Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
J Med Chem ; 66(12): 8043-8053, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37285471

RESUMO

Prostate-specific membrane antigen (PSMA) is a promising target for metastatic castration-resistant prostate cancer. We previously reported the effectiveness of PSMA-DA1 as a PSMA-targeting radiotheranostic agent containing an albumin binder moiety. To further enhance tumor uptake, we newly designed PSMA-NAT-DA1 (PNT-DA1) by the introduction of a lipophilic linker into PSMA-DA1. The PSMA affinity of [111In]In-PNT-DA1 was increased (Kd = 8.20 nM) compared with that of [111In]In-PSMA-DA1 (Kd = 89.4 nM). [111In]In-PNT-DA1 showed markedly high tumor accumulation (131.6% injected dose/g at 48 h post-injection), and [111In]In-PNT-DA1 enabled the visualization of the tumor clearly at 24 h post-injection with SPECT/CT imaging. The administration of [225Ac]Ac-PNT-DA1 (2.5 kBq) led to shrinkage of the tumor without marked toxicity, and the antitumor effects of [225Ac]Ac-PNT-DA1 were superior to those of [225Ac]Ac-PSMA-DA1 and [225Ac]Ac-PSMA-617, which is the current gold standard for PSMA-targeting 225Ac-endoradiotherapy. These results suggest that the combination of [111In]In-PNT-DA1 and [225Ac]Ac-PNT-DA1 comprises a promising method of PSMA-targeting radiotheranostics.


Assuntos
Glutamato Carboxipeptidase II , Neoplasias da Próstata , Humanos , Masculino , Albuminas , Antígenos de Superfície , Linhagem Celular Tumoral , Índio/química , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Índio/química , Radioisótopos de Índio/uso terapêutico
2.
Curr Radiopharm ; 15(2): 148-156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34182918

RESUMO

BACKGROUND: Breast cancer Auger electron therapy is a growing field of study in radioimmunotherapy and oncology research. Trastuzumab, a high affinity-binding monoclonal antibody against HER2/neu is which is over-expressed in breast tumors, is used in radiopharmaceutical development. OBJECTIVES: In this work, the lethal effects of 111In3+, 111In-DTPA-trastuzumab and 111In-trastuzumab coupled-nuclear localizing sequence peptide (111In-DTPA-NLS-trastuzumab) on malignant cells were studied in vitro. METHODS: DTPA-NLS-trastuzumab was prepared using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) conjugation with NLS peptide in the first step, followed by conjugation with diethylenetriaminepentaacetic acid (DTPA). Both DTPA-trastuzumab and DTPA- NLS-trastuzumab were labeled with 111In followed by purification and quality control techniques. Sk-Br-3 (a HER2/neu+ cell line), was used in the cell viability assessment assay for 111In, 111In-DTPA-trastuzumab and 111In-DTPA-NLS-trastuzumab (3.7 MBq) at 37 ºC. The cytotoxicity of the three species was studied using MTT and comet assay was utilized DNA damage detection. RESULTS: A significant radiochemical purity for 111In-DTPA-NLS-trastuzumab (99.36% ± 0.30%, ITLC) at the DTPA:antibody ratio of 6.90 ± 0.34:1, was obtained. Significant cell viability difference was found for 111In-DTPA-NLS-trastuzumab compared to the other treatments at two-time points. In addition, comet assay demonstrated significant DNA damage at 144 h using 111In-DTPA- NLS-trastuzumab. CONCLUSION: The results of cell viability and cell death using MTT assay and comet assay, respectively, demonstrate the NLS-peptide effectively facilitates 111In-trastuzumab transport into the HER2/neu positive cancer cell nuclei to impose the radiotherapeutic effects of Auger electrons on DNA leading to cell death.


Assuntos
Neoplasias da Mama , Imunoconjugados , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaio Cometa , DNA/uso terapêutico , Elétrons , Feminino , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Radioisótopos de Índio/farmacologia , Radioisótopos de Índio/uso terapêutico , Sinais de Localização Nuclear/uso terapêutico , Ácido Pentético/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Receptor ErbB-2/metabolismo , Receptor ErbB-2/uso terapêutico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
3.
Nucl Med Biol ; 80-81: 37-44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31706737

