Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570119

RESUMO

Stimulator of interferon genes (STING) has been demonstrated as a critical mediator in the innate immune response to cytosolic DNA and RNA derived from different pathogens. While the role of Micropterus salmoides STING (MsSTING) in largemouth bass virus is still unknown. In this study, RT-qPCR assay and Western-blot assay showed that the expression levels of MsSTING and its downstream genes were up-regulated after LMBV infection. Pull down experiment proved that a small peptide called Fusion peptide (FP) that previously reported to target to marine and human STING as a selective inhibitor also interacted with MsSTING in vitro. Comparing with the RNA-seq of Largemouth bass infected with LMBV singly, 326 genes were significantly up-regulated and 379 genes were significantly down-regulated in the FP plus LMBV group in which Largemouth bass was treatment with FP before LMBV-challenged. KEGG analysis indicated that the differentially expressed genes (DEGs) were mainly related to signaling transduction, infectious disease viral, immune system and endocrine system. Besides, the survival rate of LMBV-infected largemouth bass was highly decreased following FP treatment. Taken together, our study showed that MsSTING played an important role in immune response against LMBV infection.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Bass/imunologia , Bass/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ranavirus/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia
2.
Fish Shellfish Immunol ; 149: 109522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548190

RESUMO

Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.


Assuntos
Berberina , Doenças dos Peixes , Estresse Oxidativo , Replicação Viral , Berberina/farmacologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Replicação Viral/efeitos dos fármacos , Inflamação/imunologia , Inflamação/veterinária , Antivirais/farmacologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Ranavirus/fisiologia , Linhagem Celular
3.
Fish Shellfish Immunol ; 148: 109480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452958

RESUMO

Stimulator of interferon gene (STING) plays a crucial role in the innate immune response against viral and bacterial pathogens. However, its function in largemouth bass iridovirus (LMBV) infection remains uncertain. Here, a STING homolog (MsSTING) from largemouth bass (Micropterus salmoides) was cloned and characterized. MsSTING encoded a 407-amino-acid polypeptide, which shared 84.08% and 41.45% identity with golden perch (Perca flavescens) and human (Homo sapiens) homologs, respectively. MsSTING contained four transmembrane domains and a conserved C-terminal domain. The mRNA level of MsSTING was significantly increased in response to LMBV infection in vitro. Subcellular localization observation indicated that MsSTING encoded a cytoplasmic protein, which co-localized predominantly with endoplasmic reticulum (ER) and partially with mitochondria. Moreover, its accurate localization was dependent on the N-terminal transmembrane motif (TM) domains. MsSTING was able to activate interferon (IFN) response, evidenced by the activation of IFN1, IFN3 and ISRE promoters by its overexpression in vitro. Mutant analysis showed that both the N-terminal and C-terminal domain of MsSTING were essential for its activation on IFN response. In addition, overexpression of MsSTING inhibited the transcription and protein levels of viral core genes, indicating that MsSTING exerted antiviral action against LMBV. Consistently, the inhibitory effects were significantly attenuated when the N-terminal or C-terminal domains of MsSTING was deleted. Furthermore, MsSTING overexpression upregulated the transcriptions of interferon-related genes and pro-inflammatory factors, including TANK-binding kinase 1(TBK1), interferon regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7), interferon stimulated exonuclease gene 20 (ISG20), interferon-induced transmembrane protein 1(IFITM1), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6). Together, MsSTING exerted antiviral action upon LMBV infection through positive regulation the innate immune response.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Humanos , Animais , Sequência de Aminoácidos , Proteínas de Peixes/química , Imunidade Inata/genética , Interferon gama , Antivirais , Ranavirus/fisiologia
4.
Fish Shellfish Immunol ; 145: 109349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184183

