Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.903
Filtrar
1.
PLoS One ; 19(5): e0292628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748746

RESUMO

Hepatic ischemia-reperfusion injury causes liver damage during surgery. In hepatic ischemia-reperfusion injury, the blood coagulation cascade is activated, causing microcirculatory incompetence and cellular injury. Coagulation factor Xa (FXa)- protease-activated receptor (PAR)-2 signaling activates inflammatory reactions and the cytoprotective effect of FXa inhibitor in several organs. However, no studies have elucidated the significance of FXa inhibition on hepatic ischemia-reperfusion injury. The present study elucidated the treatment effect of an FXa inhibitor, edoxaban, on hepatic ischemia-reperfusion injury, focusing on FXa-PAR-2 signaling. A 60 min hepatic partial-warm ischemia-reperfusion injury mouse model and a hypoxia-reoxygenation model of hepatic sinusoidal endothelial cells were used. Ischemia-reperfusion injury mice and hepatic sinusoidal endothelial cells were treated and pretreated, respectively with or without edoxaban. They were incubated during hypoxia/reoxygenation in vitro. Cell signaling was evaluated using the PAR-2 knockdown model. In ischemia-reperfusion injury mice, edoxaban treatment significantly attenuated fibrin deposition in the sinusoids and liver histological damage and resulted in both anti-inflammatory and antiapoptotic effects. Hepatic ischemia-reperfusion injury upregulated PAR-2 generation and enhanced extracellular signal-regulated kinase 1/2 (ERK 1/2) activation; however, edoxaban treatment reduced PAR-2 generation and suppressed ERK 1/2 activation in vivo. In the hypoxia/reoxygenation model of sinusoidal endothelial cells, hypoxia/reoxygenation stress increased FXa generation and induced cytotoxic effects. Edoxaban protected sinusoidal endothelial cells from hypoxia/reoxygenation stress and reduced ERK 1/2 activation. PAR-2 knockdown in the sinusoidal endothelial cells ameliorated hypoxia/reoxygenation stress-induced cytotoxicity and suppressed ERK 1/2 phosphorylation. Thus, edoxaban ameliorated hepatic ischemia-reperfusion injury in mice by protecting against micro-thrombosis in sinusoids and suppressing FXa-PAR-2-induced inflammation in the sinusoidal endothelial cells.


Assuntos
Inibidores do Fator Xa , Fígado , Sistema de Sinalização das MAP Quinases , Piridinas , Receptor PAR-2 , Traumatismo por Reperfusão , Tiazóis , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Inibidores do Fator Xa/farmacologia , Receptor PAR-2/metabolismo , Piridinas/farmacologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/irrigação sanguínea , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
2.
PLoS One ; 19(4): e0283915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635782

RESUMO

Anaphylaxis is a severe life-threatening hypersensitivity reaction induced by mast cell degranulation. Among the various mediators of mast cells, little is known about the role of tryptase. Therefore, we aimed to elucidate the role of protease-activating receptor-2 (PAR-2), a receptor activated by tryptase, in murine anaphylactic models using PAR-2-deficient mice and newly generated tryptase-deficient mice. Anaphylaxis was induced by IgE-dependent and IgE-independent mast cell degranulation in mice. PAR-2 deficiency exacerbated the decrease in body temperature and hypotension during anaphylaxis; however, the number of skin mast cells, degree of mast cell degranulation, and systemic and local vascular hyperpermeability were comparable in PAR-2 knockout and wild-type mice. Nitric oxide, which is produced by endothelial nitric oxide synthase (eNOS), is an indispensable vasodilator in anaphylaxis. In the lungs of anaphylactic mice, PAR-2 deficiency promoted eNOS expression and phosphorylation, suggesting a protective effect of PAR-2 against anaphylaxis by downregulating eNOS activation and expression. Based on the hypothesis that the ligand for PAR-2 in anaphylaxis is mast cell tryptase, tryptase-deficient mice were generated using CRISPR-Cas9. In wild-type mice, the PAR-2 antagonist exacerbated the body temperature drop due to anaphylaxis; however, the effect of the PAR-2 antagonist was abolished in tryptase-deficient mice. These results suggest that tryptase is a possible ligand of PAR-2 in anaphylaxis and that the tryptase/PAR-2 pathway attenuates the anaphylactic response in mice.