RESUMO

INTRODUCTION: Our objective was to evaluate the effectiveness and normal tissue toxicity of nimotuzumab labeled with the Auger electron (AE)-emitter, 111In ([111In]In-Bn-DTPA-nimotuzumab) for radioimmunotherapy (RIT) of human triple-negative breast cancer (TNBC) or trastuzumab-resistant HER2-positive BC tumors overexpressing epidermal growth factor receptors (EGFR) in athymic mice. METHODS: Normal tissue toxicity was studied in non-tumor-bearing Balb/c mice i.v. administered 9.0 or 28.6 MBq (3 mg/kg) of [111In]In-Bn-DTPA-nimotuzumab, unlabeled nimotuzumab (3 mg/kg) or normal saline. A complete blood cell count (CBC) and serum alanine aminotransferase (ALT) and creatinine (Cr) were measured at 14 days. Body weight was monitored. RIT studies were performed in CD-1 athymic mice engrafted s.c. with MDA-MB-468 human TNBC tumors or TrR1 HER2-positive but trastuzumab-resistant BC tumors. Mice were i.v. administered two amounts (15.5 MBq; 3 mg/kg) of [111In]In-Bn-DTPA-nimotuzumab separated by 14 days. Control mice received unlabeled Bn-DTPA-nimotuzumab (3 mg/kg) or anti-HER2 [111In]In-Bn-DTPA-trastuzumab or normal saline. Tumor growth and body weight were measured for 6 weeks. A tumor growth index (TGI) and body weight index (BWI) were calculated to compare the tumor size and body weight post-treatment with the pre-treatment values. A tumor doubling ratio (TDR) was calculated for each treatment group compared to control mice receiving normal saline. RESULTS: There was no loss of body weight or decreased red blood cells (RBC) or platelets (PLT) or increased serum ALT or Cr in Balb/c mice administered 9.0 or 28.6 MBq (3 mg/kg) of [111In]In-Bn-DTPA-nimotuzumab compared to mice treated with unlabeled Bn-DTPA-nimotuzumab (3 mg/kg) or normal saline. There was a significant decrease in white blood cell (WBC) counts in Balb/c mice receiving 28.6 MBq but not 9.0 MBq of [111In]In-Bn-DTPA-nimotuzumab. Based on these results, an administered amount of 15.5 MBq (3 mg/kg) was selected for RIT studies. Administration of two amounts (15.5 MBq; 3 mg/kg) separated by 14 days to CD-1 athymic mice with s.c. MDA-MB-468 xenografts strongly inhibited tumor growth. The TDR for mice treated with [111In]In-Bn-DTPA-nimotuzumab was 2.15 compared to control mice receiving normal saline. In contrast, treatment with unlabeled Bn-DTPA-nimotuzumab or [111In]In-Bn-DTPA-trastuzumab had no significant effect on tumor growth (TDR = 0.96 and 1.08, respectively). RIT with [111In]In-Bn-DTPA-nimotuzumab also strongly inhibited the growth of TrR1 tumors in athymic mice (TDR = 2.13) compared to unlabeled Bn-DTPA-nimotuzumab (TDR = 0.91). There were no losses in body weight over 6 weeks in tumor bearing mice receiving [111In]In-Bn-DTPA-nimotuzumab, unlabeled Bn-DTPA-nimotuzumab, [111In]In-Bn-DTPA-trastuzumab or normal saline. CONCLUSIONS: [111In]In-Bn-DTPA-nimotuzumab was effective for treatment of TNBC or trastuzumab-resistant HER2-positive human BC tumors in mice that overexpress EGFR at administered amounts that caused no decrease in body weight or normal tissue toxicity in non-tumor-bearing Balb/c mice. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Our results suggest that Auger electron RIT with [111In]In-Bn-DTPA-nimotuzumab may provide a novel therapeutic option for patients with TNBC or trastuzumab-resistant HER2-positive BC that overexpresses EGFR. The low normal tissue toxicity of this approach may allow combination with other targeted therapies such as antibody-drug conjugates (ADCs).


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Receptores ErbB/metabolismo , Radioisótopos de Índio/uso terapêutico , Ácido Pentético/química , Radioimunoterapia/efeitos adversos , Neoplasias de Mama Triplo Negativas/radioterapia , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Elétrons/efeitos adversos , Elétrons/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Camundongos , Fenótipo , Distribuição Tecidual , Trastuzumab/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
J Labelled Comp Radiopharm ; 62(10): 646-655, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963606

RESUMO

Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, representing attractive targets for diagnosis and therapy with bombesin (BBN)-like radioligands. GRPR-antagonists have lately attracted much attention owing to inherent biosafety and favorable pharmacokinetics. We herein present the GRPR-antagonist SB9 structurally resembling the known BBN-based agonist AMBA (SB9 = [Leu13 NHEt-desMet14 ]AMBA). The profiles of 111 In-SB9 and 111 In-AMBA were directly compared in PC-3 cells and tumor-bearing mice. SB9 and AMBA displayed high GRPR affinities. 111 In-AMBA strongly internalized in PC-3 cells, while 111 In-SB9 remained bound on the cell surface showing a typical GRPR-radioantagonist profile. 111 In-SB9 was more stable than 111 In-AMBA, but coinjection of the neprilysin (NEP) inhibitor phosphoramidon (PA) stabilized both in vivo. The radioligands displayed high tumor uptake (20.23 ± 3.41 %ID/g and 18.53 ± 1.54 %ID/g, respectively, at 4 hours pi), but 111 In-SB9 washed faster from background. PA coinjection led to significant increase of tumor uptake, combined with better clearance for 111 In-SB9. In short, this study has revealed superior pharmacokinetics and higher stability for the GRPR-antagonist 111 In-SB9 vs the corresponding agonist 111 In-AMBA consolidating previous evidence that GRPR antagonists are preferable to agonists for tumor imaging and therapy. It has also demonstrated that further pharmacokinetic improvements were feasible by in situ metabolic radioligand stabilization using PA.


Assuntos
Radioisótopos de Índio , Oligopeptídeos/farmacologia , Neoplasias da Próstata/patologia , Receptores da Bombesina/antagonistas & inibidores , Animais , Transporte Biológico , Estabilidade de Medicamentos , Compostos Heterocíclicos com 1 Anel/química , Humanos , Radioisótopos de Índio/uso terapêutico , Masculino , Camundongos , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Oligopeptídeos/uso terapêutico , Células PC-3 , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Distribuição Tecidual
5.
J Nucl Med ; 60(6): 812-816, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30504139

RESUMO

Being highly expressed in insulinomas, the glucagonlike peptide-1 receptor (GLP-1R) is a potential target for diagnosis, localization, and treatment with the radiolabeled GLP-1R agonist exendin. Tracer accumulation in the kidneys, however, hampers accurate diagnostic visualization of pancreatic tissue and prohibits the therapeutic application of radiolabeled exendin for ß-cell-derived tumors. Therefore, we evaluated the ability of succinylated gelatin (Gelofusine) to reduce the renal accumulation of radiolabeled exendin in humans, and we performed dosimetric calculations to estimate the maximum absorbed insulinoma dose that could be achieved if exendin were to be used for peptide receptor radionuclide therapy. Methods: Ten healthy volunteers received 50 MBq of 111In-exendin-4, in combination with Gelofusine or saline, in a crossover design. SPECT/CT images were obtained after 24 h. The procedure was repeated 3 wk later. Uptake of 111In-exendin was determined by drawing regions of interest around the kidneys and in the pancreas. Planar scintigraphic 111In-exendin images of 5 insulinoma patients were used for dosimetry studies estimating the maximum insulinoma absorbed dose that could be achieved without causing radiotoxicity to other organs. Results: Gelofusine reduced the renal accumulation of 111In-exendin-4 by 18.1%, whereas the pancreatic uptake remained unchanged. In 3 of 10 subjects, the kidney uptake was reduced to such an extent that the pancreatic tail could be better discriminated from the kidney signal. Dosimetric estimations suggested that the insulinoma absorbed dose ranges from 30.3 to 127.8 Gy. This dose could be further increased to maximally 156.1 Gy if Gelofusine was used. Conclusion: We have shown that Gelofusine can reduce the renal accumulation of 111In-exendin-4 in humans. This reduction not only allows more accurate qualitative and quantitative analyses of radiolabeled exendin uptake in the tail region of the pancreas but also potentiates the safe delivery of a higher radiation dose to GLP-1R-positive tumors for therapy.


