmaceutical agents.


Assuntos
Domínio Catalítico , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Microscopia Crioeletrônica , Escherichia coli , Modelos Moleculares
7.
J Sci Food Agric ; 102(1): 85-94, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031874

RESUMO

BACKGROUND: Epilactose, a potential prebiotics, was derived from lactose through enzymatic catalysis. However, production and purification of epilactose are currently difficult due to powerless enzymes and inefficient downstream processing steps. RESULTS: The encoding gene of cellobiose 2-epimerase (CE) from Caldicellulosiruptor sp. Rt8.B8 was cloned and expressed in Escherichia coli BL21(DE3). The enzyme was purified and it was suitable for industrial production of epilactose from lactose without by-products, because of high kcat (197.6 s-1 ) and preferable thermostability. The Rt8-CE gene was further expressed in the Bacillus subtilis strain. We successfully produced epilactose from 700 g L-1 lactose in 30.4% yield by using the recombinant Bacillus subtilis whole cells. By screening of a ß-galactosidase from Bacillus stearothermophilus (BsGal), a process for separating epilactose and lactose was established, which showed a purity of over 95% in a total yield of 69.2%. In addition, a mixed rare sugar syrup composed of epilactose and d-tagatose was successfully produced from lactose through the co-expression of l-arabinose isomerase and ß-galactosidase. CONCLUSION: Our study shed light on the efficient production of epilactose using a food-grade host expressing a novel CE enzyme. Moreover, an efficient and low-cost process was attempted to obtain high purity epilactose. In order to improve the utilization of raw materials, the production process of mixed syrup containing epilactose and d-tagatose with prebiotic properties produced from lactose was also established for the first time. © 2021 Society of Chemical Industry.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Caldicellulosiruptor/enzimologia , Celobiose/metabolismo , Dissacarídeos/biossíntese , Racemases e Epimerases/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caldicellulosiruptor/genética , Estabilidade Enzimática , Expressão Gênica , Temperatura Alta , Lactose/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548397

RESUMO

Enzymes possessing the nickel-pincer nucleotide (NPN) cofactor catalyze C2 racemization or epimerization reactions of α-hydroxyacid substrates. LarB initiates synthesis of the NPN cofactor from nicotinic acid adenine dinucleotide (NaAD) by performing dual reactions: pyridinium ring C5 carboxylation and phosphoanhydride hydrolysis. Here, we show that LarB uses carbon dioxide, not bicarbonate, as the substrate for carboxylation and activates water for hydrolytic attack on the AMP-associated phosphate of C5-carboxylated-NaAD. Structural investigations show that LarB has an N-terminal domain of unique fold and a C-terminal domain homologous to aminoimidazole ribonucleotide carboxylase/mutase (PurE). Like PurE, LarB is octameric with four active sites located at subunit interfaces. The complex of LarB with NAD+, an analog of NaAD, reveals the formation of a covalent adduct between the active site Cys221 and C4 of NAD+, resulting in a boat-shaped dearomatized pyridine ring. The formation of such an intermediate with NaAD would enhance the reactivity of C5 to facilitate carboxylation. Glu180 is well positioned to abstract the C5 proton, restoring aromaticity as Cys221 is expelled. The structure of as-isolated LarB and its complexes with NAD+ and the product AMP identify additional residues potentially important for substrate binding and catalysis. In combination with these findings, the results from structure-guided mutagenesis studies lead us to propose enzymatic mechanisms for both the carboxylation and hydrolysis reactions of LarB that are distinct from that of PurE.


