Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
1.
PLoS One ; 19(4): e0283915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635782

RESUMO

Anaphylaxis is a severe life-threatening hypersensitivity reaction induced by mast cell degranulation. Among the various mediators of mast cells, little is known about the role of tryptase. Therefore, we aimed to elucidate the role of protease-activating receptor-2 (PAR-2), a receptor activated by tryptase, in murine anaphylactic models using PAR-2-deficient mice and newly generated tryptase-deficient mice. Anaphylaxis was induced by IgE-dependent and IgE-independent mast cell degranulation in mice. PAR-2 deficiency exacerbated the decrease in body temperature and hypotension during anaphylaxis; however, the number of skin mast cells, degree of mast cell degranulation, and systemic and local vascular hyperpermeability were comparable in PAR-2 knockout and wild-type mice. Nitric oxide, which is produced by endothelial nitric oxide synthase (eNOS), is an indispensable vasodilator in anaphylaxis. In the lungs of anaphylactic mice, PAR-2 deficiency promoted eNOS expression and phosphorylation, suggesting a protective effect of PAR-2 against anaphylaxis by downregulating eNOS activation and expression. Based on the hypothesis that the ligand for PAR-2 in anaphylaxis is mast cell tryptase, tryptase-deficient mice were generated using CRISPR-Cas9. In wild-type mice, the PAR-2 antagonist exacerbated the body temperature drop due to anaphylaxis; however, the effect of the PAR-2 antagonist was abolished in tryptase-deficient mice. These results suggest that tryptase is a possible ligand of PAR-2 in anaphylaxis and that the tryptase/PAR-2 pathway attenuates the anaphylactic response in mice.


Assuntos
Anafilaxia , Animais , Camundongos , Anafilaxia/metabolismo , Imunoglobulina E/metabolismo , Ligantes , Mastócitos/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Triptases/genética , Triptases/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G525-G542, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440826

RESUMO

The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.


Assuntos
Neoplasias do Colo , Receptor PAR-2 , Humanos , Linhagem Celular , Movimento Celular , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Receptor PAR-2/metabolismo
3.
Cancer Chemother Pharmacol ; 93(5): 397-410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38172304

RESUMO

OBJECTIVES: This study aimed to study the effect of protease-activated receptor 2 (PAR2) on the proliferation, invasion, and clone formation of lung cancer cells. It also aimed to evaluate the inhibitory effect of melittin on PAR2 and the anti-lung cancer effect of melittin combined with gefitinib. METHODS: The correlation between the co-expression of PAR2 and epithelial-mesenchymal transition (EMT) markers was analyzed. PAR2 in A549 and NCI-H1299 cells was knocked down using siRNA. MTT assay, Transwell assay, and colony formation assay were used to detect the effects of PAR2 on cell proliferation, invasion, and clone formation. The anti-cancer effect of PAR2 knockdown on gefitinib treatment was analyzed. The synergistic effect of melittin on gefitinib treatment by inhibiting PAR2 and the underlying molecular mechanism were further analyzed and tested. RESULTS: The expression of PAR2 was upregulated in lung cancer, which was associated with the poor prognosis of lung cancer. PAR2 knockdown inhibited the stemness and EMT of lung cancer cells. It also inhibited the proliferation, invasion, and colony formation of A549 and NCI-H1299 cells. Moreover, PAR2 knockdown increased the chemotherapeutic sensitivity of gefitinib in lung cancer. Melittin inhibited PAR2 and the malignant progression of lung cancer cells. Melittin increased the chemotherapeutic sensitivity of gefitinib in lung cancer by inhibiting PAR2. CONCLUSION: PAR2 may promote the proliferation, invasion, and colony formation of lung cancer cells by promoting EMT. Patients with a high expression of PAR2 have a poor prognosis. Inhibition of PAR2 increased the chemotherapeutic sensitivity of gefitinib. PAR2 may be a potential therapeutic target and diagnostic marker for lung cancer.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Gefitinibe , Neoplasias Pulmonares , Meliteno , Receptor PAR-2 , Humanos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Gefitinibe/farmacologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Meliteno/farmacologia , Linhagem Celular Tumoral , Células A549 , Progressão da Doença , Antineoplásicos/farmacologia , Técnicas de Silenciamento de Genes , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
4.
PLoS Negl Trop Dis ; 18(1): e0011874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166153

RESUMO

BACKGROUND: Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING: TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS: TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.