Assuntos
Exenatida/uso terapêutico , Gelatina/farmacologia , Insulinoma/diagnóstico por imagem , Insulinoma/radioterapia , Succinatos/farmacologia , Adulto , Transporte Biológico/efeitos dos fármacos , Exenatida/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Radioisótopos de Índio/uso terapêutico , Insulinoma/metabolismo , Marcação por Isótopo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
6.
Phys Med ; 45: 134-142, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29472078

RESUMO

This study presents current status of performance of radiopharmaceutical activity measurements using radionuclide calibrators in Belgium. An intercomparison exercise was performed among 15 hospitals to test the accuracy of 99mTc, 18F and 111In activity measurements by means of radionuclide calibrators. Four sessions were held in different geographical regions between December 2013 and February 2015. The data set includes measurements from 38 calibrators, yielding 36 calibrations for 99mTc and 111In, and 21 calibrations for 18F. For each radionuclide, 3 ml of stock solution was measured in two clinical geometries: a 10 ml glass vial and a 10 ml syringe. The initial activity was typically 100 MBq for 99mTc, 15 MBq for 111In and 115 MBq for 18F. The reference value for the massic activity of the radioactive solutions was determined by means of primary and secondary standardisation techniques at the radionuclide metrology laboratory of the JRC. The overall results of the intercomparison were satisfactory for 99mTc and 18F, since most radionuclide calibrators (>70%) were accurate within ±5% of the reference value. Nevertheless, some devices underestimated the activity by 10-20%. Conversely, 111In measurements were strongly affected by source geometry effects and this had a negative impact on the accuracy of the measurements, in particular for the syringe sample. Large overestimations (up to 72%) were observed, even when taking into account the corrections and uncertainties supplied by the manufacturers for container effects. The results of this exercise encourage the hospitals to perform corrective actions to improve the calibration of their devices where needed.


Assuntos
Calibragem , Radioisótopos de Flúor , Radioisótopos de Índio , Medicina Nuclear/instrumentação , Tecnécio , Bélgica , Radioisótopos de Flúor/uso terapêutico , Hospitais , Radioisótopos de Índio/uso terapêutico , Garantia da Qualidade dos Cuidados de Saúde , Tecnécio/uso terapêutico
7.
Dokl Biochem Biophys ; 473(1): 85-87, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28510138

RESUMO

A new modular nanotransporter (MNT) for the delivery of anticancer agents into the nuclei of cells with folate receptor overexpression was created. An effective method for acceding labeling of this MNT with Auger electron emitter 111In has been developed. A significant therapeutic effect was observed after a single intratumoral injection of the new 111In-labeled MNT to mice grafted with human cervical carcinoma characterized by folate receptor overexpression.


Assuntos
Núcleo Celular/metabolismo , Elétrons , Transportadores de Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica , Radioisótopos de Índio/metabolismo , Radioisótopos de Índio/uso terapêutico , Animais , Células HeLa , Humanos , Radioisótopos de Índio/administração & dosagem , Camundongos
8.
J Nucl Med ; 58(9): 1380-1385, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28408533

RESUMO

Brachytherapy is a type of radiotherapy wherein titanium capsules containing therapeutic radioisotopes are implanted within tumor tissues, enabling high-dose radioirradiation to tumor tissues around the seeds. Although marked therapeutic effects have been demonstrated, brachytherapy needs a complicated implantation technique under general anesthesia and the seeds could migrate to other organs. The aim of this study was to establish a novel brachytherapy using biocompatible, injectable thermoresponsive polymers (polyoxazoline [POZ]) labeled with 90Y, which can self-aggregate above a specific transition temperature (Tt), resulting in long-term intratumoral retention of radioactivity and therapeutic effect. Therefore, we evaluated the tumor retention of radiolabeled POZ derivatives and their therapeutic effects. Methods: Using oxazoline derivatives with ethyl (Et), isopropyl (Isp), and propyl (Pr) side chains, we synthesized EtPOZ, IspPOZ, Isp-PrPOZ (heteropolymer), and PrPOZ and measured their characteristic Tts. The intratumoral retention of 111In-labeled POZ was evaluated until 7 d after injection in nude mice bearing PC-3 human prostate cancer. The intratumoral localization of 111In-labeled POZ derivatives was investigated by an autoradiographic study. Furthermore, a therapeutic study using 90Y-labeled Isp-PrPOZ was performed, and tumor growth and survival rate were evaluated. Results: The Tts of EtPOZ, IspPOZ, Isp-PrPOZ, and PrPOZ (∼20 kDa) were greater than 70°C, 34°C, 25°C, and 19°C, respectively. In the intratumoral injection study, Isp-PrPOZ and PrPOZ (2,000 µM) with Tts lower than tumor temperature (33.5°C under anesthesia) showed a significantly higher retention of radioactivity at 1 d after injection (73.6% and 73.9%, respectively) than EtPOZ (5.6%) and IspPOZ (15.8%). Even at low injected dose (100 µM), Isp-PrPOZ exhibited high retention (68.3% at 1 d). The high level of radioactivity of Isp-PrPOZ was retained in the tumor 7 d after injection (69.5%). The autoradiographic study demonstrated that the radioactivity of 111In-labeled Isp-PrPOZ and PrPOZ was localized in a small area. In the therapeutic study using 90Y-labeled Isp-PrPOZ, significant suppression of tumor growth and prolonged survival rate were achieved in an injection dose-dependent manner compared with that observed for the vehicle-injected group and nonradioactive Isp-PrPOZ-injected group. Conclusion: The injectable 90Y-labeled Isp-PrPOZ was retained for a prolonged period within tumor tissues via self-aggregation and exhibited marked therapeutic effect, suggesting its usefulness for brachytherapy.