Assuntos
Cisteína/química , Hidrolases/metabolismo , Lactobacillus plantarum/enzimologia , Níquel/metabolismo , Nucleotídeos/biossíntese , Piridinas/química , Racemases e Epimerases/metabolismo , Carboxiliases , Catálise , Cristalografia por Raios X , Hidrolases/química , Hidrólise , Modelos Moleculares , Conformação Proteica , Racemases e Epimerases/química , Especificidade por Substrato
10.
Int J Biol Macromol ; 189: 214-222, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34428486

RESUMO

Currently, low sugar and low energy have become an important trend in the food industries. Therefore, the bioconversion of the functional low-calorie rare sugars attracts more and more attention. l-Ribulose 3-epimerase (LREase) belongs to the ketose 3-epimerase (KEase) family, which could not only efficiently catalyze the reversible C-3 epimerization between l-ribulose and l-xylulose but also between d-fructose and d-allulose. In this paper, a hyperthermostable LREase from Labedella endophytica was identified and characterized. It exhibited maximum catalytic activity at pH 6.0 and 80 °C with 1 mM Ni2+. In the presence of Co2+, the t1/2 values at 60, 65, and 70 °C were 37.7, 9.0, and 4.6 h, respectively, and Tm value was 80.9 °C. From 500 g/L d-fructose, it could produce 154.2 g/L d-allulose with a conversion rate of 30.8% in 10 h. In view of its strong thermostability and high catalytic efficiency, L. endophytica LREase might be a good potential alternative for d-allulose industrial production.


Assuntos
Actinobacteria/enzimologia , Frutose/metabolismo , Racemases e Epimerases/metabolismo , Sequência de Aminoácidos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais , Filogenia , Racemases e Epimerases/química , Especificidade por Substrato , Temperatura
11.
FEBS Open Bio ; 11(6): 1621-1637, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838083

RESUMO

d-Allulose has potential as a low-calorie sweetener which can suppress fat accumulation. Several enzymes capable of d-allulose production have been isolated, including d-tagatose 3-epimerases. Here, we report the isolation of a novel protein from Methylomonas sp. expected to be a putative enzyme based on sequence similarity to ketose 3-epimerase. The synthesized gene encoding the deduced ketose 3-epimerase was expressed as a recombinant enzyme in Escherichia coli, and it exhibited the highest enzymatic activity toward l-ribulose, followed by d-ribulose and d-allulose. The X-ray structure analysis of l-ribulose 3-epimerase from Methylomonas sp. (MetLRE) revealed a homodimeric enzyme, the first reported structure of dimeric l-ribulose 3-epimerase. The monomeric structure of MetLRE is similar to that of homotetrameric l-ribulose 3-epimerases, but the short C-terminal α-helix of MetLRE is unique and different from those of known l-ribulose 3 epimerases. The length of the C-terminal α-helix was thought to be involved in tetramerization and increasing stability; however, the addition of residues to MetLRE at the C terminus did not lead to tetramer formation. MetLRE is the first dimeric l-ribulose 3-epimerase identified to exhibit high relative activity toward d-allulose.


Assuntos
Methylomonas/enzimologia , Pentoses/química , Racemases e Epimerases/química , Cristalografia por Raios X , Modelos Moleculares , Pentoses/metabolismo , Racemases e Epimerases/metabolismo
12.
J Biol Chem ; 296: 100352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524389

RESUMO

Many bacteria produce polysaccharide-based capsules that protect them from environmental insults and play a role in virulence, host invasion, and other functions. Understanding how the polysaccharide components are synthesized could provide new means to combat bacterial infections. We have previously characterized two pairs of homologous enzymes involved in the biosynthesis of capsular sugar precursors GDP-6-deoxy-D-altro-heptose and GDP-6-OMe-L-gluco-heptose in Campylobacter jejuni. However, the substrate specificity and mechanism of action of these enzymes-C3 and/or C5 epimerases DdahB and MlghB and C4 reductases DdahC and MlghC-are unknown. Here, we demonstrate that these enzymes are highly specific for heptose substrates, using mannose substrates inefficiently with the exception of MlghB. We show that DdahB and MlghB feature a jellyroll fold typical of cupins, which possess a range of activities including epimerizations, GDP occupying a similar position as in cupins. DdahC and MlghC contain a Rossman fold, a catalytic triad, and a small C-terminal domain typical of short-chain dehydratase reductase enzymes. Integrating structural information with site-directed mutagenesis allowed us to identify features unique to each enzyme and provide mechanistic insight. In the epimerases, mutagenesis of H67, D173, N121, Y134, and Y132 suggested the presence of alternative catalytic residues. We showed that the reductases could reduce GDP-4-keto-6-deoxy-mannulose without prior epimerization although DdahC preferred the pre-epimerized substrate and identified T110 and H180 as important for substrate specificity and catalytic efficacy. This information can be exploited to identify inhibitors for therapeutic applications or to tailor these enzymes to synthesize novel sugars useful as glycobiology tools.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Heptoses/metabolismo , Oxirredutases/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Bactérias/química , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/química , Heptoses/química , Humanos , Oxirredutases/química , Conformação Proteica , Racemases e Epimerases/química , Especificidade por Substrato
13.
FEBS J ; 288(9): 3034-3054, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33249721

