Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700011

RESUMO

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , AVC Isquêmico/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Camundongos Knockout , Camundongos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Sistema Nervoso Simpático/fisiopatologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Cardiopatias/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência
2.
Mol Neurodegener ; 17(1): 47, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764973

RESUMO

BACKGROUND: Despite its identification as a key checkpoint regulator of microglial activation in Alzheimer's disease, the overarching role of CX3CR1 signaling in modulating mechanisms of Aß driven neurodegeneration, including accumulation of hyperphosphorylated tau is not well understood. METHODOLOGY: Accumulation of soluble and insoluble Aß species, microglial activation, synaptic dysregulation, and neurodegeneration is investigated in 4- and 6-month old 5xFAD;Cx3cr1+/+ and 5xFAD;Cx3cr1-/- mice using immunohistochemistry, western blotting, transcriptomic and quantitative real time PCR analyses of purified microglia. Flow cytometry based, in-vivo Aß uptake assays are used for characterization of the effects of CX3CR1-signaling on microglial phagocytosis and lysosomal acidification as indicators of clearance of methoxy-X-04+ fibrillar Aß. Lastly, we use Y-maze testing to analyze the effects of Cx3cr1 deficiency on working memory. RESULTS: Disease progression in 5xFAD;Cx3cr1-/- mice is characterized by increased deposition of filamentous plaques that display defective microglial plaque engagement. Microglial Aß phagocytosis and lysosomal acidification in 5xFAD;Cx3cr1-/- mice is impaired in-vivo. Interestingly, Cx3cr1 deficiency results in heighted accumulation of neurotoxic, oligomeric Aß, along with severe neuritic dystrophy, preferential loss of post-synaptic densities, exacerbated tau pathology, neuronal loss and cognitive impairment. Transcriptomic analyses using cortical RNA, coupled with qRT-PCR using purified microglia from 6 month-old mice indicate dysregulated TGFß-signaling and heightened ROS metabolism in 5xFAD;Cx3cr1-/- mice. Lastly, microglia in 6 month-old 5xFAD;Cx3cr1-/- mice express a 'degenerative' phenotype characterized by increased levels of Ccl2, Ccl5, Il-1ß, Pten and Cybb along with reduced Tnf, Il-6 and Tgfß1 mRNA. CONCLUSIONS: Cx3cr1 deficiency impairs microglial uptake and degradation of fibrillar Aß, thereby triggering increased accumulation of neurotoxic Aß species. Furthermore, loss of Cx3cr1 results in microglial dysfunction typified by dampened TGFß-signaling, increased oxidative stress responses and dysregulated pro-inflammatory activation. Our results indicate that Aß-driven microglial dysfunction in Cx3cr1-/- mice aggravates tau hyperphosphorylation, neurodegeneration, synaptic dysregulation and impairs working memory.


Assuntos
Doença de Alzheimer , Amiloidose , Receptor 1 de Quimiocina CX3C , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide , Fator de Crescimento Transformador beta
3.
Mol Neurobiol ; 58(11): 5876-5889, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417725

RESUMO

Following stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 (AMD3100) alone or in combination with C-X3-C chemokine receptor type 1 (CX3CR1) deficiency, affect the expression of GABAA subunits and glutamate decarboxylase (GAD) isoforms. Heterozygous, CX3CR1-deficient mice and wild-type littermates were subjected to photothrombosis (PT). Treatment with AMD3100 (0.5 mg/kg twice daily i.p.) was administered starting from day 2 after induction of PT until day 14 after the insult. At this time point, GABAA receptor subunits (α3, ß3, δ), GAD65 and GAD67, and CXCR4 were analyzed from the peri-infarct tissue and homotypic brain regions of the contralateral hemisphere by quantitative real-time PCR and Western Blot. Fourteen days after PT, CX3CR1 deficiency resulted in a significant decrease of the three GABAA receptor subunits in both the lesioned and the contralateral hemisphere compared to sham-operated mice. Treatment with AMD3100 promoted the down-regulation of GABAA subunits and GAD67 in the ipsilateral peri-infarct area, while the ß3 subunit and the GAD isoforms were up-regulated in homotypic regions of the contralateral cortex. Changes in GABAA receptor subunits and GABA synthesis suggest that the CXCR4/7 and CX3CR1 signaling pathways are involved in the regulation of GABAergic neurotransmission in the post-ischemic brain.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzilaminas/uso terapêutico , Receptor 1 de Quimiocina CX3C/deficiência , Ciclamos/uso terapêutico , Glutamato Descarboxilase/biossíntese , Trombose Intracraniana/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Receptores de GABA-A/biossíntese , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Genes Reporter , Glutamato Descarboxilase/genética , Trombose Intracraniana/genética , Trombose Intracraniana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Subunidades Proteicas , Receptores CXCR , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Receptores de GABA-A/genética
4.
J Comp Neurol ; 529(11): 3076-3097, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797066