Assuntos
Braquiterapia/métodos , Oxazóis/química , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Temperatura , Radioisótopos de Ítrio/uso terapêutico , Animais , Linhagem Celular Tumoral , Radioisótopos de Índio/uso terapêutico , Injeções Intralesionais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polimerização , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
9.
J Control Release ; 256: 1-8, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28412225

RESUMO

High Intensity Focused Ultrasound (HIFU) is an emerging noninvasive, nonionizing physical energy based modality to ablate solid tumors with high power, or increase local permeability in tissues/tumors in pulsed mode with relatively low power. Compared with traditional ablative HIFU, nondestructive pulsed HIFU (pHIFU) is present in the majority of novel applications recently developed for enhancing the delivery of drugs and genes. Previous studies have demonstrated the capability of pHIFU to change tissue local permeability for enhanced drug delivery in both mouse tumors and mouse muscle. Further study based on bulk tissues in large animals and clinical HIFU system revealed correlation between therapeutic effect and thermal parameters, which was absent in the previous mouse studies. In this study, we further investigated the relation between the therapeutic effect of pHIFU and thermal parameters in bulky normal muscle tissues based on a rabbit model and a preclinical HIFU system. Correlation between therapeutic effect and thermal parameters was confirmed in our study on the same bulk tissues although different HIFU systems were used. Following the study in bulky normal muscle tissues, we further created bulky tumor model with VX2 tumors implanted on both hind limbs of rabbits and investigated the feasibility to enhance tumor permeability in bulky VX2 tumors in a rabbit model using pHIFU technique. A radiolabeled peptidomimetic integrin antagonist, 111In-DOTA-IA, was used following pHIFU treatment in our study to target VX2 tumor and serve as the radiotracer for follow-up single-photon emission computed tomography (SPECT) scanning. The results have shown significantly elevated uptake of 111In-DOTA-IA in the area of VX2 tumors pretreated by pHIFU compared with the control VX2 tumors not being pretreated by pHIFU, and statistical analysis revealed averaged 34.5% enhancement 24h after systematic delivery of 111In-DOTA-IA in VX2 tumors pretreated by pHIFU compared with the control VX2 tumors.


Assuntos
Complexos de Coordenação/administração & dosagem , Sistemas de Liberação de Medicamentos , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Ablação por Ultrassom Focalizado de Alta Intensidade , Radioisótopos de Índio/administração & dosagem , Neoplasias Musculares , Animais , Nádegas/diagnóstico por imagem , Complexos de Coordenação/farmacocinética , Complexos de Coordenação/uso terapêutico , Feminino , Compostos Heterocíclicos com 1 Anel/farmacocinética , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Radioisótopos de Índio/farmacocinética , Radioisótopos de Índio/uso terapêutico , Imageamento por Ressonância Magnética , Neoplasias Musculares/diagnóstico por imagem , Neoplasias Musculares/metabolismo , Neoplasias Musculares/terapia , Permeabilidade , Coelhos , Tomografia Computadorizada de Emissão de Fóton Único
10.
Oncotarget ; 8(13): 22034-22047, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423546

RESUMO

Tetraspanin 8 (TSPAN8) overexpression is correlated with poor prognosis in human colorectal cancer (CRC). A murine mAb Ts29.2 specific for human TSPAN8 provided significant efficiency for immunotherapy in CRC pre-clinical models. We therefore evaluate the feasability of targeting TSPAN8 in CRC with radiolabeled Ts29.2. Staining of tissue micro-arrays with Ts29.2 revealed that TSPAN8 espression was restricted to a few human healthy tissues. DOTA-Ts29.2 was radiolabeled with 111In or 177Lu with radiochemical purities >95%, specific activity ranging from 300 to 600 MBq/mg, and radioimmunoreactive fractions >80%. The biodistribution of [111In]DOTA-Ts29.2 in nude mice bearing HT29 or SW480 CRC xenografts showed a high specificity of tumor localization with high tumor/blood ratios (HT29: 4.3; SW480-TSPAN8: 3.9 at 72h and 120h post injection respectively). Tumor-specific absorbed dose calculations for [177Lu]DOTA-Ts29.2 was 1.89 Gy/MBq, establishing the feasibility of using radioimmunotherapy of CRC with this radiolabeled antibody. A significant inhibition of tumor growth in HT29 tumor-bearing mice treated with [177Lu]DOTA-Ts29.2 was observed compared to control groups. Ex vivo experiments revealed specific DNA double strand breaks associated with cell apoptosis in [177Lu]DOTA-Ts29.2 treated tumors compared to controls. Overall, we provide a proof-of-concept for the use of [111In/177Lu]DOTA-Ts29.2 that specifically target in vivo aggressive TSPAN8-positive cells in CRC.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Radioisótopos de Índio/uso terapêutico , Lutécio/uso terapêutico , Radioimunoterapia , Tetraspaninas/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacocinética , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Imunoconjugados/imunologia , Radioisótopos de Índio/farmacocinética , Lutécio/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nucl Med Biol ; 43(12): 818-826, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27788375