RESUMO

Human serine racemase (hSR) catalyzes the biosynthesis of D-serine, an obligatory co-agonist of the NMDA receptors. It was previously found that the reversible S-nitrosylation of Cys113 reduces hSR activity. Here, we show by site-directed mutagenesis, fluorescence spectroscopy, mass spectrometry, and molecular dynamics that S-nitrosylation stabilizes an open, less-active conformation of the enzyme. The reaction of hSR with either NO or nitroso donors is conformation-dependent and occurs only in the conformation stabilized by the allosteric effector ATP, in which the ε-amino group of Lys114 acts as a base toward the thiol group of Cys113. In the closed conformation stabilized by glycine-an active-site ligand of hSR-the side chain of Lys114 moves away from that of Cys113, while the carboxyl side-chain group of Asp318 moves significantly closer, increasing the thiol pKa and preventing the reaction. We conclude that ATP binding, glycine binding, and S-nitrosylation constitute a three-way regulation mechanism for the tight control of hSR activity. We also show that Cys113 undergoes H2 O2 -mediated oxidation, with loss of enzyme activity, a reaction also dependent on hSR conformation.


Assuntos
Regulação Alostérica/genética , Conformação Proteica , Racemases e Epimerases/ultraestrutura , Sítios de Ligação , Domínio Catalítico/genética , Glicina/genética , Humanos , Cinética , Oxirredução , Racemases e Epimerases/química , Racemases e Epimerases/genética
14.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140544, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971286

RESUMO

Murine serine racemase (SR), the enzyme responsible for the biosynthesis of the neuromodulator d-serine, was reported to form a complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH), resulting in SR inhibition. In this work, we investigated the interaction between the two human orthologues. We were not able to observe neither the inhibition nor the formation of the SR-GAPDH complex. Rather, hSR is inhibited by the hGAPDH substrate glyceraldehyde 3-phosphate (G3P) in a time- and concentration-dependent fashion, likely through a covalent reaction of the aldehyde functional group. The inhibition was similar for the two G3P enantiomers but it was not observed for structurally similar aldehydes. We ruled out a mechanism of inhibition based on the competition with either pyridoxal phosphate (PLP) - described for other PLP-dependent enzymes when incubated with small aldehydes - or ATP. Nevertheless, the inhibition time course was affected by the presence of hSR allosteric and orthosteric ligands, suggesting a conformation-dependence of the reaction.


Assuntos
Trifosfato de Adenosina/química , Inibidores Enzimáticos/química , Gliceraldeído 3-Fosfato/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Fosfato de Piridoxal/química , Racemases e Epimerases/química , 2,3-Difosfoglicerato/química , 2,3-Difosfoglicerato/metabolismo , Trifosfato de Adenosina/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Domínio Catalítico , Clonagem Molecular , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Gliceraldeído/química , Gliceraldeído/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Racemases e Epimerases/antagonistas & inibidores , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
15.
J Sci Food Agric ; 101(2): 693-702, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32700446

