Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Phys Med Biol ; 65(19): 195006, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32503026

RESUMO

The 1990 code of practice (COP), produced by the IPSM (now the Institute of Physics and Engineering in Medicine, IPEM) and the UK National Physical Laboratory (NPL), gave instructions for determining absorbed dose to water for megavoltage photon (MV) radiotherapy beams (Lillicrap et al 1990). The simplicity and clarity of the 1990 COP led to widespread uptake and high levels of consistency in external dosimetry audits. An addendum was published in 2014 to include the non-conventional conditions in Tomotherapy units. However, the 1990 COP lacked detailed recommendations for calibration conditions, and the corresponding nomenclature, to account for modern treatment units with different reference fields, including small fields as described in IAEA TRS483 (International Atomic Energy Agency (IAEA) 2017, Vienna). This updated COP recommends the irradiation geometries, the choice of ionisation chambers, appropriate correction factors and the derivation of absorbed dose to water calibration coefficients, for carrying out reference dosimetry measurements on MV external beam radiotherapy machines. It also includes worked examples of application to different conditions. The strengths of the 1990 COP are retained: recommending the NPL2611 chamber type as secondary standard; the use of tissue phantom ratio (TPR) as the beam quality specifier; and NPL-provided direct calibration coefficients for the user's chamber in a range of beam qualities similar to those in clinical use. In addition, the formalism is now extended to units that cannot achieve the standard reference field size of 10 cm × 10 cm, and recommendations are given for measuring dose in non-reference conditions. This COP is designed around the service that NPL provides and thus it does not require the range of different options presented in TRS483, such as generic correction factors for beam quality. This approach results in a significantly simpler, more concise and easier to follow protocol.


Assuntos
Calibragem/normas , Imagens de Fantasmas , Fótons/uso terapêutico , Radiometria/métodos , Radiometria/normas , Radioterapia de Alta Energia/normas , Humanos , Agências Internacionais , Dosagem Radioterapêutica , Água
2.
Biomed Phys Eng Express ; 6(4): 045003, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33444264

RESUMO

Ionization chamber dosimetry is predominantly used for determination of the absorbed dose to water in 60Co and high-energy radiotherapy photon beams. The most widespread ionization chambers employed for absolute or reference dose determinations in reference conditions are the Farmer-type cylindrical ionization chambers. The Farmer-type ionization chambers have a variety of constructions and materials and their responses vary in the radiation beam. Clinical accelerators, in addition to conventional photon beams with flattening-filter, can also deliver flattening-filter-free (FFF) photon beams. The responses of five different Farmer-type cylindrical ionization chambers were experimentally examined with reference to absorbed dose determination in reference conditions when using the International Atomic Energy Agency (IAEA) - American Association of Physicists in Medicine (AAPM) Technical Reports Series no. 483 (TRS-483) and the IAEA TRS-398 dosimetry protocol in the present investigation. The irradiations were performed using 60Co and megavoltage photon beams with 6 MV, 15 MV, 6 MV FFF and 10 MV FFF nominal photon energies. The chamber calibrations were performed at different Secondary Standard Dosimetry Laboratories and are traceable to primary standards at different Primary Standard Dosimetry Laboratories. The chambers were also cross-calibrated at our laboratory using 60Co γ-beam. The variation found in the data regarding the reference dose determination using the various Farmer-type chambers in the photon beams employed was about 1% at maximum. Thus, the selection of the ionization chamber in reference dose determinations may affect the outcomes. The differences in the absorbed dose values were similar in the conventional as well as in the FFF photon beams. For the FFF photon beams the absorbed dose computations were performed using the IAEA-AAPM TRS-483 dosimetry protocol. Two of the ionization chambers used had identical construction but different central electrodes, i.e. graphite versus aluminium. The results obtained using these two chambers show that, in the photon beams examined, the employed correction for the central electrode (p cel ) regarding these two chambers is associated with an inaccuracy which is larger than the calculated uncertainty for this correction. The outcomes found in the present experimental investigation using the various ionization chambers also indicate possible inaccuracy in the employed beam quality correction factors (k Q ) and imply the need for a revision of these factors.