RESUMO

Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, is a highly pathogenic agent and causes heavy economic losses in the global grouper aquaculture. Recent studies demonstrated that SGIV infection attenuated antiviral immune and inflammatory response induced by poly (I:C) in vitro. However, little was known about the potential functions of the immune regulatory proteins encoded by SGIV. Here, we identified the detailed roles of VP20 and clarified the potential mechanism underlying its immune regulatory function during SGIV infection. Our results showed that VP20 was an IE gene, and partially co-localized with Golgi apparatus and lysosomes in grouper cells. Overexpression of VP20 enhanced SGIV replication, demonstrated by the increase in the transcription levels of viral core genes and the protein synthesis of MCP. Reporter gene assays showed that SGIV VP20 overexpression significantly reduced the IFN promoter activity induced by poly (I:C), grouper stimulator of interferon genes (EcSTING) and TANK-binding kinase 1 (EcTBK1). Consistently, the transcription levels of IFN related genes were significantly decreased in VP20 overexpressing cells compared to those in control cells. Co-IP assay and confocal microscopy observations indicated that VP20 co-localized and interacted with EcTBK1 and EcIRF3, but not EcSTING. In addition, VP20 was able to degrade EcIRF3 and attenuate the antiviral action of EcIRF3, while had no effect on EcTBK1. Together, SGIV VP20 was speculated to promote viral replication through attenuating the IFN response mediated by TBK1-IRF3 in vitro. Our findings provided new insights into the immune regulatory function of SGIV encoded unknown proteins.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Interferons , Ranavirus/fisiologia , Imunidade Inata/genética , Singapura , Sequência de Aminoácidos , Proteínas de Peixes/genética , Alinhamento de Sequência
5.
Viruses ; 15(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005914

RESUMO

Singapore grouper iridovirus (SGIV) is a virus with high fatality rate in the grouper culture industry. The outbreak of SGIV is often accompanied by a large number of grouper deaths, which has a great impact on the economy. Therefore, it is of great significance to find effective drugs against SGIV. It has been reported that edaravone is a broad-spectrum antiviral drug, most widely used clinically in recent years, but no report has been found exploring the effect of edaravone on SGIV infections. In this study, we evaluated the antiviral effect of edaravone against SGIV, and the anti-SGIV mechanism of edaravone was also explored. It was found that the safe concentration of edaravone on grouper spleen (GS) cells was 50 µg/mL, and it possessed antiviral activity against SGIV infection in a dose-dependent manner. Furthermore, edaravone could significantly disrupt SGIV particles and interference with SGIV binding to host cells, as well as SGIV replication in host cells. However, edaravone was not effective during the SGIV invasion into host cells. This study was the first time that it was determined that edaravone could exert antiviral effects in response to SGIV infection by directly interfering with the processes of SGIV infecting cells, aiming to provide a theoretical basis for the control of grouper virus disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/metabolismo , Edaravone/farmacologia , Ranavirus/fisiologia , Antivirais/farmacologia , Doenças dos Peixes/tratamento farmacológico , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/metabolismo
6.
Fish Shellfish Immunol ; 142: 109117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778738

RESUMO

Nuclear factor-κB (NF-κB)/Rel is a group of transcription factors that can be activated and regulates various aspects of innate and adaptive immune functions, which play a crucial role in mediating inflammatory responses. Interleukin-10 (IL-10) is a highly pleiotropic cytokine that has a central role in limiting the immune response to pathogens during infection and thereby alleviating damage to the host. This study aims to investigate the function of the Rel gene in virus infection and its regulatory effect on IL-10 in the largemouth bass (Micropterus salmoides). The ORF sequence of MsRel was 1941 bp, containing 646 amino acids with two conserved functional domains, including RHD and IPT domain. In healthy largemouth bass, the mRNA of MsRel was detected in all the tested tissues, including gill, liver, kidney, heart, spleen, intestine, stomach, skin, brain, fin and muscle. The expression of MsRel was induced by challenge with largemouth bass virus (LMBV) or red grouper nervous necrosis virus (RGNNV), as well as treatment with lipopolysaccharide (LPS) or poly (I:C) in vivo. As evidenced by the detection of viral gene mRNA levels, the infectivity of LMBV and morphological cytopathic effect (CPE), we found that overexpression of MsRel inhibited the infection and replication of LMBV, suggesting its antiviral roles in fish. Besides, the promoter analysis was carried out to determine whether MsRel was a regulator of MsIL-10. The results of the luciferase reporter assay indicated that MsRel has a positive regulatory role in MsIL-10 expression. Further analysis revealed that the potential binding sites of MsIL-10 may be located in the MsIL10-5-M (-42 to +8 bp) region of the MsIL-10 promoter. Furthermore, we observed that MsRel enhanced IFN-I and IFN-III promoter activities. Taken together, our findings demonstrated that MsRel affect LMBV infection by regulating the immune responses, and providing a new idea of the mechanisms how Rel regulate the expression of IL-10 in bony fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Interleucina-10/genética , Sequência de Aminoácidos , Poli I-C/farmacologia , Antivirais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Peixes/química , Ranavirus/fisiologia , Imunidade Inata/genética
7.
Fish Shellfish Immunol ; 142: 109168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844852