RESUMO

BACKGROUND: This study developed a feasible catalytic method for d-allulose syrup production using a fusion enzyme, either in free or immobilized form, through hydrolysis of inulin extracted from Jerusalem artichoke tubers. RESULTS: d-Allulose 3-epimerase (DAE) was actively expressed in secretory form by fusing with the extracellular exo-inulinase CSCA in Escherichia coli BL21 (DE3). The best linker ligating the two enzymes was a flexible peptide containing 12 residues (GSAGSAAGSGEF). At 55 °C and pH 8.0, and as with the addition of 1 mmol L-1 Mn2+ , the CSCA-linkerE-DAE fusion enzyme obtained through high cell-density cultivation displayed a maximal exo-inulinase activity of 21.8 U mg-1 and resulted in a yield of 6.3 g L-1 d-allulose and 39.2 g L-1 d-fructose using 60 g L-1 inulin as the raw material. Catechol-modified alginate with titanium ions (Alg(Ti)PDA) was found to be a promising immobilization material for the fusion enzyme. After conversion for 8 days, the Alg(Ti)PDA-immobilized CSCA-linkerE-DAE (8 U g-1 ) completed 24 reaction cycles and retained over 80% of its original activity. Each reaction obtained an average of 19.8 g L-1 d-allulose and 32.7 g L-1 D-fructose from 60 g L-1 inulin. CONCLUSION: This study shed light on a feasible and cost-effective approach for the production of syrup containing d-allulose and D-fructose with inulin as the raw material via the use of a CSCA and DAE fusion enzyme. This syrup is of added value as a functional sweetener. © 2020 Society of Chemical Industry.


Assuntos
Frutose/química , Glicosídeo Hidrolases/química , Inulina/química , Racemases e Epimerases/química , Proteínas Recombinantes de Fusão/química , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Tecnologia de Alimentos/economia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Inulina/genética , Inulina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
Sci Rep ; 10(1): 18123, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093595

RESUMO

Isomerization reactions are fundamental in biology. Lactate racemase, which isomerizes L- and D-lactate, is composed of the LarA protein and a nickel-containing cofactor, the nickel-pincer nucleotide (NPN). In this study, we show that LarA is part of a superfamily containing many different enzymes. We overexpressed and purified 13 lactate racemase homologs, incorporated the NPN cofactor, and assayed the isomerization of different substrates guided by gene context analysis. We discovered two malate racemases, one phenyllactate racemase, one α-hydroxyglutarate racemase, two D-gluconate 2-epimerases, and one short-chain aliphatic α-hydroxyacid racemase among the tested enzymes. We solved the structure of a malate racemase apoprotein and used it, along with the previously described structures of lactate racemase holoprotein and D-gluconate epimerase apoprotein, to identify key residues involved in substrate binding. This study demonstrates that the NPN cofactor is used by a diverse superfamily of α-hydroxyacid racemases and epimerases, widely expanding the scope of NPN-dependent enzymes.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Hidroxiácidos/química , Níquel/metabolismo , Nucleotídeos/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Moleculares , Níquel/química , Nucleotídeos/química , Conformação Proteica , Racemases e Epimerases/química
17.
Int J Biol Macromol ; 163: 1369-1374, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758598

RESUMO

Xylan and pectin are major structural components of plant cell walls. There are two independent catabolic pathways for xylan and pectin. UxaE bridges these two pathways by reversibly epimerizing D-fructuronate and D-tagaturonate. The crystal structure of UxaE from Cohnella laeviribosi (ClUxaE) shows a core scaffold of TIM-barrel with a position-changing divalent metal cofactor. ClUxaE has the flexible metal-coordination loop to allow the metal shift and the extra domains to bind a phosphate ion in the active site, which are important for catalysis and substrate specificity. Elucidation of the structure and mechanism of ClUxaE will assist in understanding the catalytic mechanism of UxaE family members, which are useful for processing both xylan and pectin-derived carbohydrates for practical and industrial purposes, including the transformation of agricultural wastes into numerous valuable products.