Assuntos
Radioisótopos de Cobalto/química , Radioterapia de Alta Energia/métodos , Ar , Calibragem , Eletrodos , Íons , Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Fenômenos Físicos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Alta Energia/normas , Valores de Referência , Água
3.
Radiat Prot Dosimetry ; 186(2-3): 367-372, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31712816

RESUMO

The most important dosimetry quantity that is determined at radiotherapy centers is the absorbed dose to water for external beams. Fixed tolerances for absorbed doses measured under reference conditions with an ionization chamber for high-energy photon and electron beams are usually 2 and 3%, respectively, regardless of uncertainties of the input variables and other conditions during evaluation. In reality, this agreement should be evaluated considering the uncertainties of the input variables because they affect the size of the random deviations of the measurements from their true values. The aim of this work was to develop a new approach to evaluate the agreement between measured and reported values based on statistical interference rather than to use fixed tolerance levels. The proposed method considers different scenarios that can occur during the evaluation of agreement. Because the method is described in general, it can be used in all similar situations when partial uncertainties can be established.


Assuntos
Modelos Estatísticos , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Alta Energia/normas , Radioterapia de Intensidade Modulada/normas , Calibragem , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Incerteza
4.
Phys Med Biol ; 61(21): 7623-7638, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27740943

RESUMO

Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.


Assuntos
Carbono/química , Modelos Teóricos , Imagens de Fantasmas , Plásticos/química , Radioterapia de Alta Energia/instrumentação , Água/química , Humanos , Método de Monte Carlo , Radiometria/métodos , Radioterapia de Alta Energia/normas
5.
J Appl Clin Med Phys ; 16(6): 508-514, 2015 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-26699571

RESUMO

Constancy checks of a well-type ionization chamber should be performed regularly as part of a quality assurance regime. The goal of this work was to test the feasibility of using a linear accelerator and an orthovoltage unit to check the constancy of a well-type chamber's response to an external radiation source. The reproducibility, linearity with dose, variation with dose-rate, and variation between energy-matched units of the well-type chamber response when exposed to 6 MV beams was examined. The robustness to errors in establishing the measurement conditions, including setting the source-to-surface distance and gantry angle, rotation of the chamber around the central axis of the beam, and the effect of changing the length of the chamber cable exposed to the field, were tested. The reproducibility and linearity with dose of the chamber response, and robustness to errors in establishing the measurement conditions for 100 kVp and 250 kVp beams from an orthovoltage unit, were also examined. The combined uncertainty, including contributions from errors in establishing the reference conditions, for well-type chamber measurements using a 6 MV beam from a linear accelerator is 1.0%. The combined uncertainties for measurements using 100 and 250 kVp beams were 1.8% and 1.5%, respectively. When focus-source distance errors were reduced to ≤ 1 mm, the combined uncertainties for the 100 and 250 kVp beams were 1.2% and 1.1%, respectively, when the dose to the chamber was confined to the linear region of the dose-response curve. The response of a well-type chamber should remain constant to within 1.2% when exposed to a constant dose from an external beam unit, if reference conditions can be reproducibly established. However, the uncertainty for establishing reference conditions for output measurements for an orthovoltage unit can be reduced, which would justify a reduction of the tolerance for constancy measurements.


Assuntos
Radiometria/instrumentação , Radioterapia de Alta Energia/estatística & dados numéricos , Radioterapia de Alta Energia/normas , Calibragem , Humanos , Aceleradores de Partículas/estatística & dados numéricos , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/normas , Radiometria/estatística & dados numéricos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
6.
J Appl Clin Med Phys ; 16(6): 314-324, 2015 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-26699586

RESUMO

The accurate measurement of the linear accelerator (linac) radiation isocenter is critical, especially for stereotactic treatment. Traditional quality assurance (QA) procedure focuses on the measurement of single radiation isocenter, usually of 6 megavoltage (MV) photon beams. Single radiation isocenter is also commonly assumed in treatment planning systems (TPS). Due to different flattening filters and bending magnet and steering parameters, the radiation isocenter of one energy mode can deviate from another if no special effort was devoted. We present the first experience of the multiradiation isocenters alignment on an Elekta linac, as well as its corresponding QA procedure and clinical impact. An 8 mm ball-bearing (BB) phantom was placed at the 6 MV radiation isocenter using an Elekta isocenter search algorithm, based on portal images. The 3D radiation isocenter shifts of other photon energy modes relative to the 6 MV were determined. Beam profile scanning for different field sizes was used as an independent method to determine the 2D multiradiation isocenters alignment. To quantify the impact of radiation isocenter offset on targeting accuracy, the 10 MV radiation isocenter was manually offset from that for 6 MV by adjusting the bending magnet current. Because our table isocenter was mechanically aligned to the 6 MV radiation isocenter, the deviation of the table isocentric rotation from the "shifted" 10 MV radiation isocenter after bending magnet adjustment was assessed. Winston-Lutz test was also performed to confirm the overall radiation isocenter positioning accuracy for all photon energies. The portal image method showed the radiation isocenter of the 10 MV flattening filter-free mode deviated from others before beam parameter adjustment. After the adjustment, the deviation was greatly improved from 0.96 to 0.35 mm relative to the 6 MV radiation isocenter. The same finding was confirmed by the profile-scanning method. The maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter was observed to linearly increase with the offset between 6 and 10 MV radiation isocenter; 1 mm radiation isocenter offset can translate to almost 2 mm maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter. The alignment of the multiradiation isocenters is particularly important for high-precision radiotherapy. Our study provides the medical physics community with a quantitative measure of the multiradiation isocenters alignment. A routine QA method should be considered, to examine the radiation isocenters alignment during the linac acceptance.


