Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Chem Biol Drug Des ; 103(5): e14533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684373

RESUMO

Hirudin is one of the specific inhibitors of thrombin, which has been confirmed to have strong bioactivities, including inhibiting tumors. However, the function and mechanism of hirudin and protease-activated receptor 1 (PAR-1) in diffuse large B-cell lymphoma (DLBCL) have not been clear. Detecting the expression PAR-1 in DLBCL tissues and cells by RT-qPCR and IHC. Transfected sh-NC, sh-PAR-1, or pcDNA3.1-PAR-1 in DLBCL cells or processed DLBCL cells through added thrombin, Vorapaxar, Recombinant hirudin (RH), or Na2S2O4 and co-culture with EA.hy926. And built DLBCL mice observed tumor growth. Detecting the expression of related genes by RT-qPCR, Western blot, IHC, and immunofluorescence, measured the cellular hypoxia with Hypoxyprobe-1 Kit, and estimated the cell inflammatory factors, proliferation, migration, invasion, and apoptosis by ELISA, CCK-8, flow cytometry, wound-healing and Transwell. Co-immunoprecipitation and pull-down measurement were used to verify the relationship. PAR-1 was highly expressed in DLBCL tissues and cells, especially in SUDHL2. Na2S2O4 induced SUDHL2 hypoxia, and PAR-1 did not influence thrombin-activated hypoxia. PAR-1 could promote SUDHL2 proliferation, migration, and invasion, and it was unrelated to cellular hypoxia. PAR-1 promoted proliferation, migration, and angiogenesis of EA.hy926 or SUDHL2 through up-regulation vascular endothelial growth factor (VEGF). RH inhibited tumor growth, cell proliferation, and migration, promoted apoptosis of DLBCL, and inhibited angiogenesis by down-regulating PAR-1-VEGF. RH inhibits proliferation, migration, and angiogenesis of DLBCL cells by down-regulating PAR-1-VEGF.


Assuntos
Apoptose , Proliferação de Células , Hirudinas , Linfoma Difuso de Grandes Células B , Neovascularização Patológica , Receptor PAR-1 , Proteínas Recombinantes , Fator A de Crescimento do Endotélio Vascular , Humanos , Hirudinas/farmacologia , Receptor PAR-1/metabolismo , Receptor PAR-1/antagonistas & inibidores , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Camundongos , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Angiogênese
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768341

RESUMO

Diabetic encephalopathy (DE) is an inflammation-associated diabetes mellitus (DM) complication. Inflammation and coagulation are linked and are both potentially modulated by inhibiting the thrombin cellular protease-activated receptor 1 (PAR1). Our aim was to study whether coagulation pathway modulation affects DE. Diabetic C57BL/6 mice were treated with PARIN5, a novel PAR1 modulator. Behavioral changes in the open field and novel object recognition tests, serum neurofilament (NfL) levels and thrombin activity in central and peripheral nervous system tissue (CNS and PNS, respectively), brain mRNA expression of tumor necrosis factor α (TNF-α), Factor X (FX), prothrombin, and PAR1 were assessed. Subtle behavioral changes were detected in diabetic mice. These were accompanied by an increase in serum NfL, an increase in central and peripheral neural tissue thrombin activity, and TNF-α, FX, and prothrombin brain intrinsic mRNA expression. Systemic treatment with PARIN5 prevented the appearance of behavioral changes, normalized serum NfL and prevented the increase in peripheral but not central thrombin activity. PARIN5 treatment prevented the elevation of both TNF-α and FX but significantly elevated prothrombin expression. PARIN5 treatment prevents behavioral and neural damage in the DE model, suggesting it for future clinical research.