Assuntos
Receptor PAR-2 , Trichinella spiralis , Triquinelose , Animais , Humanos , Camundongos , Células CACO-2 , Epitélio/metabolismo , Proteínas de Helminto/metabolismo , Larva/fisiologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Proteínas Quinases , Trichinella spiralis/metabolismo , Trichinella spiralis/patogenicidade , Triquinelose/genética , Triquinelose/metabolismo , Tripsina/metabolismo , Receptor PAR-2/metabolismo
5.
Blood ; 143(10): 845-857, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38096370

RESUMO

ABSTRACT: Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMß2-dependent migration on fibrinogen but not for integrin ß1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in ß-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-ß-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.


Assuntos
Fator VIIa , Monócitos , Animais , Camundongos , Fator VIIa/metabolismo , Monócitos/metabolismo , Tromboplastina/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrinogênio/metabolismo , beta-Arrestinas/metabolismo
6.
J Ethnopharmacol ; 321: 117485, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008276

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guomin decoction (GMD) is a traditional Chinese medicine commonly used in clinical practice. It has traditionally been used to treat all allergic diseases. Currently, Jiawei Guomin Decoction (JWGMD) is used to treat sensitive skin after initial therapy. Although it has a significant clinical therapeutic effect, the exact role of mast cell degranulation in treating atopic dermatitis (AD) is still unclear. AIM OF THE STUDY: GMD and JWGMD can both treat allergic diseases, while JWGMD focuses on skin allergies. This study aims to explore the potential effect of JWGMD on the degranulation of mast cells in an AD mouse model induced by 2,4-dinitrofluorobenzene (DNFB) and investigate the effectiveness of JWGMD in alleviating disease progression to further provide specific therapeutic targets for treating AD. MATERIALS AND METHODS: The scratching times and skin lesions of model mice induced by DNFB were observed, and skin tissues were collected for subsequent measurement. Histopathological changes in the back skin of mice were observed by haematoxylin eosin (H&E) staining, Toluidine blue staining was used to detect the degranulation of mouse skin mast cells, and the relationship between the expression of histamine (HIS), mast cell tryptase (MCT) and mast cell degranulation was analysed by enzyme-linked immunosorbent assay (ELISA). The expression of protease-activated receptor-2 (PAR-2), histamine 1 receptor (H1R), H2R, H4R and MCT proteins in AD mice was detected by Western blot (WB). Immunofluorescence assay (IFA) further confirmed the localization of PAR-2, H1R, H2R, H4R, and MCT proteins in the skin. Quantitative real-time PCR (qPCR) was used to determine PAR-2, H1R, H2R and H4R mRNA levels in skin lesions to further clarify the mechanism by which JWGMD amplifies mast cell degranulation in AD. In addition, a reliable ultrahigh-performance liquid chromatography-quadrupole electrostatic field orbitrap mass spectrometry (UPLC-QE-MS) nontargeted metabolomics analysis was performed to analyse the differences in metabolite abundance between GMD and JWGMD, and these results were used to identify the active components in JWGMD that may have antipruritic and anti-inflammatory properties and inhibit mast cell degranulation. RESULTS: After intermittent stimulation with DNFB, the skin lesions showed extensive desquamation, dryness, scabbing, skin thickening, and slight bleeding. Both treatments alleviated this phenomenon and reduced the number of scratches, with JWGMD being the most effective. JWGMD can significantly reduce inflammatory cell infiltration, oedema, and some capillary neogenesis in mice and reduce the degranulation of mast cells. The ELISA results showed that JWGMD can increase the levels of MCT and HIS proteins. The WB and IFA results demonstrated that JWGMD reduced the expression levels of PAR-2, H1R, H4R, and MCT proteins in skin lesions, with protein localization mainly in the epidermal layer, while H2R protein levels were increased and mainly localized in the dermis. In addition, JWGMD downregulates the mRNA expression of PAR-2, H1R, H2R, and H4R. Interestingly, through UPLC-QE-MS nontargeted metabolomic analysis, we detected the anti-inflammatory and antiallergy active substances in JWGMD, such as methyl eugenol, dictamnine and sinapine. CONCLUSIONS: JWGMD may alleviate itching through methyl syringol, dictamnine, sinapine and other substances, and its mechanism may be related to inhibiting the HIS/PAR-2 pathway in AD model mice and further regulating the self-amplification of mast cell degranulation. JWGMD is a potential drug for treating AD. Therefore, it deserves continuous attention and research.