RESUMO

The precise and specialized circuitry in the auditory brainstem develops through adaptations of cellular and molecular signaling. We previously showed that elimination of microglia during development impairs synaptic pruning that leads to maturation of the calyx of Held, a large encapsulating synapse that terminates on neurons of the medial nucleus of the trapezoid body (MNTB). Microglia depletion also led to a decrease in glial fibrillary acidic protein (GFAP), a marker for mature astrocytes. Here, we investigated the role of signaling through the fractalkine receptor (CX3CR1), which is expressed by microglia and mediates communication with neurons. CX3CR1-/- and wild-type mice were studied before and after hearing onset and at 9 weeks of age. Levels of GFAP were significantly increased in the MNTB in mutants at 9 weeks. Pruning was unaffected at the calyx of Held, but we found an increase in expression of glycinergic synaptic marker in mutant mice at P14, suggesting an effect on maturation of inhibitory inputs. We observed disrupted tonotopic gradients of neuron and calyx size in MNTB in mutant mice. Auditory brainstem recording (ABR) revealed that CX3CR1-/- mice had normal thresholds and amplitudes but decreased latencies and interpeak latencies, particularly for the highest frequencies. These results demonstrate that disruption of fractalkine signaling has a significant effect on auditory brainstem development. Our findings highlight the importance of neuron-microglia-astrocyte communication in pruning of inhibitory synapses and establishment of tonotopic gradients early in postnatal development.


Assuntos
Astrócitos/metabolismo , Tronco Encefálico/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Mutação/genética , Sinapses/genética , Sinapses/metabolismo , Animais , Vias Auditivas/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Tempo de Reação/fisiologia
5.
Acta Diabetol ; 58(8): 1035-1049, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33754166

RESUMO

OBJECTIVE: The intestinal microbiota to immune system crosstalk is a major regulator of metabolism and hence metabolic diseases. An impairment of the chemokine receptor CX3CR1, as a key regulator shaping intestinal microbiota under normal chow feeding, could be one of the early events of dysglycemia. METHODS: We studied the gut microbiota ecology by sequencing the gut and tissue microbiota. We studied its role in energy metabolism in CX3CR1-deficent and control mice using various bioassays notably the glycemic regulation during fasting and the respiratory quotient as two highly sensitive physiological features. We used antibiotics and prebiotics treatments, and germ free mouse colonization. RESULTS: We identify that CX3CR1 disruption impairs gut microbiota ecology and identified a specific signature associated to the genotype. The glycemic control during fasting and the respiratory quotient throughout the day are deeply impaired. A selected four-week prebiotic treatment modifies the dysbiotic microbiota and improves the fasting state glycemic control of the CX3CR1-deficent mice and following a glucose tolerance test. A 4 week antibiotic treatment also improves the glycemic control as well. Eventually, germ free mice colonized with the microbiota from CX3CR1-deficent mice developed glucose intolerance. CONCLUSIONS: CX3CR1 is a molecular mechanism in the control of the gut microbiota ecology ensuring the maintenance of a steady glycemia and energy metabolism. Its impairment could be an early mechanism leading to gut microbiota dysbiosis and the onset of metabolic disease.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Antibacterianos/administração & dosagem , Glicemia/fisiologia , Receptor 1 de Quimiocina CX3C/deficiência , Disbiose , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prebióticos/administração & dosagem , Fatores de Risco
6.
Biochem Biophys Res Commun ; 549: 47-53, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33662668

