Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Virology ; 588: 109909, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37879268

RESUMO

Ranaviruses are large, dsDNA viruses that have significant ecological and economic impact on cold-blooded vertebrates. However, our understanding of the viral proteins and subsequent host immune response(s) that impact susceptibility to infection and disease is not clear. The ranavirus Ambystoma tigrinum virus (ATV), originally isolated from the Sonoran tiger salamander (Ambystoma mavortium stebbinsi), is highly pathogenic at low doses of ATV at all tiger salamander life stages and this model has been used to explore the host-pathogen interactions of ATV infection. However, inconsistencies in the availability of laboratory reared larval tiger salamanders required us to look at the well characterized axolotl (A. mexicanum) as a model for ATV infection. Data obtained from five infection experiments over different developmental timepoints suggest that axolotls are susceptible to ATV in an age- and dose-dependent manner. These data support the use of the ATV-axolotl model to further explore the host-pathogen interactions of ranavirus infections.


Assuntos
Ambystoma mexicanum , Ranavirus , Animais , Ranavirus/genética , Ambystoma , Interações Hospedeiro-Patógeno , Larva
2.
Genomics ; 115(6): 110720, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757975

RESUMO

Genomic studies of viral diseases in aquaculture have received more and more attention with the growth of the aquaculture industry, especially the emerging and re-emerging viruses whose genome could contain recombination, mutation, insertion, and so on, and may lead to more severe diseases and more widespread infections in aquaculture animals. The present review is focused on aquaculture viruses, which is belonged to two clades, Varidnaviria and Duplodnaviria, and one class Naldaviricetes, and respectively three families: Iridoviridae (ranaviruses), Alloherpesviridae (fish herpesviruses), and Nimaviridae (whispoviruses). The viruses possessed DNA genomes nearly or larger than 100 kbp with gene numbers more than 100 and were considered large DNA viruses. Genome analysis and experimental investigation have identified several genes involved in genome replication, transcription, and virus-host interactions. In addition, some genes involved in virus genetic variation or specificity were also discussed. A summary of these advances would provide reference to future discovery and research on emerging or re-emerging aquaculture viruses.


Assuntos
Genoma Viral , Ranavirus , Humanos , Animais , Filogenia , Genômica , Ranavirus/genética , Aquicultura
3.
Microb Pathog ; 182: 106220, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423497

RESUMO

Andrias davidianus ranavirus (ADRV) is a member of the genus ranavirus (family Iridoviridae). ADRV 2L is an envelope protein that could be essential in viral infection. In the present study, the function of ADRV 2L was investigated by fusion with the biotin ligase TurboID tag. A recombinant ADRV with a V5-TurboID tag fused in the N-terminal of 2L (ADRVT-2L) and a recombinant ADRV expressing V5-TurboID (ADRVT) were constructed, respectively. Infection of the recombinant viruses and wild-type ADRV (ADRVWT) in the Chinese giant salamander thymus cell line (GSTC) showed that ADRVT-2L had reduced cytopathic effect and lower virus titers than the other two viruses, indicating the fusion of a big tag affected ADRV infection. Analysis of the temporal expression profile showed that the expression of V5-TurboID-2L was delayed than wild-type 2L. However, electron microscopy found that the virion morphogenesis was not affected in ADRVT-2L-infected cells. Furthermore, the virus binding assay revealed that the adsorption efficiency of ADRVT-2L was considerably decreased compared to the other two viruses. Therefore, these data showed that linking the TurboID tag to ADRV 2L affected virus adsorption to the cell membrane, which suggested an important role of 2L in virus entry into cells.