Assuntos
Bacillales/química , Catálise/efeitos dos fármacos , Racemases e Epimerases/química , Açúcares/química , Carboidratos/química , Domínio Catalítico/efeitos dos fármacos , Metais/química , Pectinas/química , Fosfatos/química , Especificidade por Substrato , Xilanos/química
18.
Biochim Biophys Acta Gene Regul Mech ; 1863(9): 194597, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32603878

RESUMO

Serine racemase (SR) synthesizes l-type serine to its enantimor, d-serine which participates in physiological processes and in pathological conditions. In the central nervous system, SR is highly expressed in neurons and astrocytes but expressed at relatively lower amount in microglia. However, the mechanism by which SR is highly expessed in neurons is hitherto unknown. We report that the SR mRNA and protein levels in Neuro-2a were increased by valproic acid (VPA), a neuron differentiation stimulator as well as a histone deacetylase inhibitor. SR proximal promoter contained nine putative Sp-binding elements and in the exon 1, three putative anti-oxidant elements (AREs) were conservative among human, rat, and mouse genome. The promoter constructs including 5'-, 3'-fragment, and full length fragment from mouse were individually cloned into a luciferase reporter. Using dual-luciferase assay, the promoter harboring 3'-fragment contained much lower activity than the construct containing 5'-fragment which was though resistant to VPA induction, relative to 3'-fragment. Overexpression of Sp4 or Nrf2 increased whereas knockdown of either decreased Srr mRNA and SR protein. Using site-directed mutagenesis, mutation of Sp-binding elements or AREs in the constructs significantly decreased luciferase activity of the corresponding promoter construct. With chromatin immunoprecipitation, Sp4 was demonstrated to interact directly with the Sp-binding elements whereas Nrf2 bound AREs in Srr mRNA promoter. Altogether, our study highlights that Sp4 controls constitutive expression of SR in neuron and VPA mediates SR expression in N2A cells which is associated with its effect on neuron differentiation, that is, the effect is mediated via Nrf2.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Racemases e Epimerases/genética , Fator de Transcrição Sp4/metabolismo , Ácido Valproico/farmacologia , Animais , Sequência de Bases , Linhagem Celular , Imunofluorescência , Genes Reporter , Histona Desacetilases/metabolismo , Humanos , Camundongos , Mutação , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Transdução de Sinais
19.
Nat Chem Biol ; 16(9): 1013-1018, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601484

RESUMO

D-amino acids endow peptides with diverse, desirable properties, but the post-translational and site-specific epimerization of L-amino acids into their D-counterparts is rare and chemically challenging. Bottromycins are ribosomally synthesized and post-translationally modified peptides that have overcome this challenge and feature a D-aspartate (D-Asp), which was proposed to arise spontaneously during biosynthesis. We have identified the highly unusual α/ß-hydrolase (ABH) fold enzyme BotH as a peptide epimerase responsible for the post-translational epimerization of L-Asp to D-Asp during bottromycin biosynthesis. The biochemical characterization of BotH combined with the structures of BotH and the BotH-substrate complex allowed us to propose a mechanism for this reaction. Bioinformatic analyses of BotH homologs show that similar ABH enzymes are found in diverse biosynthetic gene clusters. This places BotH as the founding member of a group of atypical ABH enzymes that may be able to epimerize non-Asp stereocenters across different families of secondary metabolites.


Assuntos
Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Família Multigênica , Peptídeos Cíclicos/metabolismo , Conformação Proteica , Dobramento de Proteína , Racemases e Epimerases/genética , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato
20.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140460, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474107

RESUMO

Eukaryotic serine racemase (SR) is a pyridoxal 5'-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-d-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.


Assuntos
Desidratação , Eucariotos/enzimologia , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Serina/metabolismo , Animais , Catálise , Cristalização , Dictyostelium/enzimologia , Cinética , Camundongos , Modelos Moleculares , Racemases e Epimerases/genética , Receptores de N-Metil-D-Aspartato , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...