Assuntos
Diabetes Mellitus Experimental , Receptor PAR-1 , Trombina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Protrombina/metabolismo , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , RNA Mensageiro/metabolismo , Estreptozocina , Trombina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Cells ; 10(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34944024

RESUMO

BACKGROUND: Protease-activated receptor 1 (PAR1) and toll-like receptors (TLRs) are inflammatory mediators contributing to atherogenesis and atherothrombosis. Vorapaxar, which selectively antagonizes PAR1-signaling, is an approved, add-on antiplatelet therapy for secondary prevention. The non-hemostatic, platelet-independent, pleiotropic effects of vorapaxar have not yet been studied. METHODS AND RESULTS: Cellular targets of PAR1 signaling in the vasculature were identified in three patient cohorts with atherosclerotic disease. Evaluation of plasma biomarkers (n = 190) and gene expression in endomyocardial biopsies (EMBs) (n = 12) revealed that PAR1 expression correlated with endothelial activation and vascular inflammation. PAR1 colocalized with TLR2/4 in human carotid plaques and was associated with TLR2/4 gene transcription in EMBs. In addition, vorapaxar reduced atherosclerotic lesion size in apolipoprotein E-knock out (ApoEko) mice. This reduction was associated with reduced expression of vascular adhesion molecules and TLR2/4 presence, both in isolated murine endothelial cells and the aorta. Thrombin-induced uptake of oxLDL was augmented by additional TLR2/4 stimulation and abrogated by vorapaxar. Plaque-infiltrating pro-inflammatory cells were reduced in vorapaxar-treated ApoEko mice. A shift toward M2 macrophages paralleled a decreased transcription of pro-inflammatory cytokines and chemokines. CONCLUSIONS: PAR1 inhibition with vorapaxar may be effective in reducing residual thrombo-inflammatory event risk in patients with atherosclerosis independent of its effect on platelets.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Lactonas/administração & dosagem , Piridinas/administração & dosagem , Receptor PAR-1/genética , Doenças Vasculares/tratamento farmacológico , Animais , Aterosclerose/genética , Aterosclerose/patologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Lactonas/efeitos adversos , Masculino , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Agregação Plaquetária/efeitos dos fármacos , Piridinas/efeitos adversos , Receptor PAR-1/antagonistas & inibidores , Trombina/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Molécula 1 de Adesão de Célula Vascular/genética , Doenças Vasculares/genética , Doenças Vasculares/patologia
4.
Bioorg Med Chem ; 51: 116498, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794000

RESUMO

Heptapeptide SFLLRNP is a receptor-tethered ligand of protease-activated receptor 1 (PAR-1), and its Phe at position 2 is essential for the aggregation of human platelets. To validate the structural elements of the Phe-phenyl group in receptor activation, we have synthesized a complete set of S/Phe/LLRNP peptides comprising different series of fluorophenylalanine isomers (Fn)Phe, where n = 1, 2, 3, and 5. Phe-2-phenyl was strongly suggested to be involved in the edge-to-face CH/π interaction with the receptor aromatic group. In the present study, to prove this receptor interaction definitively, we synthesized another series of peptide analogs containing (F4)Phe-isomers, with the phenyl group of each isomer possessing only one hydrogen atom at the ortho, meta, or para position. When the peptides were assayed for their platelet aggregation activity, S/(2,3,4,6-F4)Phe/LLRNP and S/(2,3,4,5-F4)Phe/LLRNP exhibited noticeable activity (34% and 6% intensities of the native peptide, respectively), whereas S/(2,3,5,6-F4)Phe/LLRNP was completely inactive. The results indicated that, at the ortho and meta positions but not at the para position, benzene-hydrogen atoms are required for the CH/π interaction to activate the receptor. The results provided a decisive evidence of the molecular recognition property of Phe, the phenyl benzene-hydrogen atom of which participates directly in the interaction with the receptor aromatic π plane.