RESUMO

INTRODUCTION: Gold nanoparticles (AuNP; 30nm) were modified with polyethylene glycol (PEG) chains linked to trastuzumab for binding to HER2-positive breast cancer (BC) cells and diethylenetriaminepentaacetic acid (DTPA) for complexing the Auger electron-emitter, 111In (trastuzumab-AuNP-111In). Our objective was to determine the cytotoxicity of trastuzumab-AuNP-111In on HER2-positive BC cells in vitro and evaluate its tumor growth inhibition properties and normal tissue toxicity in vivo following intratumoral (i.t.) injection in mice with s.c. HER2-overexpressing BC xenografts. METHODS: Binding and internalization of trastuzumab-AuNP-111In or non-targeted AuNP-111In in SK-BR-3 (1-2×106 HER2/cell) and MDA-MB-361 (5×105 HER2/cell) human BC cells were studied. The surviving fraction (SF) of SK-BR-3 or MDA-MB-361 cells exposed to trastuzumab-AuNP-111In or AuNP-111In was determined. DNA double-strand breaks (DSBs) were assayed by probing for γ-H2AX. Tumor growth was monitored over 70days in CD1 athymic mice with s.c. MDA-MB-361 xenografts after i.t. injection of 10MBq (0.7mg; 2.6×1012 AuNP) of trastuzumab-AuNP-111In and normal tissue toxicity was assessed by monitoring body weight, complete blood cell (CBC) counts and serum alanine aminotransferase (ALT) and creatinine (Cr). RESULTS: Trastuzumab-AuNP-111In was specifically bound by SK-BR-3 and MDA-MB-361 cells. Trastuzumab-AuNP-111In was more efficiently internalized than AuNP-111In and localized to a peri-nuclear region. The SF fraction of SK-BR-3 cells was reduced by 1.8-fold by treatment with 3nM (7MBq/mL) of trastuzumab-AuNP-111In. The SF of MDA-MB-361 cells was reduced by 3.7-fold at 14.4nM (33.6MBq/mL). In comparison, non-targeted AuNP-111In at these concentrations reduced the SF of SK-BR-3 or MDA-MB-361 cells by 1.2-fold (P=0.03) and 1.7-fold (P<0.0001), respectively. DNA DSBs were greater in SK-BR-3 and MDA-MB-361 cells exposed to trastuzumab-AuNP-111In compared to AuNP-111In, but unlabeled trastuzumab-AuNP did not increase DNA DSBs. Local i.t. injection of trastuzumab-AuNP-111In in CD1 athymic mice with s.c. MDA-MB-361 tumors arrested tumor growth for 70days. There was no apparent normal tissue toxicity. The radiation absorbed dose deposited in the tumor by trastuzumab-AuNP-111In was 60.5Gy, while normal organs received <0.9Gy. CONCLUSION: These results are promising for further development of trastuzumab-AuNP-111In as a novel Auger electron-emitting radiation nanomedicine for local treatment of HER2-positive BC. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: A local radiation treatment for HER2-positive BC based on AuNP modified with trastuzumab and labeled with the Auger electron-emitter, 111In was developed and shown to arrest tumor growth with no normal tissue toxicity.


Assuntos
Neoplasias da Mama/patologia , Receptores ErbB/metabolismo , Ouro/química , Radioisótopos de Índio/uso terapêutico , Nanopartículas Metálicas/química , Trastuzumab/química , Trastuzumab/uso terapêutico , Animais , Transporte Biológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Receptores ErbB/imunologia , Humanos , Injeções Intralesionais , Camundongos Nus , Doses de Radiação , Trastuzumab/imunologia , Trastuzumab/metabolismo
12.
Oncotarget ; 7(28): 43352-43362, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27270318

RESUMO

Radiation-inducible neo-antigens are proteins expressed on cancer cell surface after exposure to ionizing radiation (IR). These neo-antigens provide opportunities to specifically target cancers while sparing normal tissues. Tax interacting protein-1 (TIP-1) is induced by irradiation and is translocated to the surface of cancer cells. We have developed a monoclonal antibody, 2C6F3, against TIP-1.Epitope mapping revealed that 2C6F3 binds to the QPVTAVVQRV epitope of the TIP-1 protein. 2C6F3 binds to the surface of lung cancer (A549, LLC) and glioma (D54, GL261) cell lines. 2C6F3 binds specifically to TIP-1 and ELISA analysis showed that unconjugated 2C6F3 efficiently blocked binding of radiolabeled 2C6F3 to purified TIP-1 protein. To study in vivo tumor binding, we injected near infrared (NIR) fluorochrome-conjugated 2C6F3 via tail vein in mice bearing subcutaneous LLC and GL261 heterotopic tumors. The NIR images indicated that 2C6F3 bound specifically to irradiated LLC and GL261 tumors, with little or no binding in un-irradiated tumors.We also determined the specificity of 2C6F3 to bind tumors in vivo using SPECT/CT imaging. 2C6F3 was conjugated with diethylene triamine penta acetic acid (DTPA) chelator and radiolabeled with 111Indium (111In). SPECT/CT imaging revealed that 111In-2C6F3 bound more to the irradiated LLC tumors compared to un-irradiated tumors. Furthermore, injection of DTPA-2C6F3 labeled with the therapeutic radioisotope, 90Y, (90Y-DTPA-2C6F3) significantly delayed LLC tumor growth. 2C6F3 mediated antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP) in vitro.In conclusion, the monoclonal antibody 2C6F3 binds specifically to TIP-1 on cancer and radio-immunoconjugated 2C6F3 improves tumor control.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias/radioterapia , Radioimunoterapia/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/efeitos da radiação , Antineoplásicos Imunológicos/farmacocinética , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Feminino , Humanos , Radioisótopos de Índio/farmacocinética , Radioisótopos de Índio/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Nucl Med ; 57(5): 759-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912441

RESUMO

UNLABELLED: Radiopharmaceutical therapy, traditionally limited to refractory metastatic cancer, is being increasingly used at earlier stages, such as for treating minimal residual disease. The aim of this study was to compare the effectiveness of (90)Y, (177)Lu, (111)In, and (161)Tb at irradiating micrometastases. (90)Y and (177)Lu are widely used ß(-)-emitting radionuclides. (161)Tb is a medium-energy ß(-) radionuclide that is similar to (177)Lu but emits a higher percentage of conversion and Auger electrons. (111)In emits γ-photons and conversion and Auger electrons. METHODS: We used the Monte Carlo code CELLDOSE to assess electron doses from a uniform distribution of (90)Y, (177)Lu, (111)In, or (161)Tb in spheres with diameters ranging from 10 mm to 10 µm. Because these isotopes differ in electron energy per decay, the doses were compared assuming that 1 MeV was released per µm(3), which would result in 160 Gy if totally absorbed. RESULTS: In a 10-mm sphere, the doses delivered by (90)Y, (177)Lu, (111)In, and (161)Tb were 96.5, 152, 153, and 152 Gy, respectively. The doses decreased along with the decrease in sphere size, and more abruptly so for (90)Y. In a 100-µm metastasis, the dose delivered by (90)Y was only 1.36 Gy, compared with 24.5 Gy for (177)Lu, 38.9 Gy for (111)In, and 44.5 Gy for (161)Tb. In cell-sized spheres, the dose delivered by (111)In and (161)Tb was higher than that of (177)Lu. For instance, in a 10-µm cell, (177)Lu delivered 3.92 Gy, compared with 22.8 Gy for (111)In and 14.1 Gy for (161)Tb. CONCLUSION: (177)Lu, (111)In, and (161)Tb might be more appropriate than (90)Y for treating minimal residual disease. (161)Tb is a promising radionuclide because it combines the advantages of a medium-energy ß(-) emission with those of Auger electrons and emits fewer photons than (111)In.