RESUMO

As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Regulação da Expressão Gênica , Proteínas de Peixes/química , Sequência de Aminoácidos , Ranavirus/fisiologia , Imunidade Inata/genética , Antivirais , Neurônios
8.
Fish Shellfish Immunol ; 141: 109067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689226

RESUMO

As one of the important members of the autophagy-related protein family, Atg14 plays a key role in the formation and maturation of autophagosomes. However, little is known about the potential roles of fish Atg14 and its roles in virus infection. In the present study, the homolog of Atg14 (EcAtg14) from the orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) of EcAtg14 consists of 1530 nucleotides, encoding 509 amino acids, with a predicted molecular weight of 56.9 kDa. EcAtg14 was distributed in all tested tissues, with higher expression in liver, blood and spleen. The expression of EcAtg14 was increased in grouper spleen (GS) cells after Singapore grouper iridovirus (SGIV) infection. EcAtg14 was distributed in the cytoplasm of GS cells. Overexpression of EcAtg14 promoted SGIV replication in GS cells and inhibited IFN3, ISRE and NF-κB promoter activities. Co-immunoprecipitation results showed that there was an interaction between EcAtg14 and EcBeclin. EcAtg14 also promoted the synthesis of LC3-II in GS cells. These findings provide a basis for understanding the innate immune mechanism of grouper against viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/química , Ranavirus/fisiologia , Imunidade Inata/genética , Filogenia
9.
Fish Shellfish Immunol ; 140: 108990, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558148

RESUMO

Singapore grouper iridovirus (SGIV) is a highly pathogenic Iridoviridae that causes hemorrhage and spleen enlargement in grouper. Despite previous genome annotation efforts, many open reading frames (ORFs) in SGIV remain uncharacterized, with largely unknown functions. In this study, we identified the protein encoded by SGIV ORF122, now referred to as VP122. Notably, overexpression of VP122 promoted SGIV replication. Moreover, VP122 exhibited antagonistic effects on the natural antiviral immune response through the cGAS-STING signaling pathway. It specifically inhibited the cGAS-STING-triggered transcription of various immune-related genes, including IFN1, IFN2, ISG15, ISG56, PKR, and TNF-α in GS cells. Additionally, VP122 significantly inhibited the activation of the ISRE promoter mediated by EccGAS and EcSTING but had no effect on EccGAS or EcSTING alone. Immunoprecipitation and Western blotting experiments revealed that VP122 specifically interacts with EcSTING but not EccGAS. Notably, this interaction between VP122 and EcSTING was independent of any specific domain of EcSTING. Furthermore, VP122 inhibited the self-interaction of EcSTING. Interestingly, VP122 did not affect the recruitment of EcTBK1 and EcIRF3 to the EcSTING complex. Collectively, our results demonstrate that SGIV VP122 targets EcSTING to evade the type I interferon immune response, revealing a crucial role for VP122 in modulating the host-virus interaction.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Interferon Tipo I , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/genética , Clonagem Molecular , Ranavirus/fisiologia , Imunidade , Interferon Tipo I/genética
10.
J Anim Ecol ; 92(9): 1856-1868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409362

RESUMO

Amphibians suffer from large-scale population declines globally, and emerging infectious diseases contribute heavily to these declines. Amphibian Perkinsea (Pr) is a worldwide anuran pathogen associated with mass mortality events, yet little is known about its epidemiological patterns, especially in comparison to the body of literature on amphibian chytridiomycosis and ranavirosis. Here, we establish Pr infection patterns in natural anuran populations and identify important covariates including climate, host attributes and co-infection with Ranavirus (Rv). We used quantitative (q)PCR to determine the presence and intensity of Pr and Rv across 1234 individuals sampled throughout central Florida in 2017-2019. We then implemented random forest ensemble learning models to predict infection with both pathogens based on physiological and environmental characteristics. Perkinsea infected 32% of all sampled anurans, and Pr prevalence was significantly elevated in Ranidae frogs, cooler months, metamorphosed individuals and frogs co-infected with Rv, while Pr intensity was significantly higher in ranid frogs and individuals collected dead. Ranavirus prevalence was 17% overall and was significantly higher in Ranidae frogs, metamorphosed individuals, locations with higher average temperatures, and individuals co-infected with Pr. Perkinsea prevalence was significantly higher than Rv prevalence across months, regions, life stages and species. Among locations, Pr prevalence was negatively associated with crayfish prevalence and positively associated with relative abundance of microhylids, but Rv prevalence did not associate with any tested co-variates. Co-infections were significantly more common than single infections for both pathogens, and we propose that Pr infections may propel Rv infections because seasonal Rv infection peaks followed Pr infection peaks and random forest models found Pr intensity was a leading factor explaining Rv infections. Our study elucidates epidemiological patterns of Pr in Florida and suggests that Pr may be under-recognized as a cause of anuran declines, especially in the context of pathogen co-infection.