Assuntos
Iridoviridae , Ranavirus , Animais , Ranavirus/genética , Adsorção , Linhagem Celular , Urodelos
4.
Viruses ; 15(6)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376659

RESUMO

Aquaculture has expanded to become the fastest growing food-producing sector in the world. However, its expansion has come under threat due to an increase in diseases caused by pathogens such as iridoviruses commonly found in aquatic environments used for fish farming. Of the seven members belonging to the family Iridoviridae, the three genera causing diseases in fish comprise ranaviruses, lymphocystiviruses and megalocytiviruses. These three genera are serious impediments to the expansion of global aquaculture because of their tropism for a wide range of farmed-fish species in which they cause high mortality. As economic losses caused by these iridoviruses in aquaculture continue to rise, the urgent need for effective control strategies increases. As a consequence, these viruses have attracted a lot of research interest in recent years. The functional role of some of the genes that form the structure of iridoviruses has not been elucidated. There is a lack of information on the predisposing factors leading to iridovirus infections in fish, an absence of information on the risk factors leading to disease outbreaks, and a lack of data on the chemical and physical properties of iridoviruses needed for the implementation of biosecurity control measures. Thus, the synopsis put forth herein provides an update of knowledge gathered from studies carried out so far aimed at addressing the aforesaid informational gaps. In summary, this review provides an update on the etiology of different iridoviruses infecting finfish and epidemiological factors leading to the occurrence of disease outbreaks. In addition, the review provides an update on the cell lines developed for virus isolation and culture, the diagnostic tools used for virus detection and characterization, the current advances in vaccine development and the use of biosecurity in the control of iridoviruses in aquaculture. Overall, we envision that the information put forth in this review will contribute to developing effective control strategies against iridovirus infections in aquaculture.


Assuntos
Doenças dos Peixes , Iridoviridae , Iridovirus , Ranavirus , Animais , Peixes , Ranavirus/genética , Causalidade , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/prevenção & controle
5.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992326

RESUMO

Ranavirus is a large nucleocytoplasmic DNA virus. Chinese giant salamander iridovirus (CGSIV) belongs to the ranavirus genus, and its replication involves a series of essential viral genes. Viral PCNA is a gene closely associated with viral replication. CGSIV-025L also encodes PCNA-like genes. We have described the function of CGSIV-025L in virus replication. The promoter of CGSIV-025L is activated during viral infection, and it is an early (E) gene that can be effectively transcribed after viral infection. CGSIV-025L overexpression promoted viral replication and viral DNA replication. siRNA interfered with CGSIV-025L expression and attenuated viral replication and viral DNA replication. The Δ025L-CGSIV strain with the deletion of CGSIV-025L could not replicate normally and could be rescued by the replenishment of 025L. CGSIV-025L was proven to be an essential gene for CGSIV by overexpression, interference, and deletion mutation experiments. CGSIV-025L was found to interact with CGSIV-062L by yeast two-hybrid, CoIP, and GST pulldown. Thus, the current study demonstrated that CGSIV-025L is an essential gene of CGSIV, which may be involved in viral infection by participating in viral DNA replication and interacting with replication-related proteins.


Assuntos
Infecções por Vírus de DNA , Iridovirus , Ranavirus , Animais , Iridovirus/genética , Genes Essenciais , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/genética , DNA Viral/genética , Infecções por Vírus de DNA/veterinária , Replicação Viral , Ranavirus/genética , Genes Virais , Urodelos/genética
6.
Viruses ; 15(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36851684

RESUMO

Emergent infectious diseases have an increasing impact on both farmed animals and wildlife. The ability to screen for pathogens is critical for understanding host-pathogen dynamics and informing better management. Ranavirus is a pathogen of concern, associated with disease outbreaks worldwide, affecting a broad range of fish, amphibian, and reptile hosts, but research has been limited. The traditional screening of internal tissues, such as the liver, has been regarded as the most effective for detecting and quantifying Ranavirus. However, such methodology imposes several limitations from ethical and conservation standpoints. Non-lethal sampling methods of viral detection were explored by comparing the efficacy of both buccal swabbing and fin clipping. The study was conducted on two Iberian, threatened freshwater fish (Iberochondrostoma lusitanicum and Cobitis paludica), and all samples were screened using qPCR. While for C. paludica both methods were reliable in detecting Ranavirus, on I. lusitanicum, there was a significantly higher detection rate in buccal swabs than in fin tissue. This study, therefore, reports that fin clipping may yield false Ranavirus negatives when in small-bodied freshwater fish. Overall, buccal swabbing is found to be good as an alternative to more invasive procedures, which is of extreme relevance, particularly when dealing with a threatened species.