Assuntos
Fragmentos de Peptídeos/farmacologia , Fenilalanina/farmacologia , Receptor PAR-1/antagonistas & inibidores , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Humanos , Ligantes , Estrutura Molecular , Fragmentos de Peptídeos/química , Fenilalanina/química , Agregação Plaquetária/efeitos dos fármacos , Receptor PAR-1/metabolismo , Relação Estrutura-Atividade
5.
Life Sci ; 286: 120045, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653426

RESUMO

OBJECTIVE: Endothelial dysfunction occurs as an early event in cardiovascular disease. Previously, vorapaxar, a proteinase-activated receptor-1 antagonist, was shown to cause endothelial damage in a cell culture study. Therefore, our study aimed to compare the effects of vorapaxar and parmodulin-2, proteinase-activated receptor-1 biased agonist, on human left internal mammary artery endothelial function in vitro. METHOD: Isolated arteries were hung in the organ baths. Acetylcholine responses (10-11-10-6 M) were obtained in endothelium-intact tissues the following incubation with vorapaxar/parmodulin-2 (10-6 M) to determine the effects of these molecules on the endothelium-dependent relaxation. Subsequently, endothelium-dependent relaxation responses of tissues were investigated in the presence of L-NAME (10-4 M), L-arginine (10-5 M), indomethacin (10-5 M), and charybdotoxin-apamin (10-7 M) in addition to vorapaxar/parmodulin-2 incubation. Besides, the effect of these molecules on endothelium-independent relaxation response was evaluated with sodium nitroprusside (10-11-10-6 M). Finally, the sections of human arteries were imaged using a transmission electron microscope, and the integrity of the endothelial layer was evaluated. RESULTS: We found that vorapaxar caused significant endothelial dysfunction by disrupting nitric oxide and endothelium-derived hyperpolarizing factor-dependent relaxation mechanisms. Parmodulin-2 did not cause endothelial damage. Neither vorapaxar nor parmodulin-2 disrupted endothelium-independent relaxation responses. The effect of vorapaxar on the endothelial layer was supported by the transmission electron microscope images. CONCLUSION: Parmodulin-2 may be a better option than vorapaxar in treating cardiovascular diseases since it can inhibit PAR-1 without caused endothelial dysfunction.


Assuntos
Benzamidas/farmacologia , Lactonas/farmacologia , Piridinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Acetilcolina/farmacologia , Adulto , Apamina/farmacologia , Fatores Biológicos/metabolismo , Charibdotoxina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Masculino , Artéria Torácica Interna/efeitos dos fármacos , Pessoa de Meia-Idade , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Receptor PAR-1/agonistas , Receptor PAR-1/metabolismo , Vasodilatação/efeitos dos fármacos
6.
Sci Rep ; 11(1): 16170, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373558

RESUMO

Proteinase-activated receptor-1 (PAR1), triggered by thrombin and other serine proteinases such as tissue kallikrein-4 (KLK4), is a key driver of inflammation, tumor invasiveness and tumor metastasis. The PAR1 transmembrane G-protein-coupled receptor therefore represents an attractive target for therapeutic inhibitors. We thus used a computational design to develop a new PAR1 antagonist, namely, a catalytically inactive human KLK4 that acts as a proteinase substrate-capture reagent, preventing receptor cleavage (and hence activation) by binding to and occluding the extracellular R41-S42 canonical PAR1 proteolytic activation site. On the basis of in silico site-saturation mutagenesis, we then generated KLK4S207A,L185D, a first-of-a-kind 'decoy' PAR1 inhibitor, by mutating the S207A and L185D residues in wild-type KLK4, which strongly binds to PAR1. KLK4S207A,L185D markedly inhibited PAR1 cleavage, and PAR1-mediated MAPK/ERK activation as well as the migration and invasiveness of melanoma cells. This 'substrate-capturing' KLK4 variant, engineered to bind to PAR1, illustrates proof of principle for the utility of a KLK4 'proteinase substrate capture' approach to regulate proteinase-mediated PAR1 signaling.