Assuntos
Anafilaxia , Animais , Camundongos , Anafilaxia/metabolismo , Imunoglobulina E/metabolismo , Ligantes , Mastócitos/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Triptases/genética , Triptases/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G525-G542, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440826

RESUMO

The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.


Assuntos
Neoplasias do Colo , Receptor PAR-2 , Humanos , Linhagem Celular , Movimento Celular , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Receptor PAR-2/metabolismo
4.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526868

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Camundongos , Humanos , Receptor 4 Toll-Like/genética , Receptor PAR-2/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Antivirais/farmacologia , Inibidores de Serina Proteinase/farmacologia , Inflamação , Serina , Serina Endopeptidases/genética
5.
Mol Metab ; 81: 101889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307387

RESUMO

OBJECTIVE: The serine protease inhibitor SerpinB3 has been described as critical mediator of liver fibrosis and it has been recently proposed as an additional hepatokine involved in NASH development and insulin resistance. Protease Activated Receptor 2 has been identified as a novel regulator of hepatic metabolism. A targeted therapeutic strategy for NASH has been investigated, using 1-Piperidine Propionic Acid (1-PPA), since this compound has been recently proposed as both Protease Activated Receptor 2 and SerpinB3 inhibitor. METHODS: The effect of SerpinB3 on inflammation and fibrosis genes was assessed in human macrophage and stellate cell lines. Transgenic mice, either overexpressing SerpinB3 or carrying Serpinb3 deletion and their relative wild type strains, were used in experimental NASH models. Subgroups of SerpinB3 transgenic mice and their controls were also injected with 1-PPA to assess the efficacy of this compound in NASH inhibition. RESULTS: 1-PPA did not present significant cell and organ toxicity and was able to inhibit SerpinB3 and PAR2 in a dose-dependent manner. This effect was associated to a parallel reduction of the synthesis of the molecules induced by endogenous SerpinB3 or by its paracrine effects both in vitro and in vivo, leading to inhibition of lipid accumulation, inflammation and fibrosis in experimental NASH. At mechanistic level, the antiprotease activity of SerpinB3 was found essential for PAR2 activation, determining upregulation of the CCAAT Enhancer Binding Protein beta (C/EBP-ß), another pivotal regulator of metabolism, inflammation and fibrosis, which in turn determined SerpinB3 synthesis. CONCLUSIONS: 1-PPA treatment was able to inhibit the PAR2 - C/EBP-ß - SerpinB3 axis and to protect from NASH development and progression, supporting the potential use of a similar approach for a targeted therapy of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor PAR-2 , Proteína beta Intensificadora de Ligação a CCAAT , Cirrose Hepática/tratamento farmacológico , Camundongos Transgênicos , Inflamação
6.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385286

RESUMO

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Assuntos
Insuficiência de Múltiplos Órgãos , Tromboplastina , Animais , Camundongos , Tromboplastina/metabolismo , beta-Arrestinas/metabolismo , Receptor PAR-2/genética , Fator VIIa/metabolismo , Endopeptidases/metabolismo
8.
PLoS Negl Trop Dis ; 18(1): e0011874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166153

RESUMO

BACKGROUND: Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING: TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS: TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.


Assuntos
Receptor PAR-2 , Trichinella spiralis , Triquinelose , Animais , Humanos , Camundongos , Células CACO-2 , Epitélio/metabolismo , Proteínas de Helminto/metabolismo , Larva/fisiologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Proteínas Quinases , Trichinella spiralis/metabolismo , Trichinella spiralis/patogenicidade , Triquinelose/genética , Triquinelose/metabolismo , Tripsina/metabolismo , Receptor PAR-2/metabolismo
9.
Cancer Chemother Pharmacol ; 93(5): 397-410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38172304