Assuntos
Cipriniformes , Ranavirus , Animais , Animais Selvagens , Surtos de Doenças , Espécies em Perigo de Extinção , Água Doce , Ranavirus/genética
7.
Vet Pathol ; 60(1): 139-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36086869

RESUMO

Ranaviruses have been detected in over 12 families of reptiles including many genera of turtles, tortoises, and terrapins, but the pathogenesis of these infections is still poorly understood. Krefft's river turtle hatchlings (N = 36; Emydura macquarii krefftii) were inoculated intramuscularly with Bohle iridovirus (BIV, Ranavirus, isolate) or saline, and euthanized at 9 timepoints (3 infected and 1 control per timepoint) over a 24-day period. Samples of lung, liver, kidney, and spleen were collected for quantitative polymerase chain reaction (PCR); internal organs, skin, and oral cavity samples were fixed for histopathological examination. The earliest lesions, at 8 days postinoculation (dpi), were lymphocytic inflammation of the skin and fibrinoid necrosis of regional vessels at the site of inoculation, and mild ulcerative necrosis with lymphocytic and heterophilic inflammation in the oral, nasal, and tongue mucosae. Fibrinonecrotic foci with heterophilic inflammation were detected in spleen and gonads at 16 dpi. Multifocal hepatic necrosis, heterophilic inflammation, and occasional basophilic intracytoplasmic inclusion bodies were observed at 20 dpi, along with ulcerative lymphocytic and heterophilic tracheitis and bronchitis. Tracheitis, bronchitis, and rare bone marrow necrosis were present at 24 dpi. Of the viscera tested for ranaviral DNA by PCR, the liver and spleen had the highest viral loads throughout infection, and thus appeared to be major targets of viral replication. Testing of whole blood by qPCR was the most-effective ante-mortem method for detecting ranaviral infection compared with oral swabs. This study represents the first time-dependent pathogenesis study of a ranaviral infection in turtles.


Assuntos
Bronquite , Infecções por Vírus de DNA , Ranavirus , Traqueíte , Tartarugas , Animais , Ranavirus/genética , Traqueíte/veterinária , Répteis , Infecções por Vírus de DNA/patologia , Infecções por Vírus de DNA/veterinária , Inflamação/veterinária , Água Doce , Bronquite/veterinária , Necrose/veterinária
8.
J Fish Dis ; 46(2): 91-98, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36209477

RESUMO

Largemouth bass ranavirus (LMBRaV), also known as largemouth bass virus (LMBV), is a high mortality pathogen in largemouth bass. A rapid, sensitive, specific and convenient diagnosis method is an urgent requirement for the prevention of virus transmission. In the present study, a droplet digital PCR (ddPCR) method based on the major capsid protein (mcp) gene was established to detect and quantify the virus genome copy number. Oligonucleotide primers were designed based on the LMBRaV mcp gene sequence. The specificity and sensitivity of ddPCR assay were analysed. The other aquatic virus including Chinese giant salamander iridovirus (GSIV), Cyprinid herpesvirus II (CyHV-2) and infectious spleen and kidney necrosis virus could not be detected by LMBRaV ddPCR assay. The detection limit of ddPCR assay was 2 ± 0.37 copies/µl DNA sample. And this ddPCR assay had great repeatability and reproducibility. In clinical diagnosis of 50 largemouth bass, 43 positive samples were detected by ddPCR, whereas only 34 positive samples were detected by quantitative PCR (qPCR). This LMBRaV detection assay provided a specific and sensitive method for the rapid diagnosis of LMBRaV infection in largemouth bass as well as quantification of the virus load.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Ranavirus/genética , Reprodutibilidade dos Testes , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Proteínas do Capsídeo/genética
9.
Viruses ; 14(12)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36560639