Assuntos
Fótons/uso terapêutico , Radioterapia de Alta Energia/métodos , Algoritmos , Humanos , Imageamento Tridimensional , Aceleradores de Partículas , Posicionamento do Paciente , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Alta Energia/normas , Radioterapia de Alta Energia/estatística & dados numéricos , Rotação
7.
J Appl Clin Med Phys ; 16(3): 5323, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103492

RESUMO

The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is < 1% for the MatriXX PT. Therefore the MatriXX(Evolution) should not be used for QA of PBS for conditions in which ion recombination is not negligible. Farmer chambers should be used with caution for measuring the absolute dose of PBS beams, as the uncertainty of Pion can be > 1%; chambers with an electrode spacing of 2 mm or smaller are recommended.


Assuntos
Terapia com Prótons , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/instrumentação , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/normas , Austrália , Desenho de Equipamento , Análise de Falha de Equipamento , Garantia da Qualidade dos Cuidados de Saúde/normas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Radiat Prot Dosimetry ; 164(3): 181-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25209996

RESUMO

The authors report the results of an indirect comparison of the standards of absorbed dose to water in high-energy photon beams from a clinical linac and (60)Co radiation beam performed between the National Metrology Institute of Japan (NMIJ) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Three ionisation chambers were calibrated by the NMIJ in April and June 2013 and by the ARPANSA in May 2013. The average ratios of the calibration coefficients for the three ionisation chambers obtained by the NMIJ to those obtained by the ARPANSA were 0.9994, 1.0040 and 1.0045 for 6-, 10- and 15-MV (18 MV at the ARPANSA) high-energy photon beams, respectively. The relative standard uncertainty of the value was 7.2 × 10(-3). The ratio for (60)Co radiation was 0.9986(66), which is consistent with the results published in the key comparison of BIPM.RI(I)-K4.


Assuntos
Calibragem/normas , Aceleradores de Partículas/normas , Fótons , Radiometria/normas , Radioterapia de Alta Energia/normas , Água/química , Academias e Institutos , Austrália , Radioisótopos de Cobalto/análise , Radioisótopos de Cobalto/normas , Humanos , Japão , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Radioterapia de Alta Energia/instrumentação , Padrões de Referência , Reprodutibilidade dos Testes
9.
Phys Med Biol ; 59(19): 5953-69, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25211012

RESUMO

A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.


Assuntos
Elétrons , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/normas , Radioterapia de Alta Energia/normas , Calibragem , Humanos , Método de Monte Carlo , Padrões de Referência , Incerteza , Água/química
10.
Phys Med Biol ; 59(17): 4961-71, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25109620

RESUMO

The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences-of the order of 3%-were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth-i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers-rather than cylindrical chambers-for the reference dosimetry of pseudo-monoenergetic proton beams.


Assuntos
Terapia com Prótons/normas , Radiometria/normas , Radioterapia de Alta Energia/normas , Calibragem , Humanos , Terapia com Prótons/instrumentação , Radiometria/instrumentação , Dosagem Radioterapêutica/normas , Radioterapia de Alta Energia/instrumentação
11.
Australas Phys Eng Sci Med ; 37(4): 753-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25146559