RESUMO

OBJECTIVES: This study aimed to study the effect of protease-activated receptor 2 (PAR2) on the proliferation, invasion, and clone formation of lung cancer cells. It also aimed to evaluate the inhibitory effect of melittin on PAR2 and the anti-lung cancer effect of melittin combined with gefitinib. METHODS: The correlation between the co-expression of PAR2 and epithelial-mesenchymal transition (EMT) markers was analyzed. PAR2 in A549 and NCI-H1299 cells was knocked down using siRNA. MTT assay, Transwell assay, and colony formation assay were used to detect the effects of PAR2 on cell proliferation, invasion, and clone formation. The anti-cancer effect of PAR2 knockdown on gefitinib treatment was analyzed. The synergistic effect of melittin on gefitinib treatment by inhibiting PAR2 and the underlying molecular mechanism were further analyzed and tested. RESULTS: The expression of PAR2 was upregulated in lung cancer, which was associated with the poor prognosis of lung cancer. PAR2 knockdown inhibited the stemness and EMT of lung cancer cells. It also inhibited the proliferation, invasion, and colony formation of A549 and NCI-H1299 cells. Moreover, PAR2 knockdown increased the chemotherapeutic sensitivity of gefitinib in lung cancer. Melittin inhibited PAR2 and the malignant progression of lung cancer cells. Melittin increased the chemotherapeutic sensitivity of gefitinib in lung cancer by inhibiting PAR2. CONCLUSION: PAR2 may promote the proliferation, invasion, and colony formation of lung cancer cells by promoting EMT. Patients with a high expression of PAR2 have a poor prognosis. Inhibition of PAR2 increased the chemotherapeutic sensitivity of gefitinib. PAR2 may be a potential therapeutic target and diagnostic marker for lung cancer.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Gefitinibe , Neoplasias Pulmonares , Meliteno , Receptor PAR-2 , Humanos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Gefitinibe/farmacologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Meliteno/farmacologia , Linhagem Celular Tumoral , Células A549 , Progressão da Doença , Antineoplásicos/farmacologia , Técnicas de Silenciamento de Genes , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
10.
Blood ; 143(10): 845-857, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38096370

RESUMO

ABSTRACT: Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMß2-dependent migration on fibrinogen but not for integrin ß1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in ß-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-ß-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.


Assuntos
Fator VIIa , Monócitos , Animais , Camundongos , Fator VIIa/metabolismo , Monócitos/metabolismo , Tromboplastina/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrinogênio/metabolismo , beta-Arrestinas/metabolismo
11.
J Pharmacol Exp Ther ; 388(1): 12-22, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37699708

RESUMO

Proteinase-activated receptor-2 (PAR2), which modulates inflammatory responses, is elevated in the central nervous system in multiple sclerosis (MS) and in its murine model, experimental autoimmune encephalomyelitis (EAE). In PAR2-null mice, disease severity of EAE is markedly diminished. We therefore tested whether inhibiting PAR2 activation in vivo might be a viable strategy for the treatment of MS. Using the EAE model, we show that a PAR2 antagonist, the pepducin palmitoyl-RSSAMDENSEKKRKSAIK-amide (P2pal-18S), attenuates EAE progression by affecting immune cell function. P2pal-18S treatment markedly diminishes disease severity and reduces demyelination, as well as the infiltration of T-cells and macrophages into the central nervous system. Moreover, P2pal-18S decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) production and T-cell activation in cultured splenocytes and prevents macrophage polarization in vitro. We conclude that PAR2 plays a key role in regulating neuroinflammation in EAE and that PAR2 antagonists represent promising therapeutic agents for treating MS and other neuroinflammatory diseases. SIGNIFICANCE STATEMENT: Proteinase-activated receptor-2 modulates inflammatory responses and is increased in multiple sclerosis lesions. We show that the proteinase-activated receptor-2 antagonist palmitoyl-RSSAMDENSEKKRKSAIK-amide reduces disease in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis by inhibiting T-cell and macrophage activation and infiltration into the central nervous system, making it a potential treatment for multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Doenças Neuroinflamatórias , Receptor PAR-2 , Esclerose Múltipla/tratamento farmacológico , Camundongos Knockout , Amidas/uso terapêutico , Camundongos Endogâmicos C57BL
12.
J Ethnopharmacol ; 321: 117485, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008276