RESUMO

Ranaviruses have been involved in amphibian mass mortality events worldwide. Effective screening to control this pathogen is essential; however, current sampling methods are unsuitable for the detection of subclinical infections. Non-lethal screening is needed to prevent both further spread of ranavirus and losses of at-risk species. To assess non-lethal sampling methods, we conducted two experiments: bath exposing common frogs to RUK13 ranavirus at three concentrations, and exposing common toads to RUK13 or PDE18. Non-lethal sampling included buccal, digit, body and tank swabs, along with toe clips and stool taken across three time-points post-exposure. The presence/load of ranavirus was examined using quantitative PCR in 11 different tissues obtained from the same euthanised animals (incl. liver, gastro-intestinal tract and kidney). Buccal swab screening had the highest virus detection rate in both species (62% frogs; 71% toads) and produced consistently high virus levels compared to other non-lethal assays. The buccal swab was effective across multiple stages of infection and differing infection intensities, though low levels of infection were more difficult to detect. Buccal swab assays competed with, and even outperformed, lethal sampling in frogs and toads, respectively. Successful virus detection in the absence of clinical signs was observed (33% frogs; 50% toads); we found no difference in detectability for RUK13 and PDE18. Our results suggest that buccal swabbing could replace lethal sampling for screening and be introduced as standard practice for ranavirus surveillance.


Assuntos
Infecções por Vírus de DNA , Ranavirus , Animais , Ranavirus/genética , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Anuros , Reino Unido
10.
J Virol ; 96(20): e0068222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190239

RESUMO

Iridoviruses are large DNA viruses which cause great economic losses to the aquaculture industry and serious threats to ecological diversity worldwide. Singapore grouper iridovirus (SGIV), a novel member of the genus Ranavirus, causes high mortality in grouper aquaculture. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. Here, we reported that the protein encoded by SGIV ORF131R (VP131) was localized predominantly within the endoplasmic reticulum (ER). Ectopic expression of GFP-VP131 significantly enhanced SGIV replication, while VP131 knockdown decreased viral infection in vitro, suggesting that VP131 functioned as a proviral factor during SGIV infection. Overexpression of GFP-VP131 inhibited the interferon (IFN)-1 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), TANK-binding kinase 1 (EcTBK1), or melanoma differentiation-associated gene 5 (EcMDA5), whereas such activation induced by mitochondrial antiviral signaling protein (EcMAVS) was not affected. Moreover, VP131 interacted with EcSTING and degraded EcSTING through both the autophagy-lysosome pathway and ubiquitin-proteasome pathway, and targeted for the K63-linked ubiquitination. Of note, we also found that EcSTING significantly accelerated the formation of GFP-VP131 aggregates in co-transfected cells. Finally, GFP-VP131 inhibited EcSTING- or EcTBK1-induced antiviral activity upon red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our results demonstrated that the SGIV VP131 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion. IMPORTANCE STING has been identified as a critical factor participating in the innate immune response which recruits and phosphorylates TBK1 and IFN regulatory factor 3 (IRF3) to induce IFN production and defend against viral infection. However, viruses also distort the STING-TBK1 pathway to negatively regulate the IFN response and facilitate viral replication. Here, we reported that SGIV VP131 interacted with EcSTING within the ER and degraded EcSTING, leading to the suppression of IFN production and the promotion of SGIV infection. These results for the first time demonstrated that fish iridovirus evaded the host antiviral response via abrogating the STING-TBK1 signaling pathway.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Antivirais , Bass/genética , Bass/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/genética , Proteínas de Peixes , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/metabolismo , Iridovirus/genética , Iridovirus/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ranavirus/genética , RNA Mensageiro/genética , Singapura , Ubiquitinas/metabolismo
11.
Viruses ; 14(7)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35891548