RESUMO

The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) maintains the Australian primary standard of absorbed dose. Until recently, the standard was used to calibrate ionisation chambers only in (60)Co gamma rays. These chambers are then used by radiotherapy clinics to determine linac output, using a correction factor (k Q) to take into account the different spectra of (60)Co and the linac. Over the period 2010-2013, ARPANSA adapted the primary standard to work in megavoltage linac beams, and has developed a calibration service at three photon beams (6, 10 and 18 MV) from an Elekta Synergy linac. We describe the details of the new calibration service, the method validation and the use of the new calibration factors with the International Atomic Energy Agency's TRS-398 dosimetry Code of Practice. The expected changes in absorbed dose measurements in the clinic when shifting from (60)Co to the direct calibration are determined. For a Farmer chamber (model 2571), the measured chamber calibration coefficient is expected to be reduced by 0.4, 1.0 and 1.1 % respectively for these three beams when compared to the factor derived from (60)Co. These results are in overall agreement with international absorbed dose standards and calculations by Muir and Rogers in 2010 of k Q factors using Monte Carlo techniques. The reasons for and against moving to the new service are discussed in the light of the requirements of clinical dosimetry.


Assuntos
Calibragem/normas , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Radiometria/normas , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/normas , Austrália , Radioisótopos de Cobalto/análise , Radioisótopos de Cobalto/normas , Fótons/uso terapêutico , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
J Appl Clin Med Phys ; 15(3): 4721, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24892347

RESUMO

Treatment planning systems for proton therapy require a CT calibration curve relating Hounsfield units to proton stopping powers. An understanding of the accuracy of this curve, together with its limitations, is of utmost importance because the calibration underpins the calculated dose distribution of every patient preparing to undergo proton therapy, independent of delivery technique. The most common approach to the calibration is the stoichiometric method, which is well-defined and, in principle, straightforward to perform. Nevertheless, care must be taken when implementing it in the clinic in order to avoid introducing proton range uncertainties into treatment plans that are larger than the 3.5% that target margins are typically designed to account for. This work presents a variety of aspects related to the user-specific implementation of the stoichiometric calibration, from both a measurement setup and a data-handling point of view, and evaluates the potential impact of each for treatment planning purposes. We demonstrate that two alternative commercial vendors' tissue phantoms yield consistent results, that variable CT slice thickness is unimportant, and that, for a given cross-sectional size, all phantom data can, with today's state-of-the-art beam hardening-related artifact reduction software, be acquired quickly and easily with a single scan, such that the resulting curve describes the calibration well at different positions across the imaging plane. We also show that one should be cautious of using metals in the calibration procedure and of using a single curve for anatomical sites differing widely in size. Further, we suggest that the quality of the parametric fit to the measurement data can be improved by performing a constrained, weighted linear regression. These observations, based on the 40 separate curves that were calculated, should help the medical physicist at any new proton therapy facility in deciding which considerations are worth particular attention.


Assuntos
Terapia com Prótons , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/normas , Radioterapia Guiada por Imagem/instrumentação , Radioterapia Guiada por Imagem/normas , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/normas , Calibragem/normas , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Análise de Falha de Equipamento/normas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
13.
J Appl Clin Med Phys ; 15(3): 4742, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24892351

RESUMO

As part of the approval process for the use of scattered or uniform scanning proton therapy in National Cancer Institute (NCI)-sponsored clinical trials, the Radiological Physics Center (RPC) mandates irradiation of two RPC anthropomorphic proton phantoms (prostate and spine). The RPC evaluates these irradiations to ensure that they agree with the institutions' treatment plans within criteria of the NCI-funded cooperative study groups. The purpose of this study was to evaluate the use of an anthropomorphic spine phantom for proton matched-field irradiation, and to assess its use as a credentialing tool for proton therapy beams. We used an anthropomorphic spine phantom made of human vertebral bodies embedded in a tissue substitute material called Muscle Substitute/Solid Rigid Number 4 (MS/SR4) comprising three sections: a posterior section containing the posterior surface and the spinous processes, and left and right (L/R) sections containing the vertebral bodies and the transverse processes. After feasibility studies at three institutions, the phantom, containing two thermoluminescent dosimeters (TLDs) for absolute dose measurements and two sheets of radiochromic film for relative dosimetry, was shipped consecutively to eight proton therapy centers participating in the approval study. At each center, the phantom was placed in a supine or prone position (according to the institution's spine treatment protocol) and imaged with computed tomography (CT). The images then were used with the institution's treatment planning system (TPS) to generate two matched fields, and the phantom was irradiated accordingly. The irradiated phantom was shipped to the RPC for analysis, and the measured values were compared with the institution's TPS dose and profiles using criteria of ± 7% for dose agreement and 5 mm for profile distance to agreement. All proton centers passed the dose criterion with a mean agreement of 3% (maximum observed agreement, 7%). One center failed the profile distance-to-agreement criterion on its initial irradiation, but its second irradiation passed the criterion. Another center failed the profile distance-to-agreement criterion, but no repeat irradiation was performed. Thus, seven of the eight institutions passed the film profile distance-to-agreement criterion with a mean agreement of 1.2 mm (maximum observed agreement 5 mm). We conclude that an anthropomorphic spine phantom using TLD and radiochromic film adequately verified dose delivery and field placement for matched-field treatments.