Assuntos
Calicreínas/metabolismo , Receptor PAR-1/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Simulação por Computador , Desenho de Fármacos , Humanos , Calicreínas/química , Calicreínas/genética , Cinética , Células MCF-7 , Mutagênese Sítio-Dirigida , Invasividade Neoplásica/prevenção & controle , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteólise , Receptor PAR-1/química , Receptor PAR-1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Especificidade por Substrato , Trombina/metabolismo
7.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066284

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease with a 5-year survival rate of less than 10% following diagnosis. The aggressive and invasive properties of pancreatic cancer tumors coupled with poor diagnostic options contribute to the high mortality rate since most patients present with late-stage disease. Accordingly, PDAC is linked to the highest rate of cancer-associated venous thromboembolic disease of all solid tumor malignancies. However, in addition to promoting clot formation, recent studies suggest that the coagulation system in PDAC mediates a reciprocal relationship, whereby coagulation proteases and receptors promote PDAC tumor progression and dissemination. Here, upregulation of tissue factor (TF) by tumor cells can drive local generation of the central coagulation protease thrombin that promotes cell signaling activity through protease-activated receptors (PARs) expressed by both tumor cells and multiple stromal cell subsets. Moreover, the TF-thrombin-PAR1 signaling axis appears to be a major mechanism of cancer progression in general and PDAC in particular. Here, we summarize the current literature regarding the role of PAR1 in PDAC and review possibilities for pharmacologically targeting PAR1 as a PDAC therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Receptor PAR-1/antagonistas & inibidores , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
8.
Psychopharmacology (Berl) ; 238(6): 1645-1656, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33624157

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aß) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer's disease. METHODS: For the induction of Alzheimer's disease, amyloid beta (Aß) 1-42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer's disease (AD); group III (SCH) (25 µg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area. RESULTS: Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/tratamento farmacológico , Receptor PAR-1/antagonistas & inibidores , Doença de Alzheimer/fisiopatologia , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Wistar , Aprendizagem Espacial/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
9.
Eur J Pharmacol ; 893: 173838, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359646

RESUMO

Chronic kidney disease (CKD) involves interstitial fibrosis as an influential underlying pathological process associated with compromised renal function regardless of etiological cause of the injury. The tubulointerstitial fibrosis is found to be well correlated with declining renal function and its subsequent culmination into renal failure. Given the prominent role of thrombin in multiple diseases, it was tempting for us to investigate the outcome of a direct thrombin inhibitor in renal injury. We investigated the involvement of thrombin in renal injury and fibrosis by using an FDA approved orally active, direct thrombin inhibitor, dabigatran etexilate (DB). We used a robust experimental model of unilateral ureteral obstruction (UUO)-induced renal injury which shows progressive tubulointerstitial fibrosis (TIF) along with tubular injury and inflammation. The obstructed kidney showed severe TIF as compared to control kidneys. The administration of DB significantly inhibited UUO-induced collagen-1 and TIF by inhibition of thrombin activated protease activated receptor (PAR)-1 expression in fibrotic kidney. In addition, DB administration improved histoarchitecture of obstructed kidney, inhibited TGF-ß and SNAI2-induced epithelial-mesenchymal transition (EMT) program. Our study highlights the importance of thrombin signalling in TIF and provides strong evidences to support the notion that a direct thrombin inhibitor ameliorates TIF by PAR-1 mediated mechanism.


Assuntos
Antitrombinas/farmacologia , Dabigatrana/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Receptor PAR-1/antagonistas & inibidores , Animais , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Receptor PAR-1/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/complicações
10.
Exp Biol Med (Maywood) ; 246(6): 688-694, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33302737

RESUMO

Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.


Assuntos
Coagulação Sanguínea/fisiologia , COVID-19/patologia , Coagulação Intravascular Disseminada/patologia , Receptor PAR-1/metabolismo , Trombina/metabolismo , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Fatores de Coagulação Sanguínea/metabolismo , Coagulação Intravascular Disseminada/tratamento farmacológico , Humanos , Embolia Pulmonar/patologia , Embolia Pulmonar/prevenção & controle , Receptor PAR-1/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , SARS-CoV-2 , Trombose Venosa/patologia , Trombose Venosa/prevenção & controle , Tratamento Farmacológico da COVID-19
11.
Biomolecules ; 10(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203057