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guomin decoction (GMD) is a traditional Chinese medicine commonly used in clinical practice. It has traditionally been used to treat all allergic diseases. Currently, Jiawei Guomin Decoction (JWGMD) is used to treat sensitive skin after initial therapy. Although it has a significant clinical therapeutic effect, the exact role of mast cell degranulation in treating atopic dermatitis (AD) is still unclear. AIM OF THE STUDY: GMD and JWGMD can both treat allergic diseases, while JWGMD focuses on skin allergies. This study aims to explore the potential effect of JWGMD on the degranulation of mast cells in an AD mouse model induced by 2,4-dinitrofluorobenzene (DNFB) and investigate the effectiveness of JWGMD in alleviating disease progression to further provide specific therapeutic targets for treating AD. MATERIALS AND METHODS: The scratching times and skin lesions of model mice induced by DNFB were observed, and skin tissues were collected for subsequent measurement. Histopathological changes in the back skin of mice were observed by haematoxylin eosin (H&E) staining, Toluidine blue staining was used to detect the degranulation of mouse skin mast cells, and the relationship between the expression of histamine (HIS), mast cell tryptase (MCT) and mast cell degranulation was analysed by enzyme-linked immunosorbent assay (ELISA). The expression of protease-activated receptor-2 (PAR-2), histamine 1 receptor (H1R), H2R, H4R and MCT proteins in AD mice was detected by Western blot (WB). Immunofluorescence assay (IFA) further confirmed the localization of PAR-2, H1R, H2R, H4R, and MCT proteins in the skin. Quantitative real-time PCR (qPCR) was used to determine PAR-2, H1R, H2R and H4R mRNA levels in skin lesions to further clarify the mechanism by which JWGMD amplifies mast cell degranulation in AD. In addition, a reliable ultrahigh-performance liquid chromatography-quadrupole electrostatic field orbitrap mass spectrometry (UPLC-QE-MS) nontargeted metabolomics analysis was performed to analyse the differences in metabolite abundance between GMD and JWGMD, and these results were used to identify the active components in JWGMD that may have antipruritic and anti-inflammatory properties and inhibit mast cell degranulation. RESULTS: After intermittent stimulation with DNFB, the skin lesions showed extensive desquamation, dryness, scabbing, skin thickening, and slight bleeding. Both treatments alleviated this phenomenon and reduced the number of scratches, with JWGMD being the most effective. JWGMD can significantly reduce inflammatory cell infiltration, oedema, and some capillary neogenesis in mice and reduce the degranulation of mast cells. The ELISA results showed that JWGMD can increase the levels of MCT and HIS proteins. The WB and IFA results demonstrated that JWGMD reduced the expression levels of PAR-2, H1R, H4R, and MCT proteins in skin lesions, with protein localization mainly in the epidermal layer, while H2R protein levels were increased and mainly localized in the dermis. In addition, JWGMD downregulates the mRNA expression of PAR-2, H1R, H2R, and H4R. Interestingly, through UPLC-QE-MS nontargeted metabolomic analysis, we detected the anti-inflammatory and antiallergy active substances in JWGMD, such as methyl eugenol, dictamnine and sinapine. CONCLUSIONS: JWGMD may alleviate itching through methyl syringol, dictamnine, sinapine and other substances, and its mechanism may be related to inhibiting the HIS/PAR-2 pathway in AD model mice and further regulating the self-amplification of mast cell degranulation. JWGMD is a potential drug for treating AD. Therefore, it deserves continuous attention and research.


Assuntos
Dermatite Atópica , Histamina , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Receptor PAR-2/metabolismo , Receptor PAR-2/uso terapêutico , Mastócitos/metabolismo , Dinitrofluorbenzeno , Transportadores de Ácidos Monocarboxílicos/efeitos adversos , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro
13.
Inflamm Res ; 73(1): 117-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117300

RESUMO

BACKGROUND: Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE: In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS: To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION: Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.


Assuntos
COVID-19 , Trombose , Humanos , Receptor PAR-2 , SARS-CoV-2 , Células Endoteliais
14.
Anticancer Res ; 44(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159988

RESUMO

Proteinase-activated receptors (PARs) were discovered more than 25 years ago and since then, their role in cancer has been under investigation. Research has primarily focused on the receptors located on the membrane of cancer cells and their impact on metabolism, intracellular signalling, and proliferation. Regarding the host response to cancer, studies have predominantly examined the relationship of thrombin receptors (PAR-1, PAR-3, and PAR-4) with blood clotting in distant metastatic spread. However, limited studies have examined the role of PARs, especially PAR-2, in the host anti-tumor immunity. This review article provides insights into the role of PAR-2 on cancer cells and immune competent cells involved in cancer development and progression. It also discussed the current knowledge of the importance of PAR-2 activation at various stages of cancer progression and its association with cancer-related pain.