Assuntos
Materiais Biomiméticos/normas , Ensaios Clínicos como Assunto/instrumentação , Radiometria/instrumentação , Radiometria/normas , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/normas , Coluna Vertebral/efeitos da radiação , Antropometria/instrumentação , Materiais Biomiméticos/economia , Ensaios Clínicos como Assunto/economia , Ensaios Clínicos como Assunto/normas , Aprovação de Equipamentos/normas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , National Cancer Institute (U.S.)/economia , National Cancer Institute (U.S.)/normas , Terapia com Prótons , Radiometria/economia , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
14.
J Radiat Res ; 55(6): 1131-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24957755

RESUMO

Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols.


Assuntos
Ensaios Clínicos como Assunto/normas , Ensaios Clínicos como Assunto/estatística & dados numéricos , Humanos , Modelos Teóricos , Método de Monte Carlo , Estudos Multicêntricos como Assunto , Aceleradores de Partículas/normas , Aceleradores de Partículas/estatística & dados numéricos , Fótons/uso terapêutico , Garantia da Qualidade dos Cuidados de Saúde/estatística & dados numéricos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Alta Energia/normas , Reprodutibilidade dos Testes
15.
Med Phys ; 40(4): 041723, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23556893

RESUMO

PURPOSE: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). METHODS: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. RESULTS: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. CONCLUSIONS: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.


Assuntos
Modelos Estatísticos , Terapia com Prótons , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/normas , Água/química , Simulação por Computador , Análise de Falha de Equipamento/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
16.
Australas Phys Eng Sci Med ; 35(1): 105-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22302465

RESUMO

The Australian radiation protection and nuclear safety agency (ARPANSA) has continuously provided a level 1 mailed thermoluminescence dosimetry audit service for megavoltage photons since 2007. The purpose of the audit is to provide an independent verification of the reference dose output of a radiotherapy linear accelerator in a clinical environment. Photon beam quality measurements can also be made as part of the audit in addition to the output measurements. The results of all audits performed between 2007 and 2010 are presented. The average of all reference beam output measurements calculated as a clinically stated dose divided by an ARPANSA measured dose is 0.9993. The results of all beam quality measurements calculated as a clinically stated quality divided by an ARPANSA measured quality is 1.0087. Since 2011 the provision of all auditing services has been transferred from the Ionizing Radiation Standards section to the Australian Clinical Dosimetry Service (ACDS) which is currently housed within ARPANSA.


Assuntos
Órgãos Governamentais , Proteção Radiológica/normas , Radioterapia de Alta Energia/normas , Dosimetria Termoluminescente/normas , Austrália , Humanos , Serviços Postais/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Controle de Qualidade
17.
Igaku Butsuri ; 32(4): 182-8, 2012.
Artigo em Japonês | MEDLINE | ID: mdl-24568023

RESUMO

A primary standard for the absorbed dose rate to water in a 60Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an IAEA/WHO TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the ISO standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N(D,w)) with the new field. The uncertainty of N(D,w) was estimated to be 1.1% (k = 2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly.


Assuntos
Calibragem/normas , Radioisótopos de Cobalto/uso terapêutico , Raios gama/uso terapêutico , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia de Alta Energia/normas , Água , Absorção , Japão , Radiometria , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos
18.
J Appl Clin Med Phys ; 12(2): 3330, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21587175