Assuntos
Coinfecção , Ranavirus , Animais , Ranavirus/fisiologia , Florida , Ranidae , Clima
11.
Fish Shellfish Immunol ; 138: 108860, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257567

RESUMO

Disease caused by Singapore grouper iridovirus (SGIV) results in major economic losses in the global grouper aquaculture industry. Vaccination is considered to be the most effective way to protect grouper from SGIV. In this study, the spores of Bacillus subtilis (B.subtilis) WB600 were utilized as the vehicle that the VP19 protein was displayed on the spores surface. To further investigate the effect of oral vaccination, the grouper were orally immunized with B.s-CotC-19 spores. After challenged, the survival rate of grouper orally vaccinated with B.s-CotC-19 spores was 34.5% and the relative percent survival (RPS) was 28.7% compared to the PBS group. Moreover, the viral load in the tissues of the B.s-CotC-19 group was significantly lower than that of the PBS group. The histopathological sections of head kidney and liver tissue from the B.s-CotC-19 group showed significantly less histopathology compared to the PBS group. In addition, the specific IgM levels in serum in the B.s-CotC-19 group was higher than those in the PBS group. In the hindgut tissue, the immune-related gene expression detected by quantitative real-time PCR (qRT-PCR) exhibited an increasing trend in different degrees in the B.s-CotC-19 group, suggesting that the innate and adaptive immune responses were activated. These results indicated that the oral administration of recombinant B.subtilis spores was effective for preventing SGIV infection. This study provided a feasible strategy for the controlling of fish virus diseases.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Bacillus subtilis/genética , Singapura , Esporos Bacterianos/genética , Ranavirus/fisiologia , Vacinação , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária
12.
Dev Comp Immunol ; 143: 104674, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889370

RESUMO

Singapore grouper iridovirus (SGIV), with various mechanisms for evading and modulating host, has inflicted heavy economic losses in the grouper aquaculture. MAP kinase phosphatase 1 (MKP-1) regulates mitogen-activated protein kinases (MAPKs) to mediate the innate immune response. Here, we cloned EcMKP-1, an MKP-1 homolog from the orange-spotted grouper Epinephelus coioides, and investigated its role in the infection of SGIV. In juvenile grouper, EcMKP-1 was highly upregulated and peaked at different times after injection with lipopolysaccharide, polyriboinosinic polyribocytidylic acid and SGIV. EcMKP-1 expression in heterologous fathead minnow cells was able to suppress SGIV infection and replication. Furthermore, EcMKP-1 was a negative regulator of c-Jun N-terminal kinase (JNK) phosphorylation early in SGIV infection. EcMKP-1 decreased the apoptotic percentage and caspase-3 activity during the late stage of SGIV replication. Our results demonstrate critical functions of EcMKP-1 in antiviral immunity, JNK dephosphorylation and anti-apoptosis during SGIV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Antivirais , Iridovirus/fisiologia , Fosfatase 1 de Especificidade Dupla , Singapura , Ranavirus/fisiologia , Imunidade Inata , Proteínas de Peixes/metabolismo
13.
Fish Shellfish Immunol ; 135: 108685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921879