Assuntos
Dermatite Atópica , Histamina , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Receptor PAR-2/metabolismo , Receptor PAR-2/uso terapêutico , Mastócitos/metabolismo , Dinitrofluorbenzeno , Transportadores de Ácidos Monocarboxílicos/efeitos adversos , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro
7.
Anticancer Res ; 44(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159988

RESUMO

Proteinase-activated receptors (PARs) were discovered more than 25 years ago and since then, their role in cancer has been under investigation. Research has primarily focused on the receptors located on the membrane of cancer cells and their impact on metabolism, intracellular signalling, and proliferation. Regarding the host response to cancer, studies have predominantly examined the relationship of thrombin receptors (PAR-1, PAR-3, and PAR-4) with blood clotting in distant metastatic spread. However, limited studies have examined the role of PARs, especially PAR-2, in the host anti-tumor immunity. This review article provides insights into the role of PAR-2 on cancer cells and immune competent cells involved in cancer development and progression. It also discussed the current knowledge of the importance of PAR-2 activation at various stages of cancer progression and its association with cancer-related pain.


Assuntos
Neoplasias , Receptor PAR-2 , Humanos , Receptor PAR-2/metabolismo , Neoplasias/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais/fisiologia
8.
Sci Rep ; 13(1): 21637, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062077

RESUMO

Although it is well established that platelet-activated receptor (PAF) and protease-activated receptor 2 (PAR2) play a pivotal role in the pathophysiology of lung and airway inflammatory diseases, a role for a PAR2-PAFR cooperation in lung inflammation has not been investigated. Here, we investigated the role of PAR2 in PAF-induced lung inflammation and neutrophil recruitment in lungs of BALB/c mice. Mice were pretreated with the PAR2 antagonist ENMD1068, PAF receptor (PAFR) antagonist WEB2086, or aprotinin prior to intranasal instillation of carbamyl-PAF (C-PAF) or the PAR2 agonist peptide SLIGRL-NH2 (PAR2-AP). Leukocyte infiltration in bronchoalveolar lavage fluid (BALF), C-X-C motif ligand 1 (CXCL)1 and CXCL2 chemokines, myeloperoxidase (MPO), and N-acetyl-glycosaminidase (NAG) levels in BALF, or lung inflammation were evaluated. Intracellular calcium signaling, PAFR/PAR2 physical interaction, and the expression of PAR2 and nuclear factor-kappa B (NF-КB, p65) transcription factor were investigated in RAW 264.7 cells stimulated with C-PAF in the presence or absence of ENMD1068. C-PAF- or PAR2-AP-induced neutrophil recruitment into lungs was inhibited in mice pretreated with ENMD1068 and aprotinin or WEB2086, respectively. PAR2 blockade impaired C-PAF-induced neutrophil rolling and adhesion, lung inflammation, and production of MPO, NAG, CXCL1, and CXCL2 production in lungs of mice. PAFR activation reduced PAR2 expression and physical interaction of PAR2 and PAFR; co-activation is required for PAFR/PAR2 physical interaction. PAR2 blockade impaired C-PAF-induced calcium signal and NF-κB p65 translocation in RAW 264.7 murine macrophages. This study provides the first evidence for a cooperation between PAFR and PAR2 mediating neutrophil recruitment, lung inflammation, and macrophage activation.


Assuntos
NF-kappa B , Pneumonia , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Aprotinina/metabolismo , Infiltração de Neutrófilos , Ativação Transcricional , Pneumonia/induzido quimicamente
9.
Cells ; 12(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132169

RESUMO

Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.


Assuntos
Fibrilação Atrial , Fator Xa , Animais , Camundongos , Fator Xa/metabolismo , NF-kappa B/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais
10.
J Vasc Res ; 60(4): 213-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778342

RESUMO

INTRODUCTION: Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases. METHODS: Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 µm) with/without PKA (PKI; 10 µm), MEK1/2 (PD98059; 10 µm), and PI3K (LY294002; 1 µm) blockade. RESULTS: PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2. DISCUSSION: Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Receptor PAR-2 , Ratos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , MAP Quinase Quinase 1/metabolismo , Músculo Liso Vascular/metabolismo , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , DNA/metabolismo , Células Cultivadas
11.
J Oral Biosci ; 65(4): 356-364, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838226