RESUMO

The Brazilian Institute of Radiation Protection and Dosimetry (IRD/CNEN) carried out quality assurance regulatory audits in Brazilian radiotherapy facilities from 1995 to 2007. In this work, the set of data collected from 195 radiotherapy facilities that use high-energy photon beams are analyzed. They include results from audits in linear electron accelerators and/or Co-60 units. The inspectors of IRD/CNEN performed the dosimetry of high-energy radiotherapy photon beams according to the IAEA dosimetry protocols TRS 277 and TRS 398, and the values of measurements were compared to stated values. Other aspects of radiological protection were checked during on-site audits such as calibration certification of clinical dosimeters and portable monitors, existence and use of check source, use of barometer and thermometer, individual dose registry and training of staff. It was verified that no check source was available in 38% of the visited facilities; the training of personnel was not adequate in 9% of the facilities and the registry of accumulated individual doses was not being done in 6% of the facilities. Measurements of absorbed dose have indicated deviations in the range ± 3% for 67.6% of the cobalt-60 units and 79.6% of medical linear accelerators; 18.5% of Co-60 irradiators and 9.6% of linear accelerators presented deviations in the range 3% < δ ≤ 5%. Finally, 13.9% of Co-60 facilities and 10.8% of linear accelerator facilities presented dosimetry deviations above 5%. The effort in dosimetric quality control performed by IRD/CNEN audits has yielded positive changes that make radiation treatment facilities more reliable.


Assuntos
Radiometria/métodos , Radioterapia de Alta Energia/métodos , Brasil , Calibragem , Isótopos do Cobalto/química , Humanos , Aceleradores de Partículas , Controle de Qualidade , Radioterapia (Especialidade)/normas , Proteção Radiológica/métodos , Dosagem Radioterapêutica , Radioterapia de Alta Energia/normas , Segurança , Termômetros
19.
Phys Med Biol ; 56(8): 2407-21, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21427482

RESUMO

The imaging sensitivity of proton radiography has been studied and compared with kV and MV x-ray imaging using Monte Carlo simulations. A phantom was specifically modeled using 21 different material inserts with densities ranging from 0.001 to 1.92 g cm(-3). These simulations were run using the MGH double scattered proton beam, scanned pencil proton beams from 200 to 490 MeV, as well as pure 50 keV, 100 keV, 1 MeV and 2 MeV gamma x-ray beams. In order to compare the physics implied in both proton and photon radiography without being biased by the current state of the art in detector technology, the detectors were considered perfect. Along with spatial resolution, the contrast-to-noise ratio was evaluated and compared for each material. These analyses were performed using radiographic images that took into account the following: only primary protons, both primary and secondary protons, and both contributions while performing angular and energetic cuts. Additionally, tissue-to-tissue contrasts in an actual lung cancer patient case were studied for simulated proton radiographs and compared against the original kV x-ray image which corresponds to the current patient set-up image in the proton clinic. This study highlights the poorer spatial resolution of protons versus x-rays for radiographic imaging purposes, and the excellent density resolution of proton radiography. Contrasts around the tumor are higher using protons in a lung cancer patient case. The high-density resolution of proton radiography is of great importance for specific tumor diagnostics, such as in lung cancer, where x-ray radiography operates poorly. Furthermore, the use of daily proton radiography prior to proton therapy would ameliorate patient set-up while reducing the absorbed dose delivered through imaging.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Fótons , Radiografia/métodos , Radioterapia de Alta Energia/métodos , Simulação por Computador , Raios gama , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Radiografia/instrumentação , Radiografia/normas , Dosagem Radioterapêutica/normas , Radioterapia de Alta Energia/normas , Sensibilidade e Especificidade , Avaliação da Tecnologia Biomédica/normas , Raios X
20.
Phys Med Biol ; 55(6): N161-6, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20197601

RESUMO

The IAEA standard thermoluminescent dosimeter (TLD) holder has been developed for the IAEA/WHO TLD postal dose program for audits of high-energy photon beams, and it is also employed by the ESTRO-QUALity assurance network (EQUAL) and several national TLD audit networks. Factors correcting for the influence of the holder on the TL signal under reference conditions have been calculated in the present work from Monte Carlo simulations with the PENELOPE code for (60)Co gamma-rays and 4, 6, 10, 15, 18 and 25 MV photon beams. The simulation results are around 0.2% smaller than measured factors reported in the literature, but well within the combined standard uncertainties. The present study supports the use of the experimentally obtained holder correction factors in the determination of the absorbed dose to water from the TL readings; the factors calculated by means of Monte Carlo simulations may be adopted for the cases where there are no measured data.


Assuntos
Algoritmos , Método de Monte Carlo , Radioterapia de Alta Energia/instrumentação , Dosimetria Termoluminescente/instrumentação , Absorção , Simulação por Computador , Raios gama , Fótons , Controle de Qualidade , Dosagem Radioterapêutica/normas , Radioterapia de Alta Energia/métodos , Radioterapia de Alta Energia/normas , Padrões de Referência , Dosimetria Termoluminescente/métodos , Dosimetria Termoluminescente/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...