Assuntos
Micrometástase de Neoplasia/patologia , Micrometástase de Neoplasia/radioterapia , Doses de Radiação , Compostos Radiofarmacêuticos/uso terapêutico , Carga Tumoral/efeitos da radiação , Partículas beta/uso terapêutico , Humanos , Radioisótopos de Índio/uso terapêutico , Lutécio/uso terapêutico , Método de Monte Carlo , Dosagem Radioterapêutica , Térbio/uso terapêutico , Radioisótopos de Ítrio/uso terapêutico
14.
Appl Radiat Isot ; 110: 1-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748017

RESUMO

Chimeric IgG1 monoclonal antibody CSL360 recognizes the CD123(+)/CD131(-) phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting (111)In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a KD of 11nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. (111)In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by (111)In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control (111)In-DTPA-chIgG1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free (111)In acetate did not decrease cell survival. These results are promising for further evaluation of (111)In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation.


Assuntos
Leucemia Mieloide Aguda/radioterapia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Humanos , Imunoconjugados/uso terapêutico , Radioisótopos de Índio/uso terapêutico , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/imunologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/efeitos da radiação , Ácido Pentético/uso terapêutico , Radioimunoterapia , Compostos Radiofarmacêuticos , Ensaio Tumoral de Célula-Tronco
15.
J Nucl Med ; 57(3): 444-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26429962

RESUMO

UNLABELLED: One mechanism of resistance to trastuzumab in human epidermal growth factor receptor-2 (HER2)-positive breast cancer (BC) is increased epidermal growth factor receptor (EGFR) expression. We have developed (111)In-labeled bispecific radioimmunoconjugates (bsRICs) that bind HER2 and EGFR on BC cells by linking trastuzumab Fab fragments through a polyethylene glycol (PEG24) spacer to epidermal growth factor (EGF). We hypothesized that tumors coexpressing HER2 and EGFR could be treated by dual-receptor-targeted radioimmunotherapy with these bsRICs labeled with the ß-particle emitter (177)Lu or the Auger electron-emitter (111)In. METHODS: The binding of (177)Lu-DOTA-Fab-PEG24-EGF to tumor cells (MDA-MB-231, SK-OV-3, MDA-MB-231/H2N, or TrR1) coexpressing HER2 and EGFR was assessed in competition assays. The clonogenic survival of these cells was measured after exposure to (177)Lu-DOTA-Fab-PEG24-EGF or (111)In-DTPA-Fab-PEG24-EGF or to monospecific (177)Lu- or (111)In-labeled trastuzumab Fab or EGF. The tumor and normal tissue biodistribution of (177)Lu-DOTA-Fab-PEG24-EGF was studied at 48 h after injection in athymic mice bearing subcutaneous MDA-MB-231/H2N tumors. Radiation-absorbed doses to tumors and normal tissues were estimated and compared for (111)In- and (177)Lu-labeled bsRICs. The maximum injected amount of (177)Lu-DOTA-Fab-PEG24-EGF that caused no observable adverse effects (NOAEL) was identified in BALB/c mice. Athymic CD1 nu/nu mice bearing subcutaneous trastuzumab-sensitive MDA-MB-231/H2N or trastuzumab-resistant TrR1 tumors were treated with (177)Lu-DOTA-Fab-PEG24-EGF or (111)In-DTPA-Fab-PEG24-EGF at the NOAEL, or with unlabeled immunoconjugates or normal saline. Tumor growth was evaluated over a period of 49 d. RESULTS: (177)Lu-DOTA-Fab-PEG24-EGF bound specifically to HER2 and EGFR on tumor cells. Monospecific (177)Lu- and (111)In-labeled trastuzumab Fab or EGF killed tumor cells that predominantly expressed HER2 or EGFR, respectively, whereas bsRICs were cytotoxic to cells that displayed either HER2 or EGFR or both receptors. bsRICs were more effective than monospecific agents. (177)Lu-DOTA-Fab-PEG24-EGF was more cytotoxic than (111)In-DTPA-Fab-PEG24-EGF. The tumor uptake of (177)Lu-DOTA-Fab-PEG24-EGF was 2-fold greater than (177)Lu-DOTA-trastuzumab Fab or (177)Lu-DOTA-EGF. The NOAEL for (177)Lu-DOTA-Fab-PEG24-EGF was 11.1 MBq (10 µg). Trastuzumab-sensitive MDA-MB-231/H2N and trastuzumab-resistant TrR1 tumors were growth-inhibited by (177)Lu-DOTA-Fab-PEG24-EGF or (111)In-DTPA-Fab-PEG24-EGF. Unlabeled immunoconjugates had no effect on tumor growth. (177)Lu-DOTA-Fab-PEG24-EGF inhibited tumor growth more effectively than (111)In-DTPA-Fab-PEG24-EGF because of a 9.3-fold-higher radiation-absorbed dose (55.0 vs. 5.9 Gy, respectively). CONCLUSION: These results are encouraging for further development of these bsRICs for dual-receptor-targeted radioimmunotherapy of BC coexpressing HER2 and EGFR, including trastuzumab-resistant tumors.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Receptores ErbB/genética , Imunoconjugados/uso terapêutico , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Receptor ErbB-2/genética , Animais , Neoplasias da Mama/radioterapia , Receptores ErbB/biossíntese , Humanos , Imunoconjugados/efeitos adversos , Radioisótopos de Índio/efeitos adversos , Radioisótopos de Índio/uso terapêutico , Lutécio/efeitos adversos , Lutécio/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Radioisótopos/efeitos adversos , Radioisótopos/uso terapêutico , Radiometria , Compostos Radiofarmacêuticos/efeitos adversos , Receptor ErbB-2/biossíntese , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Biother Radiopharm ; 30(8): 349-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26447839