RESUMO

OBJECTIVE: To study the effects of CX3CR1 on white matter injury, neurofunction, recognition, and expression of the CD36/15LO/NR4A1 signal in mice with traumatic brain injury (TBI). METHODS: CX3CR1GFP/GFP, CX3CR1GFP/+ and C57BL/6 male mice were randomly divided into 3 groups. We used a controlled cortical impact (CCI) to establish a TBI model and T2wt MRI to detect the TBI lesion. FA and DTI allowed for quantitative evaluation of the structural integrity of white matter tracts. Several behavior tests were used to investigate nerve function; a computer-based tracing system was used to trace and analyze dendrites and cell bodies of microglia and astrocytes in the peri-lesional brain areas. We also used RT-PCR and western blot to detect the effect of CX3CL1/CX3CR1 axis on CD36/15LO/NR4A1 signal. RESULTS: The fractional anisotropy (FA) at the corpus callosum area of brain was decreased at 3 days post TBI, the average lesion volume CX3CR1GFP/GFP group was increased, and the neurologic deficit scores of mice of Cx3Cr1GFP/+ and wild-type groups were significantly increased compared to Cx3Cr1GFP/GFP group mice. In the Corner turn test, TBI induced impairments in forelimb function that were more severe than Cx3Cr11GFP/+ and wild-type TBI mice. We operated the Y-maze at 3 days post-TBI and the NOR test at 28 days after TBI. There was a significant TBI effect induced in decreased percentage entries into the novel arm in Cx3Cr1GFP/+ and wild-type TBI mice, compared with Cx3Cr1GFP/GFP; Cx3Cr1GFP/+. Wild-type mice showed decreased exploration time in new objects compared with Cx3Cr1GFP/GFP. Those two behavior tests demonstrated that Cx3Cr1 knock-out increased the damage caused by TBI to memory. In the tail suspension and force swimming tests, there was no significant difference between those three groups. CD36 increased in Cx3Cr1GFP/GFP compared with the other three groups at 3 days after TBI. TBI inhibited the expression of NR4A1 at 3 d after damage. Cx3Cr1 deficiency can induce high expression of 15LO, this was unaffected by TBI. CONCLUSION: CX3CR1 deletion can enhance white matter injury. It increased the expression of CD36 and 15LO and increased expression of NR4A1. The lack of CX3CR1 can affect the recovery of nerve function.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Antígenos CD36/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Transdução de Sinais , Substância Branca/lesões , Substância Branca/metabolismo , Animais , Anisotropia , Axônios/patologia , Comportamento Animal , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Receptor 1 de Quimiocina CX3C/metabolismo , Imagem de Tensor de Difusão , Masculino , Camundongos Endogâmicos C57BL , Substância Branca/diagnóstico por imagem
7.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036460

RESUMO

CX3CL1 can function as both an adhesion molecule and a chemokine for CX3CR1+ cells, such as T cells, monocytes, and NK cells. Recent studies have demonstrated that CX3CL1-CX3CR1 interaction is associated with the development of various inflammatory skin diseases. In this study, we examined CX3CR1 involvement in 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity using CX3CR1-/- mice. Ear swelling and dermal edema were attenuated after DNFB challenge in CX3CR1-/- mice. Expression of TNF-α, IL-6, and M1 macrophage markers was decreased in the ears of CX3CR1-/- mice, whereas expression of M2 macrophage markers including arginase-1 was increased. Decreased TNF-α and IL-6 expression and increased arginase-1 expression were found in peritoneal macrophages from CX3CR1-/- mice. Furthermore, ear swelling was attenuated by depleting dermal macrophages in wild-type mice to a similar level to CX3CR1-/- mice. These results suggest that CX3CR1 deficiency could induce skewed polarization towards M2 phenotype in macrophages, resulting in attenuation of contact hypersensitivity response.


Assuntos
Receptor 1 de Quimiocina CX3C/deficiência , Dermatite de Contato/etiologia , Dermatite de Contato/metabolismo , Dinitrofluorbenzeno/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Animais , Biomarcadores , Receptor 1 de Quimiocina CX3C/metabolismo , Dermatite de Contato/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/imunologia
8.
Mol Hum Reprod ; 26(1): 14-29, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778536

RESUMO

In the epididymis, prevention of autoimmune responses against spermatozoa and simultaneous protection against pathogens is important for male fertility. We have previously shown that mononuclear phagocytes (MPs) are located either in the epididymal interstitium or in close proximity to the epithelium. In the initial segments (IS), these 'intraepithelial' MPs extend slender luminal-reaching projections between epithelial cells. In this study, we performed an in-depth characterisation of MPs isolated from IS, caput-corpus and cauda epididymis of CX3CR1EGFP+/- mice that express EGFP in these cells. Flow cytometry analysis revealed region-specific subsets of MPs that express combinations of markers traditionally described in 'dendritic cells' or 'macrophages'. RNA sequencing identified distinct transcriptomic signatures in MPs from each region and revealed specific genes involved in inflammatory and anti-inflammatory responses, phagosomal activity and antigen processing and presentation. Functional fluorescent in vivo labelling assays showed that higher percentages of CX3CR1+ MPs that captured and processed antigens were detected in the IS compared to other regions. Confocal microscopy showed that in the IS, caput and corpus, circulatory antigens were internalised and processed by interstitial and intraepithelial MPs. However, in the cauda only interstitial MPs internalised and processed antigens, while intraepithelial MPs did not take up antigens, indicating that all antigens have been captured before they reached the epithelial lining. Cauda MPs may thus confer a stronger protection against blood-borne pathogens compared to proximal regions. By identifying immunoregulatory mechanisms in the epididymis, our study may lead to new therapies for male infertility and epididymitis and identify potential targets for immunocontraception.


