Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brachytherapy ; 19(2): 255-263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31964601

RESUMO

PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m). RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (<5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources. CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.


Assuntos
Osso e Ossos , Braquiterapia/métodos , Neoplasias da Próstata/radioterapia , Radioisótopos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Neoplasias da Língua/radioterapia , Radioisótopos de Cobalto/uso terapêutico , Simulação por Computador , Gadolínio/uso terapêutico , Humanos , Radioisótopos de Irídio/uso terapêutico , Masculino , Doses de Radiação , Dosagem Radioterapêutica , Radioisótopos de Selênio/uso terapêutico , Itérbio/uso terapêutico
2.
Int J Radiat Oncol Biol Phys ; 100(1): 270-277, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102279

RESUMO

PURPOSE: Radioisotopes such as 75Se, 169Yb, and 153Gd have photon energy spectra and half-lives that make them excellent candidates as alternatives to 192Ir for high-dose-rate brachytherapy. The aim of the present study was to evaluate the relative biological effectiveness (RBE) of current (192Ir, 125I, 103Pd) and alternative (75Se, 169Yb, 153Gd) brachytherapy radionuclides using Monte Carlo simulations of lineal energy distributions. METHODS AND MATERIALS: Brachytherapy sources (microSelectron v2 [192Ir, 75Se, 169Yb, 153Gd], SelectSeed [125I], and TheraSeed [103Pd]) were placed in the center of a spherical water phantom with a radius of 40 cm using the Geant4 Monte Carlo simulation toolkit. The kinetic energy of all primary, scattered, and fluorescence photons interacting in a scoring volume were tallied at various depths from the source. Electron tracks were generated by sampling the photon interaction spectrum and tracking all the interactions down to 10 eV using the event-by-event capabilities of the Geant4-DNA models. The dose mean lineal energy (y¯D) values were obtained through random sampling of transfer points and overlaying spherical scoring volumes within the associated volume of the tracks. The scoring volume diameter was determined by fitting the y¯D ratio for 125I to its observed RBE. RESULTS: y¯D increased with the increasing distance from the source for 192Ir, 75Se, and 169Yb, remained constant for 153Gd and 125I, and decreased for 103Pd. The diameter at which the y¯D ratio coincided with the RBE of 1.15 to 1.20 for 125I was ∼25 to 40 nm. The RBE (reference 1 MeV photons) at high doses and dose rates for 192Ir, 75Se, 169Yb, 153Gd, 125I, and 103Pd was 1.028 to 1.034, 1.05 to 1.07, 1.12 to 1.15, 1.16 to 1.21, 1.15 to 1.20, and 1.17 to 1.22, respectively. CONCLUSIONS: The radiation quality of the radionuclides under investigation was greater than that of high-energy photons. The present study has provided a set of values to modify the prescription doses for brachytherapy to account for the variation in radiation quality among radionuclides.


Assuntos
Braquiterapia , Radioisótopos/uso terapêutico , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Gadolínio/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Radioisótopos de Irídio/uso terapêutico , Transferência Linear de Energia , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/métodos , Radioisótopos de Selênio/uso terapêutico , Itérbio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...