RESUMO

OBJECTIVE: This study aimed to clarify the interactions between the tongue and primary afferent fibers in tongue cancer pain. METHODS: A pharmacological analysis was conducted to evaluate mechanical hypersensitivity of the tongues of rats with squamous cell carcinoma (SCC). Changes in trigeminal ganglion (TG) neurons projecting to the tongue were analyzed using immunohistochemistry and western blotting. RESULTS: SCC inoculation of the tongue caused persistent mechanical sensitization and tumor formation. Trypsin expression was significantly upregulated in cancer lesions. Continuous trypsin inhibition or protease-activated receptor 2 (PAR2) antagonism in the tongue significantly inhibited SCC-induced mechanical sensitization. No changes were observed in PAR2 and transient receptor potential vanilloid 4 (TRPV4) levels in the TG or the number of PAR2-and TRPV4-expressing TG neurons after SCC inoculation. In contrast, the relative amount of phosphorylated TRPV4 in the TG was significantly increased after SCC inoculation and abrogated by PAR2 antagonism in the tongue. TRPV4 antagonism in the tongue significantly ameliorated the mechanical sensitization caused by SCC inoculation. CONCLUSIONS: Our findings indicate that tumor-derived trypsin sensitizes primary afferent fibers by PAR2 stimulation and subsequent TRPV4 phosphorylation, resulting in severe tongue pain.


Assuntos
Dor do Câncer , Carcinoma de Células Escamosas , Glossalgia , Neoplasias da Língua , Animais , Ratos , Dor do Câncer/metabolismo , Glossalgia/metabolismo , Dor/metabolismo , Fosforilação , Receptor PAR-2/metabolismo , Língua/metabolismo , Neoplasias da Língua/metabolismo , Nervo Trigêmeo/metabolismo , Canais de Cátion TRPV/metabolismo , Tripsina/metabolismo , Tripsina/farmacologia
12.
J Thromb Haemost ; 21(12): 3522-3538, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579880

RESUMO

BACKGROUND: Immunotherapy for breast cancer has not gained significant success. Coagulation factor VIIa (FVIIa)-tissue factor (TF) mediated activation of protease-activated receptor 2 (PAR2) is shown to promote metastasis and secretion of the immune-modulatory cytokines but the role of FVIIa in cancer immunology is still not well understood. OBJECTIVES: Here, we aim to investigate whether FVIIa protects breast cancer cells from CD8 T-cell-mediated killing. METHODS: Peripheral blood mononuclear cell-derived CD8 T cells were cocultured with vehicle or FVIIa pretreated MDAMB468 cells. The proliferation and activity of CD8 T cells were measured by flow cytometry and ELISA. An allograft model, using wild-type or TF/PAR2-deleted 4T1 cells, was employed to determine the effect of FVIIa on breast cancer immune evasion in vivo. RESULTS: Here, we demonstrate that TF-FVIIa induces programmed death-ligand 1 (PD-L1) in breast cancer cells by activating PAR2. PAR2 activation triggers large tumor suppressor kinase 1 (LATS1) inactivation leading to loss of yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) phosphorylation and subsequent nuclear localization of YAP/TAZ. YAP/TAZ inhibition reduces PD-L1 expression and increases CD8 T-cell activity. We further demonstrate that, apart from transcriptional induction of PD-L1, PAR2 activation also increases PD-L1 stability by enhancing its glycosylation through N-glycosyltransferases STT3A and STT3B. CONCLUSION: In a mouse model of breast cancer, tumor cell-specific PAR2 depletion leads to PD-L1 downregulation and increases anti-PD-1 immunotherapy efficacy. In conclusion, we showed that FVIIa-mediated signaling cascade in cancer cells serves as a tumor intrinsic mechanism of immunosuppression to promote cancer immune evasion.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Fator VIIa/metabolismo , Evasão da Resposta Imune , Leucócitos Mononucleares/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
13.
Part Fibre Toxicol ; 20(1): 32, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580758

RESUMO

BACKGROUND: Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been reported to exert strong pro-inflammatory and pro-fibrotic adjuvant effects in mouse models of allergic lung disease. However, the molecular mechanisms through which MWCNTs exacerbate allergen-induced lung disease remain to be elucidated. We hypothesized that protease-activated receptor 2 (PAR2), a G-protein coupled receptor previously implicated in the pathogenesis of various diseases including pulmonary fibrosis and asthma, may play an important role in the exacerbation of house dust mite (HDM) allergen-induced lung disease by MWCNTs. METHODS: Wildtype (WT) male C57BL6 mice and Par2 KO mice were exposed to vehicle, MWCNTs, HDM extract, or both via oropharyngeal aspiration 6 times over a period of 3 weeks and were sacrificed 3-days after the final exposure (day 22). Bronchoalveolar lavage fluid (BALF) was harvested to measure changes in inflammatory cells, total protein, and lactate dehydrogenase (LDH). Lung protein and RNA were assayed for pro-inflammatory or profibrotic mediators, and formalin-fixed lung sections were evaluated for histopathology. RESULTS: In both WT and Par2 KO mice, co-exposure to MWCNTs synergistically increased lung inflammation assessed by histopathology, and increased BALF cellularity, primarily eosinophils, as well as BALF total protein and LDH in the presence of relatively low doses of HDM extract that alone produced little, if any, lung inflammation. In addition, both WT and par2 KO mice displayed a similar increase in lung Cc1-11 mRNA, which encodes the eosinophil chemokine CCL-11, after co-exposure to MWCNTs and HDM extract. However, Par2 KO mice displayed significantly less airway fibrosis as determined by quantitative morphometry compared to WT mice after co-exposure to MWCNTs and HDM extract. Accordingly, at both protein and mRNA levels, the pro-fibrotic mediator arginase 1 (ARG-1), was downregulated in Par2 KO mice exposed to MWCNTs and HDM. In contrast, phosphorylation of the pro-inflammatory transcription factor NF-κB and the pro-inflammatory cytokine CXCL-1 was increased in Par2 KO mice exposed to MWCNTs and HDM. CONCLUSIONS: Our study indicates that PAR2 mediates airway fibrosis but not eosinophilic lung inflammation induced by co-exposure to MWCNTs and HDM allergens.