Assuntos
Receptor 1 de Quimiocina CX3C/imunologia , Epididimo/imunologia , Fertilidade/genética , Fagócitos/imunologia , Espermatozoides/imunologia , Transcriptoma/imunologia , Animais , Apresentação de Antígeno , Antígenos CD/genética , Antígenos CD/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Comunicação Celular , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epididimo/citologia , Epididimo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Masculino , Camundongos , Camundongos Knockout , Fagócitos/citologia , Fagócitos/metabolismo , Transporte Proteico , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Espermatozoides/citologia , Espermatozoides/metabolismo
9.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792059

RESUMO

CX3CR1, one of the highest expressed genes in microglia in mice and humans, is implicated in numerous microglial functions. However, the molecular mechanisms underlying Cx3cr1 signaling are not well understood. Here, we analyzed transcriptomes of Cx3cr1-deficient microglia under varying conditions by RNA-sequencing (RNA-seq). In 2-mo-old mice, Cx3cr1 deletion resulted in the down-regulation of a subset of immune-related genes, without substantial epigenetic changes in markers of active chromatin. Surprisingly, Cx3cr1-deficient microglia from young mice exhibited a transcriptome consistent with that of aged Cx3cr1-sufficient animals, suggesting a premature aging transcriptomic signature. Immunohistochemical analysis of microglia in young and aged mice revealed that loss of Cx3cr1 modulates microglial morphology in a comparable fashion. Our results suggest that CX3CR1 may regulate microglial function in part by modulating the expression levels of a subset of inflammatory genes during chronological aging, making Cx3cr1-deficient mice useful for studying aged microglia.


Assuntos
Senilidade Prematura/genética , Receptor 1 de Quimiocina CX3C/deficiência , Microglia/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Perfil Genético , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de Quimiocinas/deficiência , Transdução de Sinais , Transcriptoma
10.
Front Immunol ; 10: 2780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849963

RESUMO

CX3CR1 is a chemokine receptor expressed on microglia that binds Fractalkine (CX3CL1) and regulates microglial recruitment to sites of neuroinflammation. Full deletion of CX3CR1 in mouse models of Alzheimer's disease have opposing effects on amyloid-ß and tau pathologies raising concerns about the benefits of targeting CX3CR1 for treatment of this disease. Since most therapies achieve only partial blockade of their targets, we investigated the effects of partial CX3CR1 deficiency on the development and progression of amyloid-ß deposition in the PS1-APP Alzheimer's mouse model. We generated PS1-APP mice heterozygous for CX3CR1 (PS1-APP-CX3CR1+/-) and analyzed these mice for Alzheimer's-like pathology. We found that partial CX3CR1 deficiency was associated with a significant reduction in Aß levels and in senile-like plaque load in the brain as compared with age-matched PS1-APP mice. Reduced Aß level in the brain was associated with improved cognitive function. Levels of the neuronal-expressed Aß-degrading enzymes insulysin and matrix metalloproteinase 9, which are reduced in the brains of regular PS1-APP mice, were significantly higher in PS1-APP-CX3CR1+/- mice. Our data indicate that lowering CX3CR1 levels or partially inhibiting its activity in the brain may be a therapeutic strategy to increase neuronal Aß clearance, reduce Aß levels and delay progression of Alzheimer's-Like disease. Our findings also suggest a novel pathway where microglial CX3CR1 can regulates gene expression in neurons.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência , Heterozigoto , Microglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Doença de Alzheimer/patologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
11.
Eur Rev Med Pharmacol Sci ; 23(15): 6645-6656, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31378907