Assuntos
Neoplasias , Receptor PAR-2 , Humanos , Receptor PAR-2/metabolismo , Neoplasias/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais/fisiologia
15.
Cancer Lett ; 580: 216483, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972702

RESUMO

Cellular plasticity and immune escape are synergistic drivers of tumor colonization in metastatic organs. Activation of protease-activated receptor 2 (PAR2) signaling promotes metastasis of colorectal carcinoma (CRC). The role of PAR2 in regulating the immune microenvironment and cancer progression remains unclear. We demonstrated that the regulation of liver metastasis by PAR2 requires a competent immune system. PAR2 knockdown enhanced liver infiltration of activated CD8+ T cells prior to metastatic foci formation in an interferon receptor-dependent manner. PAR2 depletion increased interferon (IFN)-ß production via the cGAS-STING and RIG-1 pathways. PAR2 inhibition increased mitochondrial permeability and cytosolic accumulation of mitochondrial DNA, which was reversed by Bcl-xL expression. Strikingly, shRNA against PAR2 with an immune checkpoint blocker (ICB) acted synergistically to suppress liver metastasis. Analysis of single-cell sequence data and 24 paired samples confirmed the regulatory effect of PAR2 on the metastatic immune environment in human CRC. Therefore, PAR2 signaling is involved in stabilizing the mitochondrial membrane and regulating the immune microenvironment through IFN-ß during liver metastasis in CRC. The synergistic effect of the PAR2 inhibitor and ICB provides a potential therapeutic strategy for metastatic CRC treatment.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/patologia , Interferon beta , Neoplasias Hepáticas/genética , Poro de Transição de Permeabilidade Mitocondrial , Receptor PAR-2/genética , Microambiente Tumoral/genética
16.
Sci Rep ; 13(1): 21637, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062077

RESUMO

Although it is well established that platelet-activated receptor (PAF) and protease-activated receptor 2 (PAR2) play a pivotal role in the pathophysiology of lung and airway inflammatory diseases, a role for a PAR2-PAFR cooperation in lung inflammation has not been investigated. Here, we investigated the role of PAR2 in PAF-induced lung inflammation and neutrophil recruitment in lungs of BALB/c mice. Mice were pretreated with the PAR2 antagonist ENMD1068, PAF receptor (PAFR) antagonist WEB2086, or aprotinin prior to intranasal instillation of carbamyl-PAF (C-PAF) or the PAR2 agonist peptide SLIGRL-NH2 (PAR2-AP). Leukocyte infiltration in bronchoalveolar lavage fluid (BALF), C-X-C motif ligand 1 (CXCL)1 and CXCL2 chemokines, myeloperoxidase (MPO), and N-acetyl-glycosaminidase (NAG) levels in BALF, or lung inflammation were evaluated. Intracellular calcium signaling, PAFR/PAR2 physical interaction, and the expression of PAR2 and nuclear factor-kappa B (NF-КB, p65) transcription factor were investigated in RAW 264.7 cells stimulated with C-PAF in the presence or absence of ENMD1068. C-PAF- or PAR2-AP-induced neutrophil recruitment into lungs was inhibited in mice pretreated with ENMD1068 and aprotinin or WEB2086, respectively. PAR2 blockade impaired C-PAF-induced neutrophil rolling and adhesion, lung inflammation, and production of MPO, NAG, CXCL1, and CXCL2 production in lungs of mice. PAFR activation reduced PAR2 expression and physical interaction of PAR2 and PAFR; co-activation is required for PAFR/PAR2 physical interaction. PAR2 blockade impaired C-PAF-induced calcium signal and NF-κB p65 translocation in RAW 264.7 murine macrophages. This study provides the first evidence for a cooperation between PAFR and PAR2 mediating neutrophil recruitment, lung inflammation, and macrophage activation.


Assuntos
NF-kappa B , Pneumonia , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Aprotinina/metabolismo , Infiltração de Neutrófilos , Ativação Transcricional , Pneumonia/induzido quimicamente
17.
Cells ; 12(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132169

RESUMO

Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.