RESUMO

Largemouth bass virus (LMBV), belonging to the genus Ranavirus, causes high mortality and heavy economic losses in largemouth bass aquaculture. In the present study, a novel cell line, designated as MsF, was established from the fin of largemouth bass (Micropterus salmoides), and applied to investigate the characteristics of cell death induced by LMBV. MsF cells showed susceptibility to LMBV, evidenced by the occurrence of a cytopathic effect (CPE), increased viral gene transcription, protein synthesis, and viral titers. In LMBV-infected MsF cells, two or more virus assembly sites were observed around the nucleus. Notably, no apoptotic bodies occurred in LMBV-infected MsF cells after nucleus staining, suggesting that cell death induced by LMBV in host cells was distinct from apoptosis. Consistently, DNA fragmentation was not detected in LMBV-infected MsF cells. Furthermore, only caspase-8 and caspase-3 were significantly activated in LMBV-infected MsF cells, suggesting that caspases were involved in non-apoptotic cell death induced by LMBV in host cells. In addition, the disruption of the mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) generation were detected in both LMBV-infected MsF cells and fathead minnow (FHM) cells. Combined with our previous study, we propose that cell death induced by LMBV infection was cell type dependent. Although LMBV-infected MsF cells showed the characteristics of non-apoptotic cell death, the signal pathways might crosstalk and interconnect between apoptosis and other PCD during LMBV infection. Together, our results not only established the in vitro LMBV infection model for the study of the interaction between LMBV and host cells but also shed new insights into the mechanisms of ranavirus pathogenesis.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Viroses , Animais , Apoptose , Morte Celular , Infecções por Vírus de DNA/epidemiologia , Ranavirus/genética
12.
Viruses ; 14(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35632650

RESUMO

The Andrias davidianus ranavirus (ADRV) is a member of the family Iridoviridae and belongs to the nucleocytoplasmic large DNA viruses. Based on genomic analysis, an ADRV-encoding protein, ADRV 12L, and its homologs from other iridoviruses were predicted as Rad2 family proteins based on the conserved amino acids, domains, and secondary structures. Expression analysis showed that the transcription of ADRV 12L started at 4 h post infection, and its expression was not inhibited by a DNA-replication inhibitor. Meanwhile, immunofluorescence localization showed that ADRV 12L mainly localized in viral factories and colocalized with the viral nascent DNA, which hinted at a possible role in DNA replication. Furthermore, a mutant ADRV lacking 12L (ADRV-Δ12L) was constructed. In both luciferase assays based on homologous recombination (HR) and double-strand break repair (DSBR) that followed, ADRV-Δ12L induced less luciferase activity than the wild-type ADRV, indicating that HR and DSBR were impaired in ADRV-Δ12L infected cells. In addition, infection with ADRV-Δ12L resulted in smaller plaque sizes and lower viral titers than that with wild-type ADRV, indicating an important role for 12L in efficient virus infection. Therefore, the results suggest that Rad2 homologs encoded by iridovirus have important roles in HR- and DSBR-process of the viral DNA and, thus, affect virus replication and the production of progeny virions.


Assuntos
Ranavirus , Animais , Reparo do DNA , DNA Viral/genética , DNA Viral/metabolismo , Ranavirus/genética , Ranavirus/metabolismo , Urodelos , Replicação Viral
13.
Viruses ; 14(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35632694

RESUMO

As nucleocytoplasmic large DNA viruses, replication of ranaviruses (genus Ranavirus, family Iridoviridae) involves a series of viral and host proteins. We have described that the replication and transcription machinery of Andrias davidianus ranavirus (ADRV) which was isolated from the Chinese giant salamander contained host factors. Here, a new host factor, the MutS homolog 2 (MSH2), was proved as an important protein that participated in ADRV infection. Expression of MSH2 was stable during ADRV infection in cultured cells and it localized at the cytoplasmic viral factories and colocalized with virus nascent DNA, indicating its possible role in virus genome replication. Investigation of the viral proteins that interacted with MSH2 by co-immunoprecipitation showed that A. davidianus MSH2 can interact with ADRV-35L (possible components associated with virus transcription), ADRV-47L (virus DNA polymerase), and ADRV-98R. Further knockdown MSH2 expression by RNAi significantly reduced the late gene expression of ADRV. Additionally, MSH2 knockout by CRISPR/Cas9 significantly reduced viral titers, genome replication, and late gene transcription of ADRV. Thus, the current study proved that ADRV can engage cellular MSH2 for its efficient genome replication and late gene transcription, which provided new information for understanding the roles of host factors in ranavirus replication and transcription.