RESUMO

Groupers are important mariculture fish in South China and Southeast Asian countries. However, the increasing frequency of infectious disease outbreaks has caused great economic losses in the grouper industry. Among these pathogens, Singapore grouper iridovirus (SGIV) infection causes high mortality in larval and juvenile stages of grouper. However, the mechanism underlying the action of viral manipulation on cellular immune response still remained largely uncertain. Here, using RNA-seq technology, we investigated the regulatory roles of SGIV infection on synthetic RNA duplex poly I:C induced immune response in vitro. Using reporter gene assays, we found that SGIV infection decreased poly I:C induced interferon promoter activation. Transcriptomic analysis showed that the mRNA expression levels of 2238 genes were up-regulated, while 1247 genes were down-regulated in poly I:C transfected grouper spleen (GS) cells. Interestingly, SGIV infection decreased the expression of 1479 up-regulated genes and increased the expression of 297 down-regulated genes in poly I:C transfected cells. The differentially expressed genes (DEGs) down-regulated by SGIV were directly related to immune, inflammation and viral infection, and JUN, STAT1, NFKB1, MAPK14A, TGFB1 and MX were the 6 top hub genes in the down-regulated DEGs' protein-protein interaction (PPI) network. Furthermore, quantitative real-time PCR (qPCR) analysis confirmed that the interferon signaling and inflammatory-related genes, including cGAS, STING, TBK1, MAVS, TNF, IRAK4 and NOD2 were up-regulated by poly I:C stimulation, but all significantly down-regulated after SGIV infection. Thus, we speculated that SGIV infection counteracted poly I:C induced antiviral immune response and this ability helped itself to escape host immune surveillance. Together, our data will contribute greatly to understanding the potential immune evasion mechanism of iridovirus infection in vitro.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Antivirais , Clonagem Molecular , Singapura , Ranavirus/fisiologia , Poli I-C/farmacologia , Imunidade Inata/genética , Interferons/genética , Proteínas de Peixes
14.
Front Immunol ; 14: 1092824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845102

RESUMO

Cyclic GMP-AMP synthase (cGAS) is one of the classical pattern recognition receptors that recognizes mainly intracytoplasmic DNA. cGAS induces type I IFN responses to the cGAS-STING signaling pathway. To investigate the roles of cGAS-STING signaling pathway in grouper, a cGAS homolog (named EccGAS) was cloned and identified from orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EccGAS is 1695 bp, encodes 575 amino acids, and contains a Mab-21 typical structural domain. EccGAS is homologous to Sebastes umbrosus and humans at 71.8% and 41.49%, respectively. EccGAS mRNA is abundant in the blood, skin, and gills. It is uniformly distributed in the cytoplasm and colocalized in the endoplasmic reticulum and mitochondria. Silencing of EccGAS inhibited the replication of Singapore grouper iridovirus (SGIV) in grouper spleen (GS) cells and enhanced the expression of interferon-related factors. Furthermore, EccGAS inhibited EcSTING-mediated interferon response and interacted with EcSTING, EcTAK1, EcTBK1, and EcIRF3. These results suggest that EccGAS may be a negative regulator of the cGAS-STING signaling pathway of fish.


Assuntos
Bass , Interferon Tipo I , Perciformes , Ranavirus , Animais , Humanos , Bass/genética , Sequência de Aminoácidos , Ranavirus/fisiologia
15.
Dis Aquat Organ ; 153: 51-58, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794841

RESUMO

Ranaviruses can cause mass mortality events in amphibians, thereby becoming a threat to populations that are already facing dramatic declines. Ranaviruses affect all life stages and persist in multiple amphibian hosts. The detrimental effects of ranavirus infections to amphibian populations have already been observed in the UK and in North America. In Central and South America, the virus has been reported in several countries, but the presence of the genus Ranavirus (Rv) in Colombia is unknown. To help fill this knowledge gap, we surveyed for Rv in 60 species of frogs (including one invasive species) in Colombia. We also tested for co-infection with Batrachochytrium dendrobatidis (Bd) in a subset of individuals. For Rv, we sampled 274 vouchered liver tissue samples collected between 2014 and 2019 from 41 localities covering lowlands to mountaintop páramo habitat across the country. Using quantitative polymerase chain reaction (qPCR) and end-point PCR, we detected Rv in 14 individuals from 8 localities, representing 6 species, including 5 native frogs of the genera Osornophryne, Pristimantis and Leptodactylus, and the invasive American bullfrog Rana catesbeiana. Bd was detected in 7 of 140 individuals, with 1 co-infection of Rv and Bd in an R. catesbeiana specimen collected in 2018. This constitutes the first report of ranavirus in Colombia and should set off alarms about this new emerging threat to amphibian populations in the country. Our findings provide some preliminary clues about how and when Rv may have spread and contribute to understanding how the pathogen is distributed globally.