RESUMO

Diabetic peripheral neuropathy (DPN) is a disabling common complication of diabetes mellitus (DM). Thrombin, a coagulation factor, is increased in DM and affects nerve function via its G-protein coupled protease activated receptor 1 (PAR1). METHODS: A novel PAR1 modulator (PARIN5) was designed based on the thrombin PAR1 recognition site. Coagulation, motor and sensory function and small fiber loss were evaluated by employing the murine streptozotocin diabetes model. RESULTS: PARIN5 showed a safe coagulation profile and showed no significant effect on weight or glucose levels. Diabetic mice spent shorter time on the rotarod (p <0.001), and had hypoalgesia (p <0.05), slow conduction velocity (p <0.0001) and reduced skin innervation (p <0.0001). Treatment with PARIN5 significantly improved rotarod performance (p <0.05), normalized hypoalgesia (p <0.05), attenuated slowing of nerve conduction velocity (p <0.05) and improved skin innervation (p <0.0001). CONCLUSION: PARIN5 is a novel pharmacological approach for prevention of DPN development, via PAR1 pathway modulation.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fragmentos de Peptídeos/administração & dosagem , Receptor PAR-1/antagonistas & inibidores , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-1/metabolismo
12.
Clin Sci (Lond) ; 134(21): 2873-2891, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33078834

RESUMO

Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-ß (TGF-ß)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-ß expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.


Assuntos
Rim/lesões , Lactonas/farmacologia , Piridinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/complicações , Proteína Smad3/metabolismo , Trombina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia
13.
Med Hypotheses ; 143: 110150, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32763660

RESUMO

COVID-19 due to the SARS-CoV-2 infection is a multi-systemic immune syndrome affecting mainly the lungs, oropharyngeal region, and other vascular endothelial beds. There are tremendous ongoing efforts for the aim of developing drugs against the COVID-19 syndrome-associated inflammation. However, currently no specific medicine is present for the absolute pharmacological cure of COVID-19 mucositis. The re-purposing/re-positioning of already existing drugs is a very important strategy for the management of ongoing pandemy since the development of a new drug needs decades. Apart from altering angiotensin signaling pathways, novel drug candidates for re-purposing comprise medications shall target COVID-19 pathobiology, including pharmaceutical formulations that antagonize proteinase-activated receptors (PARs), mainly PAR-1. Activation of the PAR-1, mediators and hormones impact on the hemostasis, endothelial activation, alveolar epithelial cells and mucosal inflammatory responses which are the essentials of the COVID-19 pathophysiology. In this context, Ankaferd hemostat (Ankaferd Blood Stopper, ABS) which is an already approved hemostatic agent affecting via vital erythroid aggregation and fibrinogen gamma could be a potential topical remedy for the mucosal management of COVID-19. ABS is a clinically safe and effective topical hemostatic agent of plant origin capable of exerting pleiotropic effects on the endothelial cells, angiogenesis, cell proliferation and vascular dynamics. ABS had been approved as a topically applied hemostatic agent for the management of post-surgical/dental bleedings and healing of infected inflammatory mucosal wounds. The anti-inflammatory and proteinase-activated receptor axis properties of ABS with a considerable amount of oestrogenic hormone presence highlight this unique topical hemostatic drug regarding the clinical re-positioning for COVID-19-associated mucositis. Topical ABS as a biological response modifier may lessen SARS-CoV-2 associated microthrombosis, endothelial dysfunction, oropharyngeal inflammation and mucosal lung damage. Moreover, PAR-1 inhibition ability of ABS might be helpful for reducing the initial virus propagation and mocasal spread of COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/complicações , Estrogênios/fisiologia , Hemostáticos/uso terapêutico , Mucosite/tratamento farmacológico , Pandemias , Fitoestrógenos/uso terapêutico , Fitoterapia , Extratos Vegetais/uso terapêutico , Pneumonia Viral/complicações , Receptor PAR-1/antagonistas & inibidores , Administração Tópica , Distribuição por Idade , Anti-Inflamatórios/administração & dosagem , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/fisiopatologia , Reposicionamento de Medicamentos , Endotélio Vascular/efeitos dos fármacos , Estrogênios/agonistas , Hemostáticos/administração & dosagem , Humanos , Mucosite/etiologia , Fitoestrógenos/administração & dosagem , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Pneumonia Viral/sangue , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Receptor PAR-1/fisiologia , SARS-CoV-2 , Estomatite/tratamento farmacológico , Estomatite/etiologia , Trombofilia/sangue , Trombofilia/etiologia , Tratamento Farmacológico da COVID-19
14.
Br J Pharmacol ; 177(21): 4971-4974, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32639031