Assuntos
Infecções por Vírus de DNA , Ranavirus , Animais , Reparo de Erro de Pareamento de DNA , DNA Viral/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ranavirus/genética , Ranavirus/metabolismo , Urodelos
14.
J Fish Dis ; 45(7): 1033-1043, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475515

RESUMO

Largemouth bass ranavirus disease (LMBVD) caused by largemouth bass ranavirus (LMBV) has resulted in severe economic losses in the largemouth bass (Micropterus salmoides) farming industry in China. Early and accurate diagnosis is the key measure for the prevention and control of LMBVD. In this study, a quantitative polymerase chain reaction (qPCR) and a real-time recombinase-aided amplification (real-time RAA) assay were established for the detection of LMBV. The sensitivity and specificity of these two methods, and the efficacy for detection of LMBV from clinical samples were also evaluated. Results showed that the real-time RAA reaction was completed in <30 min at 39℃ with a detection limit of 58.3 copies, while qPCR reaction required 60 min with a detection limit of 5.8 copies. Both methods were specific for LMBV, where no cross-reactions observed with the other tested fish pathogens. Comparing the amplification results of both assays to the results obtained by virus isolation using 53 clinical tissue samples, results showed that the clinical sensitivity of real-time RAA and qPCR were 93.75% and 100% respectively, and the clinical specificity of both were 100%. Our results showed that qPCR is more suitable for quantitative analysis and accurate detection of LMBV in the laboratory, while real-time RAA is more suitable as a point-of-care diagnostic tool for on-site detection and screening of LMBV under farm conditions and in poorly equipped laboratories.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/diagnóstico , Ranavirus/genética , Recombinases , Sensibilidade e Especificidade
15.
Viruses ; 15(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36680100

RESUMO

DDX41 is an intracellular DNA sensor that evokes type I interferon (IFN-I) production via the adaptor stimulator of interferon gene (STING), triggering innate immune responses against viral infection. However, the regulatory mechanism of the DDX41-STING pathway in teleost fish remains unclear. The mandarin fish (Siniperca chuatsi) is a cultured freshwater fish species that is popular in China because of its high market value. With the development of a high-density cultural mode in mandarin fish, viral diseases have increased and seriously restricted the development of aquaculture, such as ranavirus and rhabdovirus. Herein, the role of mandarin fish DDX41 (scDDX41) and its DEAD and HELIC domains in the antiviral innate immune response were investigated. The level of scDDX41 expression was up-regulated following treatment with poly(dA:dT) or Mandarin fish ranavirus (MRV), suggesting that scDDX41 might be involved in fish innate immunity. The overexpression of scDDX41 significantly increased the expression levels of IFN-I, ISGs, and pro-inflammatory cytokine genes. Co-immunoprecipitation and pull-down assays showed that the DEAD domain of scDDX41 recognized the IFN stimulatory DNA and interacted with STING to activate IFN-I signaling pathway. Interestingly, the HELIC domain of scDDX41 could directly interact with the N-terminal of STING to induce the expression levels of IFN-I and ISGs genes. Furthermore, the scDDX41 could enhance the scSTING-induced IFN-I immune response and significantly inhibit MRV replication. Our work would be beneficial to understand the roles of teleost fish DDX41 in the antiviral innate immune response.