Assuntos
Anfíbios , Infecções por Vírus de DNA , Ranavirus , Animais , Anfíbios/microbiologia , Anfíbios/virologia , Anuros/microbiologia , Anuros/virologia , Batrachochytrium/fisiologia , Coinfecção/veterinária , Colômbia/epidemiologia , Infecções por Vírus de DNA/complicações , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Micoses/complicações , Micoses/veterinária , Rana catesbeiana/microbiologia , Rana catesbeiana/virologia , Ranavirus/fisiologia
16.
Dev Comp Immunol ; 142: 104646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702214

RESUMO

Protein kinase C (PKC) constitutes the main signal transduction pathway, and participates in the signal pathway of cell proliferation and movement in mammals. In this study, PKC-ɑ was obtained from Epinephelus coioides, an important marine fish cultivated in the coastal areas of southern China and Southeast Asia. The full length cDNA of PKC-ɑ was 3362 bp in length containing a 23 bp 5'UTR, a 1719 bp 3'UTR, and a 1620 bp open reading frame encoding 539 amino acids. It contains three conservative domains including protein kinase C conserved region 2 (C2), Serine/Threonine protein kinases, catalytic domain (S_TKc) and ser/thr-type protein kinases (S_TK_X). Its mRNA can be detected in all 11 tissues examined of E. coioides, and the expression was significantly upregulated response to Singapore grouper iridovirus (SGIV) infection, one of the important pathogens of marine fish. Upregulated E. coioides PKC-ɑ significantly inhibited the activation of nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), and SGIV-induced cell apoptosis. The results indicated that the PKC-ɑ may play an important role in pathogenic stimulation.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/genética , Bass/metabolismo , Iridovirus/fisiologia , Singapura , Infecções por Vírus de DNA/genética , Proteínas de Peixes/metabolismo , Ranavirus/fisiologia , Proteína Quinase C/genética , Clonagem Molecular , Filogenia , Mamíferos/genética
17.
Viruses ; 14(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36423155

RESUMO

Aquatic animal viruses infect and transmit in aquatic environments, causing serious harm to the aquaculture industry and a variety of wild aquatic animals. How are they affected by environmental factors and do they represent potential threat to mammalian heath or not? Here, the effects of environmental factors (ultraviolet radiation (UV), temperature, pH, and drying) and their threshold on five epidemic aquatic animal viruses infecting amphibians and bony fish, including Rana grylio virus (RGV), Andrias davidianus ranavirus (ADRV), Grass carp reovirus (GCRV), Paralichthys olivaceus rhabdovirus (PORV), and Scophthalmus maximus rhabdovirus (SMRV), were measured and compared in a fish cell line. The examination of virus titers after different treatment in fish cells showed that the two iridoviruses, RGV and ADRV, had a higher tolerance to all of the environmental factors, such as they only had a decay rate of 22-36% when incubated at 37 °C for 7 days. However, the rhabdovirus SMRV was sensitive to all of the factors, with a decay rate of more than 80% in most of the treatments; even a complete inactivation (100%) can be observed after drying treatment. To address the potential threat to mammals, infectivity and limitation factors of the five viruses in Baby hamster kidney fibroblast cells (BHK-21) were tested, which showed that three of the five viruses can replicate at a low temperature, but a high temperature strongly inhibited their infection and none of them could replicate at 37 °C. This study clarified the sensitivity or tolerance of several different types of aquatic animal viruses to the main environmental factors in the aquatic environment and proved that the viruses cannot replicate in mammalian cells at normal physiological temperature.


Assuntos
Ranavirus , Reoviridae , Rhabdoviridae , Animais , Raios Ultravioleta , Ranavirus/fisiologia , Urodelos , Mamíferos
18.
Front Immunol ; 13: 985291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203610