RESUMO

In the search to rapidly identify effective therapies that will mitigate the morbidity and mortality of COVID-19, attention has been directed towards the repurposing of existing drugs. Candidates for repurposing include drugs that target COVID-19 pathobiology, including agents that alter angiotensin signalling. Recent data indicate that key findings in COVID-19 patients include thrombosis and endotheliitis. Activation of proteinase-activated receptor 1 (PAR1), in particular by the serine protease thrombin, is a critical element in platelet aggregation and coagulation. PAR1 activation also impacts on the actions of other cell types involved in COVID-19 pathobiology, including endothelial cells, fibroblasts and pulmonary alveolar epithelial cells. Vorapaxar is an approved inhibitor of PAR1, used for treatment of patients with myocardial infarction or peripheral arterial disease. We discuss evidence for a possible beneficial role for vorapaxar in the treatment of COVID-19 patients and other as-yet non-approved antagonists of PAR1 and proteinase-activated receptor 4 (PAR4). LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Lactonas/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Piridinas/administração & dosagem , Receptor PAR-1/antagonistas & inibidores , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Reposicionamento de Medicamentos , Humanos , Lactonas/farmacologia , Pandemias , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Pneumonia Viral/virologia , Piridinas/farmacologia , Receptor PAR-1/metabolismo , Receptores de Trombina/antagonistas & inibidores , Receptores de Trombina/metabolismo , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
15.
Arterioscler Thromb Vasc Biol ; 40(8): 1891-1904, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32493172

RESUMO

OBJECTIVE: Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin αIIbß3-dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. CONCLUSIONS: We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.


Assuntos
Plaquetas/fisiologia , Hemostasia/efeitos dos fármacos , Transferência Adotiva , Animais , Benzofuranos/farmacologia , Carbamatos/farmacologia , Terapia Antiplaquetária Dupla/efeitos adversos , Humanos , Masculino , Camundongos , Modelos Animais , Receptor PAR-1/antagonistas & inibidores
16.
J Am Heart Assoc ; 9(12): e015616, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32495720

RESUMO

Background Although PAR-1 (protease-activated receptor-1) exerts important functions in the pathophysiology of the cardiovascular system, the role of PAR-1 signaling in heart failure development remains largely unknown. We tested the hypothesis that PAR-1 signaling inhibition has protective effects on the progression of cardiac remodeling induced by chronic renin-angiotensin system activation using renin-overexpressing hypertensive (Ren-Tg) mice. Methods and Results We treated 12- to 16-week-old male wild-type (WT) mice and Ren-Tg mice with continuous subcutaneous infusion of the PAR-1 antagonist SCH79797 or vehicle for 4 weeks. The thicknesses of interventricular septum and the left ventricular posterior wall were greater in Ren-Tg mice than in WT mice, and SCH79797 treatment significantly decreased these thicknesses in Ren-Tg mice. The cardiac fibrosis area and monocyte/macrophage deposition were greater in Ren-Tg mice than in WT mice, and both conditions were attenuated by SCH79797 treatment. Cardiac mRNA expression levels of PAR-1, TNF-α (tumor necrosis factor-α), TGF-ß1 (transforming growth factor-ß1), and COL3A1 (collagen type 3 α1 chain) and the ratio of ß-myosin heavy chain (ß-MHC) to α-MHC were all greater in Ren-Tg mice than in WT mice; SCH79797 treatment attenuated these increases in Ren-Tg mice. Prothrombin fragment 1+2 concentration and factor Xa in plasma were greater in Ren-Tg mice than in WT mice, and both conditions were unaffected by SCH79797 treatment. In isolated cardiac fibroblasts, both thrombin and factor Xa enhanced ERK1/2 (extracellular signal-regulated kinase 1/2) phosphorylation, and SCH79797 pretreatment abolished this enhancement. Furthermore, gene expression of PAR-1, TGF-ß1, and COL3A1 were enhanced by factor Xa, and all were inhibited by SCH79797. Conclusions The results indicate that PAR-1 signaling is involved in cardiac remodeling induced by renin-angiotensin system activation, which may provide a novel therapeutic target for heart failure.