RESUMO

OBJECTIVE: Hepatopulmonary syndrome (HPS) is a kind of pulmonary microvascular disease and occurs in 15%-30% cirrhosis. This study aimed to investigate the effects of pulmonary CX3CR1 on angiogenesis and associated mechanisms in HPS animal models. MATERIALS AND METHODS: CX3CR1GFP/GFP mice were constructed by replacing CX3CR1 with GFP. Common bile duct ligation (CBDL) mouse model was established with surgery. Release of nitric oxide (NO) was evaluated. Hematoxylin-eosin (HE) staining was employed to examine the inflammation of lung tissues. CD31 expression was detected with immunohistochemistry assay. Western blotting was used to evaluate the expression of CX3CL1, CX3CR1, phosphorylated-AKT (p-AKT), phosphorylated-ERK (p-ERK). Quantitative Real Time-PCR (qRT-PCR) assay was used to examine VEGF, PDGF, iNOS, eNOS, and HO-1 expression. RESULTS: CX3CR1-deficiency (CX3CR1GFP/GFP-sham or CX3CR1GFP/GFP-CBDL mice) significantly reduced NO release compared to wide type (WT)-mice or WT-CBDL mice (p<0.05). CX3CR1-deficiency significantly alleviated inflammation compared to wide type (WT)-mice or WT-CBDL mice (p<0.05). CX3CR1-deficiency significantly reduced CD31 expression compared to WT-sham and WT-CBDL mice, respectively (p<0.05). CX3CR1 also participated in anti-angiogenesis efficacy of Bevacizumab. CX3CR1-deficiency significantly down-regulated the ratio of p-AKT/AKT and p-ERK/ERK and inhibited the secretion of VEGF and PDGF compared to WT-mice (p<0.05). CX3CR1-deficiency significantly reduced iNOS, eNOS, and HO-1 expression compared to WT-mice (p<0.05). CONCLUSIONS: CX3CR1 deficiency reduced VEGF and PDGF production, inhibited p-AKT, and p-ERK activation and down-regulated iNOS, eNOS, and HO-1 expression. Therefore, CX3CR1 participates in pulmonary angiogenesis in the experimental HPS mice via inhibiting AKT/ERK signaling pathway and regulating NO/NOS release. These findings would provide a potential insight for clarifying the pathological mechanisms of HPS.


Assuntos
Receptor 1 de Quimiocina CX3C/deficiência , Síndrome Hepatopulmonar/patologia , Pulmão/irrigação sanguínea , Neovascularização Patológica/patologia , Animais , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Receptor 1 de Quimiocina CX3C/genética , Modelos Animais de Doenças , Regulação para Baixo , Heme Oxigenase-1/metabolismo , Síndrome Hepatopulmonar/tratamento farmacológico , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Patológica/tratamento farmacológico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Nat Neurosci ; 22(7): 1075-1088, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209379

RESUMO

Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.


Assuntos
Proteína ADAM10/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Receptor 1 de Quimiocina CX3C/fisiologia , Quimiocina CX3CL1/fisiologia , Proteínas de Membrana/fisiologia , Microglia/fisiologia , Córtex Sensório-Motor/fisiopatologia , Tato/fisiologia , Vibrissas/lesões , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Contagem de Células , Feminino , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas Analíticas Microfluídicas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/patologia , Transdução de Sinais/fisiologia , Análise de Célula Única , Transcriptoma , Vibrissas/fisiologia
13.
Redox Biol ; 22: 101118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30769286

RESUMO

TAU protein aggregation is the main characteristic of neurodegenerative diseases known as tauopathies. Low-grade chronic inflammation is also another hallmark that indicates crosstalk between damaged neurons and glial cells. Previously, we have demonstrated that neurons overexpressing TAUP301L release CX3CL1, which activates the transcription factor NRF2 signalling to limit over-activation in microglial cells in vitro and in vivo. However, the connection between CX3CL1/CX3CR1 and NRF2 system and its functional implications in microglia are poorly described. We evaluated CX3CR1/NRF2 axis in the context of tauopathies and its implication in neuroinflammation. Regarding the molecular mechanisms that connect CX3CL1/CX3CR1 and NRF2 systems, we observed that in primary microglia from Cx3cr1-/- mice the mRNA levels of Nrf2 and its related genes were significantly decreased, establishing a direct linking between both systems. To determine functional relevance of CX3CR1, migration and phagocytosis assays were evaluated. CX3CR1-deficient microglia showed impaired cell migration and deficiency of phagocytosis, as previously described for NRF2-deficient microglia, reinforcing the idea of the relevance of the CX3CL1/CX3CR1 axis in these events. The importance of these findings was evident in a tauopathy mouse model where the effects of sulforaphane (SFN), an NRF2 inducer, were examined on neuroinflammation in Cx3cr1+/+ and Cx3cr1-/- mice. Interestingly, the treatment with SFN was able to modulate astrogliosis but failed to reduce microgliosis in Cx3cr1-/- mice. These findings suggest an essential role of the CX3CR1/NRF2 axis in microglial function and in tauopathies. Therefore, polymorphisms with loss of function in CX3CR1 or NRF2 have to be taken into account for the development of therapeutic strategies.