RESUMO

(111)In-labeled trastuzumab modified with nuclear localizing signal (NLS) peptides ((111)In-trastuzumab-NLS) efficiently delivers an Auger electron (AE) emitter (111)In into the cell nucleus and is thus a promising radiopharmaceutical in AE radioimmunotherapy (AE-RIT) for targeted killing of HER2-positive cancer. However, further improvement of its therapeutic efficacy is required. In this study, the authors show a transcriptomic approach to identify potential targets for enhancing the cytotoxic effects of (111)In-trastuzumab-NLS. They generated two types of (111)In-trastuzumab-NLS harboring different numbers of NLS peptides, (111)In-trastuzumab-NLS-S and -L. These radioimmunoconjugates (230 and 460 kBq) showed a significant higher cytotoxicity to SKBR3 human breast cancer cells overexpressing HER2 compared to (111)In-trastuzumab. Microarray analysis revealed that NF-kB-related genes (38 genes) were significantly changed in transcription by (111)In trastuzumab-NLS-L (230 kBq) treatment. Quantitative reverse transcription polymerase chain reaction confirmed the microarray data by showing transcriptional alternation of selected NF-κB target genes in cells treated with (111)In-trastuzumab-NLS-L. Interestingly, bortezomib, a drug known as a NF-κB modulator, significantly enhanced the cytotoxicity of (111)In-trastuzumab-NLS-L in SKBR3 cells. Taken together, the transcriptome data suggest the possibility that the modulation of NF-kB signaling activity is a molecular signature of (111)In-trastuzumab-NLS and coadministration of bortezomib may be efficacious in enhancement of AE-RIT with (111)In-trastuzumab-NLS.


Assuntos
Neoplasias da Mama/patologia , Imunoconjugados/uso terapêutico , Radioisótopos de Índio/uso terapêutico , Terapia de Alvo Molecular , Radioimunoterapia/métodos , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/uso terapêutico , Bortezomib/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ácido Pentético , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Transcriptoma
17.
Nucl Med Biol ; 42(12): 931-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26385534

RESUMO

INTRODUCTION: EGFt is a truncated form of human epidermal growth factor (hEGF) that is non-biologically active but retains binding and internalization into EGFR-positive cells. Our aim was to compare EGFt and hEGF for delivery of (111)In to human breast cancer (BC) cells and tumors and evaluate its cytotoxicity against EGFR-positive BC cells, mediated by the Auger electron emissions of (111)In. METHODS: The binding, internalization and nuclear localization of EGFt and hEGF in MDA-MB-468 human BC cells were first assessed by confocal fluorescence microscopy. Subcellular fractionation was then used to quantify the cellular and nuclear uptake of (111)In-EGFt and (111)In-hEGF in MDA-MB-468 cells. The effect of exposure in vitro to (111)In-EGFt or (111)In-hEGF on the clonogenic survival of MDA-MB-468 (10(6) EGFR/cell) or MCF-7 cells (10(4) EGFR/cell) was determined. The pharmacokinetics and tumor and normal tissue biodistribution of (111)In-EGFt was compared to (111)In-hEGF in CD-1 athymic mice with s.c. MDA-MB-468 and MCF-7 tumors. Nuclear importation in MDA-MB-468 tumors was determined ex vivo by subcellular fractionation. RESULTS: Fluorescently-labeled EGFt and hEGF were bound, internalized and localized in the nucleus of MDA-MB-468 cells. Binding of (111)In-EGFt to MDA-MB-468 cells was 8-fold lower than (111)In-hEGF, but nuclear importation as a proportion of cell-bound (111)In was 3.6-fold greater than (111)In-hEGF. Nuclear uptake of (111)In-EGFt was lower than (111)In-hEGF when differences in cell binding were taken into account. The cytotoxicity of (111)In-EGFt (1.0MBq/mL; 10 nmols/L) against MDA-MB-468 cells was 9-fold lower than (111)In-hEGF but only 2-fold lower at a higher concentration (1.85 MBq/mL; 40 nmols/L). (111)In-EGFt and (111)In-hEGF exhibited greater cytotoxicity against MDA-MB-468 cells than MCF-7 cells. (111)In-EGFt was eliminated more slowly from the blood of tumor-bearing mice and exhibited lower liver uptake but higher kidney accumulation. Uptake of (111)In-EGFt in MDA-MB-468 tumors was 2.2-fold lower than (111)In-hEGF, and was blocked by anti-EGFR monoclonal antibody, nimotuzumab. Nuclear uptake into MDA-MB-468 tumor cells was higher for (111)In-EGFt than (111)In-hEGF, but when the lower tumor uptake of (111)In-EGFt was considered, there were no overall differences. CONCLUSION: We conclude that the absence of biological activity of EGFt makes it attractive for delivery of Auger electron-emitting (111)In to EGFR-overexpressing BC, but its lower cellular and tumor uptake would limit its effectiveness compared to (111)In-hEGF. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: (111)In-EGFt may reduce the adverse effects previously observed in patients administered (111)In-hEGF since it is not biologically active, but its lower uptake by BC cells and tumors would limit its effectiveness for treatment of breast cancer.