Assuntos
Doenças dos Peixes , Interferon Tipo I , Ranavirus , Viroses , Animais , Ranavirus/genética , Peixes , Imunidade Inata/genética , DNA , Antivirais
16.
Viruses ; 13(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372531

RESUMO

Ranaviruses (Iridoviridae), including Frog Virus 3 (FV3), are large dsDNA viruses that cause devastating infections globally in amphibians, fish, and reptiles, and contribute to catastrophic amphibian declines. FV3's large genome (~105 kb) contains at least 98 putative open reading frames (ORFs) as annotated in its reference genome. Previous studies have classified these coding genes into temporal classes as immediate early, delayed early, and late viral transcripts based on their sequential expression during FV3 infection. To establish a high-throughput characterization of ranaviral gene expression at the genome scale, we performed a whole transcriptomic analysis (RNA-Seq) using total RNA samples containing both viral and cellular transcripts from FV3-infected Xenopus laevis adult tissues using two FV3 strains, a wild type (FV3-WT) and an ORF64R-deleted recombinant (FV3-∆64R). In samples from the infected intestine, liver, spleen, lung, and especially kidney, an FV3-targeted transcriptomic analysis mapped reads spanning the full-genome coverage at ~10× depth on both positive and negative strands. By contrast, reads were only mapped to partial genomic regions in samples from the infected thymus, skin, and muscle. Extensive analyses validated the expression of almost all of the 98 annotated ORFs and profiled their differential expression in a tissue-, virus-, and temporal class-dependent manner. Further studies identified several putative ORFs that encode hypothetical proteins containing viral mimicking conserved domains found in host interferon (IFN) regulatory factors (IRFs) and IFN receptors. This study provides the first comprehensive genome-wide viral transcriptome profiling during infection and across multiple amphibian host tissues that will serve as an instrumental reference. Our findings imply that Ranaviruses like FV3 have acquired previously unknown molecular mimics, interfering with host IFN signaling during evolution.


Assuntos
Perfilação da Expressão Gênica , Genoma Viral , Interações entre Hospedeiro e Microrganismos/imunologia , Interferons/imunologia , Ranavirus/genética , Ranavirus/imunologia , Xenopus laevis/virologia , Animais , Interações entre Hospedeiro e Microrganismos/genética , Larva/virologia , Fases de Leitura Aberta , RNA-Seq , Transcriptoma
17.
Front Immunol ; 12: 705253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220869

RESUMO

Background: Frog Virus 3 (FV3) is a large dsDNA virus belonging to Ranaviruses of family Iridoviridae. Ranaviruses infect cold-blood vertebrates including amphibians, fish and reptiles, and contribute to catastrophic amphibian declines. FV3 has a genome at ~105 kb that contains nearly 100 coding genes and 50 intergenic regions as annotated in its reference genome. Previous studies have mainly focused on coding genes and rarely addressed potential non-coding regulatory role of intergenic regions. Results: Using a whole transcriptomic analysis of total RNA samples containing both the viral and cellular transcripts from FV3-infected frog tissues, we detected virus-specific reads mapping in non-coding intergenic regions, in addition to reads from coding genes. Further analyses identified multiple cis-regulatory elements (CREs) in intergenic regions neighboring highly transcribed coding genes. These CREs include not only a virus TATA-Box present in FV3 core promoters as in eukaryotic genes, but also viral mimics of CREs interacting with several transcription factors including CEBPs, CREBs, IRFs, NF-κB, and STATs, which are critical for regulation of cellular immunity and cytokine responses. Our study suggests that intergenic regions immediately upstream of highly expressed FV3 genes have evolved to bind IRFs, NF-κB, and STATs more efficiently. Moreover, we found an enrichment of putative microRNA (miRNA) sequences in more than five intergenic regions of the FV3 genome. Our sequence analysis indicates that a fraction of these viral miRNAs is targeting the 3'-UTR regions of Xenopus genes involved in interferon (IFN)-dependent responses, including particularly those encoding IFN receptor subunits and IFN-regulatory factors (IRFs). Conclusions: Using the FV3 model, this study provides a first genome-wide analysis of non-coding regulatory mechanisms adopted by ranaviruses to epigenetically regulate both viral and host gene expressions, which have co-evolved to interact especially with the host IFN response.