Assuntos
Receptor 1 de Quimiocina CX3C/deficiência , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Movimento Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Microglia/imunologia , Fagocitose/genética , Fagocitose/imunologia , Células Piramidais/metabolismo , Células Piramidais/patologia , RNA Mensageiro/genética , Tauopatias/etiologia , Tauopatias/metabolismo , Tauopatias/mortalidade , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Neurol Sci ; 40(4): 779-791, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30671738

RESUMO

BACKGROUND: Recent evidences have implicated neuroprotective effects of CX3CR1 in multiple sclerosis (MS). But whether CX3CR1 is involved in modulation of antigen-presenting cell (APC)-related molecular MHC-II and what the possible mechanism is remain unidentified. OBJECTIVE: In this study, we intended to investigate the effects of CX3CR1 on MHC-II expressions on brain myeloid cells in experimental autoimmune encephalomyelitis (EAE) mice and explore the possible regulators for it. METHODS: CX3CR1-deficient EAE mice were created. Disease severity, pathological damage, and the expressions of MHC-II and its mediators on myeloid cells were detected. RESULTS: We found that compare with wile-typed EAE mice, CX3CR1-deficient EAE mice exhibited more severe disease severity. An accumulation of CD45+CD115+Ly6C-CD11c+ cells was reserved in the affected EAE brain of CX3CR1-deficient mice, consistent with disease severity and pathological damage in the brain. The expressions of MHC-II on the brain CD45+CD115+Ly6C-CD11c+ cells of CX3CR1-deficient EAE mice were elevated, in accord with the increased protein and mRNA expressions of class II transactivator (CIITA) and interferon regulatory factor-1 (IRF-1). CONCLUSIONS: The findings indicated that CX3CR1 might be an important regulator for MHC-II expressions on APCs, playing a beneficial role in EAE. The mechanism was probably through regulation on the MHC-II regulators CIITA and IRF-1.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Encefalomielite Autoimune Experimental , Antígenos de Histocompatibilidade Classe II/metabolismo , Inflamação , Fator Regulador 1 de Interferon/metabolismo , Esclerose Múltipla , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Células Mieloides/metabolismo
15.
J Neuroinflammation ; 16(1): 11, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654821

RESUMO

BACKGROUND: Microglia, the resident immune cells of the brain, exhibit various morphologies that correlate with their functions under physiological and pathological conditions. In conditions such as aging and stress, microglia priming occurs, which leads to altered morphology and lower threshold for activation upon further insult. However, the molecular mechanisms that lead to microglia priming are unclear. METHODS: To understand the role of Par1b/MARK2 in microglia, we first expressed shRNA targeting luciferase or Par1b/MARK2 in primary microglial cells and imaged the cells using fluorescent microscopy to analyze for morphological changes. A phagocytosis assay was then used to assess functional changes. We then moved in vivo and used a Par1b/MARK2 knockout mouse model to assess for changes in microglia density, morphology, and phagocytosis using immunohistochemistry, confocal imaging, and 3D image reconstruction. Next, we used two-photon in vivo imaging in live Par1b/MARK2 deficient mice to examine microglia dynamics. In addition, a controlled-cortical impact injury was performed on wild-type and Par1b/MARK2-deficient mice and microglial response was determined by confocal imaging. Finally, to help rule out non-cell autonomous effects, we analyzed apoptosis by confocal imaging, cytokine levels by multiplex ELISA, and blood-brain barrier permeability using Evans Blue assay. RESULTS: Here, we show that loss of the cell polarity protein Par1b/MARK2 facilitates the activation of primary microglia in culture. We next found that microglia in Par1b/MARK2 deficient mice show increased density and a hypertrophic morphology. These morphological changes are accompanied with alterations in microglia functional responses including increased phagocytosis of neuronal particles early in development and decreased surveillance of the brain parenchyma, all reminiscent of a primed phenotype. Consistent with this, we found that microglia in Par1b/MARK2 deficient mice have a significantly lower threshold for activation upon injury. CONCLUSIONS: Together, our studies show that loss of Par1b/MARK2 switches microglia from a surveillant to a primed state during development, resulting in an increased neuroinflammatory response to insults.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Proteínas de Ciclo Celular/deficiência , Microglia/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Simulação por Computador , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Fagocitose/genética , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapsinas/metabolismo
16.
Nature ; 566(7742): 110-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675063