Assuntos
Hipertensão/tratamento farmacológico , Hipertrofia Ventricular Esquerda/prevenção & controle , Miocárdio/metabolismo , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Renina/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Células HEK293 , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/patologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Renina/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
17.
Arterioscler Thromb Vasc Biol ; 40(8): 1905-1917, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580633

RESUMO

OBJECTIVE: Remodeling of the extracellular matrix plays a vital role in cardiovascular diseases. Using a mouse model of postnatal ascending aortic aneurysms (termed Fbln4SMKO), we have reported that abnormal mechanosensing led to aneurysm formation in Fbln4SMKO with an upregulation of the mechanosensitive transcription factor, Egr1 (Early growth response 1). However, the role of Egr1 and its upstream regulator(s) in the initiation of aneurysm development and their relationship to an aneurysmal microenvironment are unknown. Approach and Results: To investigate the contribution of Egr1 in the aneurysm development, we deleted Egr1 in Fbln4SMKO mice and generated double knockout mice (DKO, Fbln4SMKO; Egr1-/-). Aneurysms were prevented in DKO mice (42.8%) and Fbln4SMKO; Egr1+/- mice (26%). Ingenuity Pathway Analysis identified PAR1 (protease-activated receptor 1) as a potential Egr1 upstream gene. Protein and transcript levels of PAR1 were highly increased in Fbln4SMKO aortas at postnatal day 1 before aneurysm formed, together with active thrombin and MMP (matrix metalloproteinase)-9, both of which serve as a PAR1 activator. Concordantly, protein levels of PAR1, Egr1, and thrombin were significantly increased in human thoracic aortic aneurysms. In vitro cyclic stretch assays (1.0 Hz, 20% strain, 8 hours) using mouse primary vascular smooth muscle cells induced marked expression of PAR1 and secretion of prothrombin in response to mechanical stretch. Thrombin was sufficient to induce Egr1 expression in a PAR1-dependent manner. CONCLUSIONS: We propose that thrombin, MMP-9, and mechanical stimuli in the Fbln4SMKO aorta activate PAR1, leading to the upregulation of Egr1 and initiation of ascending aortic aneurysms.


Assuntos
Aneurisma da Aorta Torácica/etiologia , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Receptor PAR-1/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas da Matriz Extracelular/deficiência , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/fisiologia , Camundongos , Pessoa de Meia-Idade , Receptor PAR-1/antagonistas & inibidores , Estresse Mecânico , Trombina/farmacologia
18.
Bioorg Med Chem Lett ; 30(8): 127046, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32122739

RESUMO

A series of novel vorapaxar analogues with different amino substitutes at the C-7, C-9a and aromatic substitutes at the C-4 position were designed, synthesized, and evaluated for their inhibitory activity to PAR-1. Several compounds showed good potency in antagonist activity based on the intracellular calcium mobilization assay and excellent pharmacokinetics profile in rats. Among these analogues, 3d exhibited excellent PAR-1 inhibitory activity (IC50 = 0.18 µM) and the lower ability to cross the blood-brain barrier compared with vorapaxar (IC50 = 0.25 µM). Compound 3d has the potential to be developed as a new generation of PAR-1 antagonists with a better therapeutic window.