Assuntos
Neoplasias da Mama/radioterapia , Elétrons , Fator de Crescimento Epidérmico/química , Receptores ErbB/metabolismo , Radioisótopos de Índio/uso terapêutico , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos da radiação , Sistemas de Liberação de Medicamentos , Fator de Crescimento Epidérmico/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Nus , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Phys Med ; 31(5): 536-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25979209

RESUMO

The small-scale dosimetry of radionuclides in solid-tumours is directly related to the intra-tumoral distribution of the administered radiopharmaceutical, which is affected by its egress from the vasculature and dispersion within the tumour. The aim of the present study was to evaluate the combined dosimetric effects of radiopharmaceutical distribution and range of the emitted radiation in a model of tumour microvasculature. We developed a computational model of solid-tumour microenvironment around a blood capillary vessel, and we simulated the transport of radiation emitted by (223)Ra, (111)In, (131)I and (177)Lu using the GEANT4 Monte Carlo. For each nuclide, several models of radiopharmaceutical dispersion throughout the capillary vessel were considered. Radial dose profiles around the capillary vessel, the Initial Radioactivity (IR) necessary to deposit 100 Gy of dose at the edge of the viable tumour-cell region, the Endothelial Cell Mean Dose (ECMD) and the Tumour Edge Mean Dose (TEMD), i.e. the mean dose imparted at the 250-µm layer of tissue, were computed. The results for beta and Auger emitters demonstrate that the photon dose is about three to four orders of magnitude lower than that deposited by electrons. For (223)Ra, the beta emissions of its progeny deliver a dose about three orders of magnitude lower than that delivered by the alpha emissions. Such results may help to characterize the dose inhomogeneities in solid tumour therapies with radiopharmaceuticals, taking into account the interplay between drug distribution from vasculature and range of ionizing radiations.


Assuntos
Capilares/efeitos da radiação , Método de Monte Carlo , Neoplasias/irrigação sanguínea , Neoplasias/radioterapia , Medicina Nuclear , Radiometria/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Radioisótopos de Índio/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Marcação por Isótopo , Lutécio/uso terapêutico , Dosagem Radioterapêutica , Rádio (Elemento)/uso terapêutico
19.
J Nucl Med ; 56(5): 752-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25791989

RESUMO

UNLABELLED: Breast cancer (BC) consists of multiple subtypes defined by various molecular characteristics, for instance, estrogen receptor (ER) expression. Methods for visualizing BC include mammography, MR imaging, ultrasound, and nuclear medicine-based methods such as (99m)Tc-sestamibi and (18)F-FDG PET, unfortunately all lacking specificity. Peptide receptor scintigraphy and peptide receptor radionuclide therapy are successfully applied for imaging and therapy of somatostatin receptor-expressing neuroendocrine tumors using somatostatin receptor radioligands. On the basis of a similar rationale, radioligands targeting the gastrin-releasing peptide receptor (GRP-R) might offer a specific method for imaging and therapy of BC. The aim of this study was to explore the application of GRP-R radioligands for imaging and therapy of BC by introducing valid preclinical in vitro and in vivo models. METHODS: GRP-R expression of 50 clinical BC specimens and the correlation with ER expression was studied by in vitro autoradiography with the GRP-R agonist (111)In-AMBA. GRP-R expression was also analyzed in 9 BC cell lines applying (111)In-AMBA internalization assays and quantitative reverse transcriptase polymerase chain reaction. In vitro cytotoxicity of (177)Lu-AMBA was determined on the GRP-R-expressing BC cell line T47D. SPECT/CT imaging and biodistribution were studied in mice with subcutaneous and orthotopic ER-positive T47D and MCF7 xenografts after injection of the GRP-R antagonist (111)In-JMV4168. RESULTS: Most of the human BC specimens (96%) and BC cell lines (6/9) were found to express GRP-R. GRP-R tumor expression was positively (P = 0.026, χ(2)(4) = 12,911) correlated with ER expression in the human BC specimens. Treatment of T47D cells with 10(-7) M/50 MBq of (177)Lu-AMBA resulted in 80% reduction of cells in vitro. Furthermore, subcutaneous and orthotopic tumors from both BC cell lines were successfully visualized in vivo by SPECT/CT using (111)In-JMV4168; T47D tumors exhibited a higher uptake than MCF7 xenografts. CONCLUSION: Targeting GRP-R-expressing BC tumors using GRP-R radioligands is promising for nuclear imaging and therapy, especially in ER-positive BC patients.


Assuntos
Bombesina/metabolismo , Neoplasias da Mama/metabolismo , Receptores da Bombesina/metabolismo , Animais , Bombesina/farmacocinética , Bombesina/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Radioisótopos de Índio/uso terapêutico , Marcação por Isótopo , Ligantes , Camundongos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
20.
Nucl Med Biol ; 42(2): 164-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25311750

RESUMO

Indium-111 labeled, Trastuzumab-Doxorubicin Conjugated, and APTES-PEG coated magnetic nanoparticles were designed for tumor targeting, drug delivery, controlled drug release, and dual-modal tumor imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by thermal decomposition method to obtain narrow size particles. To increase SPIONs circulation time in blood and decrease its cytotoxicity in healthy tissues, SPIONs surface was modified with 3-Aminopropyltriethoxy Silane (APTES) and then were functionalized with N-Hydroxysuccinimide (NHS) ester of Polyethylene Glycol Maleimide (NHS-PEG-Mal) to conjugate with thiolated 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid (PCTA) bifunctional chelator (BFC) and Trastuzumab antibody. In order to tumor SPECT/MR imaging, SPIONs were labeled with Indium-111 (T1/2=2.80d). NHS ester of monoethyl malonate (MEM-NHS) was used for conjugation of Doxorubicin (DOX) chemotherapeutic agent onto SPIONs surface. Mono-Ethyl Malonate allows DOX molecules to be attached to SPIONs via pH-sensitive hydrazone bonds which lead to controlled drug release in tumor region. Active and passive tumor targeting were achieved through incorporated anti-HER2 (Trastuzumab) antibody and EPR effect of solid tumors for nanoparticles respectively. In addition to in vitro assessments of modified SPIONs in SKBR3 cell lines, their theranostic effects were evaluated in HER2 + breast tumor bearing BALB/c mice via biodistribution study, dual-modal molecular imaging and tumor diameter measurements.


Assuntos
Compostos Férricos/química , Radioisótopos de Índio/uso terapêutico , Nanopartículas/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Técnicas de Química Sintética , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Compostos Férricos/farmacocinética , Compostos Férricos/uso terapêutico , Humanos , Marcação por Isótopo , Imageamento por Ressonância Magnética , Camundongos , Polietilenoglicóis/química , Propilaminas , Silanos/química , Succinimidas/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...