RESUMO

Small intestinal mononuclear cells that express CX3CR1 (CX3CR1+ cells) regulate immune responses1-5. CX3CR1+ cells take up luminal antigens by protruding their dendrites into the lumen1-4,6. However, it remains unclear how dendrite protrusion by CX3CR1+ cells is induced in the intestine. Here we show in mice that the bacterial metabolites pyruvic acid and lactic acid induce dendrite protrusion via GPR31 in CX3CR1+ cells. Mice that lack GPR31, which was highly and selectively expressed in intestinal CX3CR1+ cells, showed defective dendrite protrusions of CX3CR1+ cells in the small intestine. A methanol-soluble fraction of the small intestinal contents of specific-pathogen-free mice, but not germ-free mice, induced dendrite extension of intestinal CX3CR1+ cells in vitro. We purified a GPR31-activating fraction, and identified lactic acid. Both lactic acid and pyruvic acid induced dendrite extension of CX3CR1+ cells of wild-type mice, but not of Gpr31b-/- mice. Oral administration of lactate and pyruvate enhanced dendrite protrusion of CX3CR1+ cells in the small intestine of wild-type mice, but not in that of Gpr31b-/- mice. Furthermore, wild-type mice treated with lactate or pyruvate showed an enhanced immune response and high resistance to intestinal Salmonella infection. These findings demonstrate that lactate and pyruvate, which are produced in the intestinal lumen in a bacteria-dependent manner, contribute to enhanced immune responses by inducing GPR31-mediated dendrite protrusion of intestinal CX3CR1+ cells.


Assuntos
Bactérias/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Extensões da Superfície Celular/metabolismo , Intestino Delgado/citologia , Intestino Delgado/microbiologia , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bactérias/imunologia , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/imunologia , Feminino , Células HEK293 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Ácido Láctico/farmacologia , Lactobacillus helveticus/metabolismo , Masculino , Metanol , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ácido Pirúvico/farmacologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Salmonella/imunologia , Salmonella/metabolismo
17.
Biol Chem ; 400(5): 651-661, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30352020

RESUMO

Aberrant microglial activation and neuroinflammation is a pathological hallmark of amyotrophic lateral sclerosis (ALS). Fractalkine (CX3CL1) is mostly expressed on neuronal cells. The fractalkine receptor (CX3CR1) is predominantly expressed on microglia. Many progressive neuroinflammatory disorders show disruption of the CX3CL1/CX3CR1 communication system. But the exact role of the CX3CL1/CX3CR1 in ALS pathology remains unknown. F1 nontransgenic/CX3CR1+/- females were bred with SOD1G93A/CX3CR1+/- males to produce F2 SOD1G93A/CX3CR1-/-, SOD1G93A/CX3CR1+/+. We analyzed end-stage (ES) SOD1G93A/CX3CR1-/- mice and progression-matched SOD1G93A/CX3CR1+/+ mice. Our study showed that the male SOD1G93A/CX3CR1-/- mice died sooner than male SOD1G93A/CX3CR1+/+ mice. In SOD1G93A/CX3CR1-/- mice demonstrated more neuronal cell loss, more microglial activation and exacerbated SOD1 aggregation at the end-stage of ALS. The NF-κB pathway was activated; the autophagy-lysosome degradation pathway and the autophagosome maturation were impaired. Our results indicated that the absence of CX3CR1/CX3CL1 signaling in the central nervous system (CNS) may worsen neurodegeneration. The CX3CL1/CX3CR1 communication system has anti-inflammatory and neuroprotective effects and plays an important role in maintaining autophagy activity. This effort may lead to new therapeutic strategies for neuroprotection and provide a therapeutic target for ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/metabolismo , Esclerose Lateral Amiotrófica/terapia , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
18.
Front Immunol ; 10: 3032, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969887

RESUMO

Background: CD36, a member of the class B scavenger receptor family, participates in Toll-like receptor signaling on mononuclear phagocytes (MP) and can promote sterile pathogenic inflammation. We here analyzed the effect of CD36 deficiency on retinal inflammation and photoreceptor degeneration, the hallmarks of age-related macular degeneration (AMD), that characterize Cx3cr1-/-mice. Methods: We analyzed subretinal MP accumulation, and cone- and rod-degeneration in light-challenged and aged, CD36 competent or deficient, hyper-inflammatory Cx3cr1-/- mice, using histology and immune-stained retinal flatmounts. Monocytes (Mo) were subretinally adoptively transferred to evaluate their elimination rate from the subretinal space and Interleukin 6 (IL-6) secretion from cultured Mo-derived cells (MdCs) of the different mouse strains were analyzed. Results: CD36 deficient Cx3cr1-/- mice were protected against age- and light-induced subretinal inflammation and associated cone and rod degeneration. CD36 deficiency in Cx3cr1-/- MPs inhibited their prolonged survival in the immune-suppressive subretinal space and reduced the exaggerated IL-6 secretion observed in Cx3cr1-/- MPs that we previously showed leads to increased subretinal MP survival. Conclusion:Cd36 deficiency significantly protected hyperinflammatory Cx3cr1-/- mice against subretinal MP accumulation and associated photoreceptor degeneration. The observed CD36-dependent induction of pro-inflammatory IL-6 might be at least partially responsible for the prolonged MP survival in the immune-suppressive environment and its pathological consequences on photoreceptor homeostasis.