RESUMO

TRIM (tripartite motif) proteins have been demonstrated to exert critical roles in host defense against different microbial pathogens. Among them, TRIM23 acts as an important regulatory factor in antiviral immune and inflammatory responses, but the roles of fish TRIM23 against virus infection still remain largely unknown. Here, we investigated the characteristics of TRIM23 homolog from orange spotted grouper (Epinephelus coioides) (EcTRIM23). EcTRIM23 encoded a 580 amino acid peptide, which shared 93.1%, 89.73% and 86.36% identity with golden perch (Perca flavescens), zebrafish (Danio rerio) and human (Homo sapiens), respectively. The transcription levels of EcTRIM23 were significantly up-regulated in response to Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection. EcTRIM23 overexpression in vitro significantly inhibited RGNNV and SGIV replication, evidenced by the delayed cytopathic effect (CPE) progression and the decreased expression of viral core genes. EcTRIM23 significantly increased the expression levels of interferon (IFN) related signaling molecules and pro-inflammatory cytokines, as well as the promoter activities of IFN and NF-κB, suggesting that EcTRIM23 exerted antiviral function by positively regulating host IFN response. Exogenous EcTRIM23 exhibited either diffuse or aggregated localization in grouper cells. After co-transfection, TANK binding kinase 1 (TBK1), TNF receptor associated factor (TRAF) 3 and TRAF4, TRAF5 and TRAF6 were found to interact with EcTRIM23 in grouper cells. Moreover, these proteins could be recruited and co-localized with EcTRIM23 in vitro. Together, our results demonstrated that fish TRIM23 exerted antiviral activity against fish viruses by interacting with multiple host proteins to regulate immune responses.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Nodaviridae , Ranavirus , Aminoácidos/genética , Animais , Antivirais/farmacologia , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/metabolismo , Proteínas de Ligação ao GTP , Humanos , Imunidade Inata/genética , Interferons/metabolismo , NF-kappa B/metabolismo , Nodaviridae/fisiologia , Ranavirus/fisiologia , Alinhamento de Sequência , Fator 4 Associado a Receptor de TNF/genética , Fator 4 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Peixe-Zebra/genética
19.
Fish Shellfish Immunol ; 131: 84-94, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206994

RESUMO

Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.


Assuntos
Bass , Curcumina , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Curcumina/farmacologia , Singapura , Ranavirus/fisiologia , Infecções por Vírus de DNA/veterinária , Apoptose , Autofagia , Antivirais/farmacologia , Mamíferos
20.
Fish Shellfish Immunol ; 131: 1245-1254, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206998

RESUMO

Signal transducer and activator of transcription 2 (STAT2) is an important molecule involved in the type I interferon signaling pathway. To better understand the functions of STAT2 in fish immune response, a STAT2 gene from orange-spotted grouper (Epinephelus coioides) (EcSTAT2) was cloned and characterized in this study. EcSTAT2 encoded a 802-amino acid peptide which shared 99.5% and 91.5% identity with giant grouper (Epinephelus lanceolatus) and leopard coral grouper (Plectropomus leopardus), respectively. Amino acid alignment analysis showed that EcSTAT2 contained five conserved domains, including N-terminal protein interaction domain, coiled coil domain (CCD), DNA binding domain (DBD), Src-homology 2 (SH2) domain, and C-terminal transactivation domain (TAD). Phylogenetic analysis indicated that EcSTAT2 clustered into fish STAT2 group and showed the nearest relationship to giant grouper STAT2. In healthy grouper, EcSTAT2 was distributed in all tissues tested, and the expression of EcSTAT2 was predominantly detected in spleen, kidney and gill. In vitro, EcSTAT2 expression was significantly increased in response to polyinosinic:polycytidylic acid [poly (I:C)] stimulation and red-spotted grouper nervous necrosis virus (RGNNV) infection. Subcellular localization showed that EcSTAT2 was located in the cytoplasm in a punctate manner. EcSTAT2 overexpression significantly inhibited RGNNV replication, as evidenced by the decreased severity of cytopathic effect (CPE) and the reduced expression levels of viral genes and protein. Consistently, knockdown of EcSTAT2 using small interfering RNA (siRNA) promoted RGNNV replication. Furthermore, EcSTAT2 overexpression increased both interferon (IFN) and interferon stimulated genes (ISGs) expression. In addition, EcSTAT2 knockdown decreased the transcription levels of IFN and ISGs. Together, our data demonstrated that EcSTAT2 exerted antiviral activity against RGNNV through up-regulation of host interferon response.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Nodaviridae , Ranavirus , Animais , Ranavirus/fisiologia , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Filogenia , Proteínas de Peixes/química , Alinhamento de Sequência , Sequência de Aminoácidos , Nodaviridae/fisiologia , Poli I-C/farmacologia , Clonagem Molecular , Interferons/genética , Aminoácidos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...