Assuntos
Infecções por Vírus de DNA/veterinária , DNA Intergênico/genética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Viral/biossíntese , Ranavirus/genética , Xenopus laevis/virologia , Regiões 3' não Traduzidas , Animais , Infecções por Vírus de DNA/genética , Genoma Viral , Fatores Reguladores de Interferon/biossíntese , Fatores Reguladores de Interferon/genética , Interferência de RNA , RNA Viral/genética , Distribuição Aleatória , Receptores de Interferon/biossíntese , Receptores de Interferon/genética , Organismos Livres de Patógenos Específicos , Transcriptoma , Xenopus laevis/genética , Xenopus laevis/metabolismo
18.
Arch Virol ; 166(7): 1961-1964, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33983503

RESUMO

Frog virus 3 (FV3) was detected in cultured bullfrogs in Southeast Brazil. Phylodynamic analysis revealed recombination events in this strain that were nearly identical to those detected in North American and Brazilian FV3 strains. These data suggest that international trade of live bullfrogs has spread recombinant strains of FV3.


Assuntos
Genoma Viral/genética , Rana catesbeiana/virologia , Ranavirus/genética , Animais , Brasil , Infecções por Vírus de DNA/virologia , Genômica/métodos , América do Norte , Análise de Sequência de DNA/métodos
19.
Transbound Emerg Dis ; 68(4): 2161-2170, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33006817

RESUMO

Ranaviruses can infect both captive and wild cold-blooded vertebrates, leading to significant economic and environmental losses. With the cases of ranavirus infection increasing, many ranavirus genomic sequences were published, but little is known about ranavirus taxonomy on a whole-genome level. In this study, 44 ranaviruses core genes were identified in 32 ranaviruses genome sequences by using PanX. The neighbour-joining phylogenetic trees (NJ-tree) based on 44 ranaviruses core genes and 24 iridoviridae core genes and composition vector phylogenetic tree (CV-Tree) based on whole genome were constructed. The three of phylogenetic trees showed that 32 ranavirus isolates can be divided into 4 different subgroups including SGIV-like, EHNV-like, FV3-like and CMTV-like, and subgroups taxonomic position of three phylogenetic trees were consistent. However, the phylogenetic position of ToRV could not be determined if it belongs to FV3-like or CMTV-like group. Subsequently, we carried out dot plot analysis and confirmed that ToRV should belong to CMTV-like group. Based on dot plot analysis and phylogenetic trees, the taxonomic classification of ranaviruses was confirmed. Finally, four genes which are suitable for the construction of phylogenetic tree were selected from ranavirus core genes by recombination analysis, substitution saturation analysis and single-gene phylogenetic analysis. Phylogenetic tree based on concatenated sequences of the four selected genes showed that the classification of subgroups was identical with three of the phylogenetic trees. Conclusion: Our results confirmed taxonomic identification of ranaviruses; the four selected genes used in phylogenetic analysis will make taxonomic identification more convenient and accurate.


Assuntos
Infecções por Vírus de DNA , Ranavirus , Anfíbios , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Genômica , Filogenia , Ranavirus/genética
20.
Dis Aquat Organ ; 141: 139-147, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969346

RESUMO

Ranaviruses are emerging pathogens that can cause morbidity, mortality and population declines in ectothermic hosts; however, there is no standardized approach to diagnostics. Here, we compared the inter-assay variation and intra-assay precision among 2 commonly used quantitative PCRs (qPCRs), a conventional and a nested PCR assay (used as a gold standard), using laboratory-propagated ranavirus (FV3 and CMTV) and field-collected samples. A qPCR assay ('Leung') detected viral DNA in dilutions 2 orders of magnitude lower than other assays regardless of the viral lineage of the cultured isolate (FV3/CMTV). The second qPCR ('Brunner') was slightly more sensitive than the conventional PCR ('Mao' assay). For field samples, the Leung qPCR detected all known positives, while the Mao assay PCR only detected 2.5% of the positive samples. Amplicon sequences from the 2 conventional PCRs were shown to be useful for inferring viral lineage. Inaccurate results will bias estimates of the distribution and prevalence of ranaviruses, and together these findings emphasize that molecular assays should be chosen carefully in the context of study aims.


Assuntos
Infecções por Vírus de DNA , Ranavirus , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , DNA Viral , Prevalência , Probabilidade , Ranavirus/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...