Assuntos
Desenho de Fármacos , Lactonas/farmacologia , Piridinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Lactonas/síntese química , Lactonas/química , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Receptor PAR-1/metabolismo , Relação Estrutura-Atividade
19.
Am J Physiol Renal Physiol ; 318(5): F1067-F1073, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200667

RESUMO

Protease-activated receptors (PARs) are coagulation protease targets, and they increase expression of inflammatory cytokines and chemokines in various diseases. Of all PARs, previous reports have shown that PAR1 or PAR2 inhibition is protective against diabetic glomerular injury. However, how PAR1 and PAR2 cooperatively contribute to diabetic kidney disease (DKD) pathogenesis and whether dual blockade of PARs is more effective in DKD remain elusive. To address this issue, male type I diabetic Akita mice heterozygous for endothelial nitric oxide synthase were used as a model of DKD. Mice (4 mo old) were divided into four treatment groups and administered vehicle, PAR1 antagonist (E5555, 60 mg·kg-1·day-1), PAR2 antagonist (FSLLRY, 3 mg·kg-1·day-1), or E5555 + FSLLRY for 4 wk. The results showed that the urinary albumin creatinine ratio was significantly reduced when both PAR1 and PAR2 were blocked with E5555 + FSLLRY compared with the vehicle-treated group. Dual blockade of PAR1 and PAR2 by E5555 + FSLLRY additively ameliorated histological injury, including mesangial expansion, glomerular macrophage infiltration, and collagen type IV deposition. Marked reduction of inflammation- and fibrosis-related gene expression in the kidney was also observed. In vitro, PAR1 and PAR2 agonists additively increased mRNA expression of macrophage chemoattractant protein 1 or plasminogen activator inhibitor-1 in human endothelial cells. Changes induced by the PAR1 agonist were blocked by a NF-κB inhibitor, whereas those of the PAR2 agonist were blocked by MAPK and/or NF-κB inhibitors. These findings suggest that PAR1 and PAR2 additively contribute to DKD pathogenesis and that dual blockade of both could be a novel therapeutic option for treatment of patients with DKD.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Iminas/farmacologia , Rim/efeitos dos fármacos , Oligopeptídeos/farmacologia , Piridinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-2/antagonistas & inibidores , Albuminúria/genética , Albuminúria/metabolismo , Albuminúria/prevenção & controle , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais
20.
Breast Cancer Res Treat ; 180(2): 379-384, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32034579

RESUMO

PURPOSE: Protease-activated receptor 1 (PAR1) is a signaling protein ubiquitously present on the surface of tumor cells, and its homologous protein fragment, PAR1-activating peptide (P1AP), can inhibit protein signal transduction of PAR1/G in tumor cells. pH (Low) insertion peptide (pHLIP) can target the acidic tumor microenvironment (TME) and can be used as an excellent carrier to deliver P1AP to tumor cells for therapeutic purposes. METHODS: PAR1 expression on the surface of MDA-MB-231 cells and human MCF10A mammary epithelial cells was observed. The binding between fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells under different pH values was analyzed. The effect of pHLIP(Var7)-P1AP on the proliferation of MDA-MB-231 cells was analyzed under the conditions of pH 7.4 and 6.0. RESULTS: PAR1 was highly expressed on the surface of MDA-MB-231 cells. In an acidic environment (pH 6.0 and 5.0), fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells had a high binding ability, and the binding ability increased with the decrease in pH. In an acidic environment (pH 6.0), pHLIP(Var7)-P1AP significantly inhibited MDA-MB-231 cell proliferation. With 0.5 µg, 1 µg, 2 µg, 4 µg, and 8 µg of pHLIP(Var7)-P1AP, the cell proliferation inhibition rates were 3.39%, 5.27%, 14.29%, 22.14%, and 35.69%, respectively. CONCLUSION: PAR1 was highly expressed on the surface of MDA-MB-231 cells. pHLIP(Var7)-P1AP can effectively target MDA-MB-231 cells in an acidic environment and inhibit the growth of MDA-MB-231 cells by inhibiting the signal transduction of PAR1/G protein.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas de Membrana/farmacologia , Oligopeptídeos/farmacologia , Receptor PAR-1/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Concentração de Íons de Hidrogênio , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...