Assuntos
Fibrilação Atrial , Fator Xa , Animais , Camundongos , Fator Xa/metabolismo , NF-kappa B/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais
18.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139455

RESUMO

Patients with chronic pain are affected psychologically and socially. There are also individual differences in treatment efficacy. Insufficient research has been conducted on genetic polymorphisms that are related to individual differences in the susceptibility to chronic pain. Autoimmune disorders can lead to inflammation and chronic pain; therefore, we focused on the autoimmune-related protease-activated receptor 2 (PAR2/F2RL1) and interleukin 17A (IL-17A/IL17A) genes. PAR2 and IL-17A are associated with autoimmune diseases that lead to chronic pain, and PAR2 regulates T-helper (Th) cell activation and differentiation. We hypothesized that the PAR2 and IL-17A genes are associated with chronic pain. The present study used a case-control design to statistically examine associations between genetic polymorphisms and the vulnerability to chronic pain. The rs2243057 polymorphism of the PAR2 gene and rs3819025 polymorphism of the IL-17A gene were previously reported to be associated with pain- or autoimmune-related phenotypes. Thus, these polymorphisms were investigated in the present study. We found that both rs2243057 and rs3819025 were significantly associated with a susceptibility to chronic pain. The present findings revealed autoimmune-related genetic factors that are involved in individual differences in chronic pain, further aiding understanding of the pathomechanism that underlies chronic pain and possibly contributing to future personalized medicine.


Assuntos
Doenças Autoimunes , Dor Crônica , Interleucina-17 , Receptor PAR-2 , Humanos , Estudos de Casos e Controles , Dor Crônica/genética , Predisposição Genética para Doença , Interleucina-17/genética , Polimorfismo de Nucleotídeo Único , Receptor PAR-2/genética
19.
J Vasc Res ; 60(4): 213-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778342

RESUMO

INTRODUCTION: Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases. METHODS: Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 µm) with/without PKA (PKI; 10 µm), MEK1/2 (PD98059; 10 µm), and PI3K (LY294002; 1 µm) blockade. RESULTS: PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2. DISCUSSION: Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Receptor PAR-2 , Ratos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , MAP Quinase Quinase 1/metabolismo , Músculo Liso Vascular/metabolismo , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , DNA/metabolismo , Células Cultivadas
20.
J Oral Biosci ; 65(4): 356-364, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838226

RESUMO

OBJECTIVE: This study aimed to clarify the interactions between the tongue and primary afferent fibers in tongue cancer pain. METHODS: A pharmacological analysis was conducted to evaluate mechanical hypersensitivity of the tongues of rats with squamous cell carcinoma (SCC). Changes in trigeminal ganglion (TG) neurons projecting to the tongue were analyzed using immunohistochemistry and western blotting. RESULTS: SCC inoculation of the tongue caused persistent mechanical sensitization and tumor formation. Trypsin expression was significantly upregulated in cancer lesions. Continuous trypsin inhibition or protease-activated receptor 2 (PAR2) antagonism in the tongue significantly inhibited SCC-induced mechanical sensitization. No changes were observed in PAR2 and transient receptor potential vanilloid 4 (TRPV4) levels in the TG or the number of PAR2-and TRPV4-expressing TG neurons after SCC inoculation. In contrast, the relative amount of phosphorylated TRPV4 in the TG was significantly increased after SCC inoculation and abrogated by PAR2 antagonism in the tongue. TRPV4 antagonism in the tongue significantly ameliorated the mechanical sensitization caused by SCC inoculation. CONCLUSIONS: Our findings indicate that tumor-derived trypsin sensitizes primary afferent fibers by PAR2 stimulation and subsequent TRPV4 phosphorylation, resulting in severe tongue pain.


Assuntos
Dor do Câncer , Carcinoma de Células Escamosas , Glossalgia , Neoplasias da Língua , Animais , Ratos , Dor do Câncer/metabolismo , Glossalgia/metabolismo , Dor/metabolismo , Fosforilação , Receptor PAR-2/metabolismo , Língua/metabolismo , Neoplasias da Língua/metabolismo , Nervo Trigêmeo/metabolismo , Canais de Cátion TRPV/metabolismo , Tripsina/metabolismo , Tripsina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...