Assuntos
Antígenos CD36/deficiência , Receptor 1 de Quimiocina CX3C/deficiência , Suscetibilidade a Doenças , Degeneração Retiniana/etiologia , Retinite/etiologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Fagócitos/imunologia , Fagócitos/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinite/metabolismo , Retinite/patologia
19.
PLoS One ; 13(11): e0207085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30399192

RESUMO

Preterm labor (PTL) is the most common cause of neonatal death and long-term adverse outcome. The pharmacological agents for PTL prevention are palliative and frequently fail to prevent PTL and improve neonatal outcome. It is essential to fully understand the molecular mechanisms of PTL in order to develop novel therapeutic methods against PTL. Several lines of evidence indicate some chemokines are expressed in gestational tissues during labor or PTL. To reveal the pathophysiological roles of the CX3CL1-CX3CR1 axis in PTL, we performed present study using LPS-induced PTL mice model in CX3CR1-deficient (Cx3cr1-/-) mice. We indicated that PTL was suppressed in Cx3cr1-/- mice and immunoneutralization of CX3CL1 in WT mice. From immunohistochemical and the gene expression analyses, the CX3CL1-CX3CR1 axis has detrimental roles in PTL through intrauterine recruitment of macrophages and the enhancement of macrophage-derived inflammatory mediators. Thus, the CX3CL1-CX3CR1 axis may be a good molecular target for preventing PTL.


Assuntos
Receptor 1 de Quimiocina CX3C/deficiência , Quimiocina CX3CL1/deficiência , Inflamação/metabolismo , Trabalho de Parto Prematuro/metabolismo , Adulto , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Modelos Animais de Doenças , Escherichia coli , Feminino , Expressão Gênica , Humanos , Inflamação/patologia , Lipopolissacarídeos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trabalho de Parto Prematuro/patologia , Placenta/metabolismo , Placenta/patologia , Gravidez , Proteínas Recombinantes/metabolismo
20.
Sci Rep ; 8(1): 15076, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305672

RESUMO

The expression of chemokine receptor CX3CR1 is related to migration and signaling in cells of the monocyte-macrophage lineage. The precise roles of CX3CR1 in the liver have been investigated but not clearly elucidated. Here, we investigated the roles of CX3CR1 in hepatic macrophages and liver injury. Hepatic and splenic CX3CR1lowF4/80low monocytes and CX3CR1lowCD16- monocytes were differentiated into CX3CR1highF4/80high or CX3CR1highCD16+ macrophages by co-culture with endothelial cells. Moreover, CX3CL1 deficiency in human umbilical vein endothelial cells (HUVECs) attenuated the expression of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), whereas recombinant CX3CL1 treatment reversed this expression in co-cultured monocytes. Upon treatment with clodronate liposome, hepatic F4/80high macrophages were successfully depleted at day 2 and recovered similarly in CX3CR1+/GFP and CX3CR1GFP/GFP mice at week 4, suggesting a CX3CR1-independent replacement. However, F4/80high macrophages of CX3CR1+/GFP showed a stronger pro-inflammatory phenotype than CX3CR1GFP/GFP mice. In clodronate-treated chimeric CX3CR1+/GFP and CX3CR1GFP/GFP mice, CX3CR1+F4/80high macrophages showed higher expression of IL-1ß and TNF-α than CX3CR1-F4/80high macrophages. In alcoholic liver injury, despite the similar frequency of hepatic F4/80high macrophages, CX3CR1GFP/GFP mice showed reduced liver injury, hepatic fat accumulation, and inflammatory responses than CX3CR1+/GFP mice. Thus, CX3CR1 could be a novel therapeutic target for pro-inflammatory macrophage-mediated liver injury.


Assuntos
Biomarcadores/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular , Inflamação/patologia , Fígado/patologia , Macrófagos/metabolismo , Monócitos/metabolismo , Animais , Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência , Etanol , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células de Kupffer/metabolismo , Fígado/lesões , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/patologia , Fenótipo , Baço/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...