Assuntos
Hipersensibilidade , Nanotubos de Carbono , Pneumonia , Fibrose Pulmonar , Receptor PAR-2 , Animais , Masculino , Camundongos , Alérgenos/toxicidade , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Fibrose , Hipersensibilidade/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/toxicidade , Pneumonia/patologia , Fibrose Pulmonar/metabolismo , Pyroglyphidae , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , RNA Mensageiro/metabolismo
14.
Mediators Inflamm ; 2023: 5007488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484603

RESUMO

Interstitial inflammation is an important mechanism of pathological damage in renal injury caused by hyperuricemia. Protease-activated receptor-2 (PAR2) is a class of targets that act upstream of the PI3K/AKT/NF-κB pathway and is involved in various inflammatory diseases. We induced a hyperuricemia model in rats by adenine and ethambutol gavage in an in vivo experiment. We demonstrated that PAR2 and PI3K/AKT/NF-κB pathway expression were significantly upregulated in renal tissues, with massive inflammatory cell infiltration in the renal interstitium and renal tissue injury. Treating hyperuricemic rats with AZ3451, a selective metabotropic antagonist of PAR2, we demonstrated that PAR2 antagonism inhibited the PI3K/AKT/NF-κB pathway and attenuated tubular dilation and tubulointerstitial inflammatory cell infiltration. The phospholipid metabolism profiles provided a perfect separation between the normal and hyperuricemic rats. In addition, we also found that AZ3451 can affect phospholipid metabolism. Our work suggests that PAR2 may mediate hyperuricemia-mediated renal injury by activating the PI3K/AKT/NF-κB pathway. The PAR2 antagonist AZ3451 may be a promising therapeutic strategy for hyperuricemia-induced inflammatory responses.


Assuntos
Hiperuricemia , Ratos , Animais , Hiperuricemia/tratamento farmacológico , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor PAR-2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Rim/metabolismo , Fosfolipídeos/metabolismo , Fosfolipídeos/uso terapêutico
15.
Am J Physiol Cell Physiol ; 325(1): C272-C285, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273236

RESUMO

Proteinase-activated receptors (PARs) are G protein-coupled receptors (GPCRs) activated by limited n-terminal proteolysis. PARs are highly expressed in many cancer cells, including prostate cancer (PCa), and regulate various aspects of tumor growth and metastasis. Specific activators of PARs in different physiological and pathophysiological contexts remain poorly defined. In this study, we examined the androgen-independent human prostatic cancer cell line PC3 and find the functional expression of PAR1 and PAR2, but not PAR4. Using genetically encoded PAR cleavage biosensors, we showed that PC3 cells secrete proteolytic enzymes that cleave PARs and trigger autocrine signaling. CRISPR/Cas9 targeting of PAR1 and PAR2 combined with microarray analysis revealed genes that are regulated through this autocrine signaling mechanism. We found several genes that are known PCa prognostic factors or biomarker to be differentially expressed in the PAR1-knockout (KO) and PAR2-KO PC3 cells. We further examined PAR1 and PAR2 regulation of PCa cell proliferation and migration and found that absence of PAR1 promotes PC3 cell migration and suppresses cell proliferation, whereas PAR2 deficiency showed opposite effects. Overall, these results demonstrate that autocrine signaling through PARs is an important regulator of PCa cell function.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Células PC-3 , Comunicação Autócrina , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias da Próstata/genética
16.
Reprod Biol Endocrinol ; 21(1): 37, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060079

RESUMO

BACKGROUND: Early embryo implantation is a complex phenomenon characterized by the presence of an implantation-competent blastocyst and a receptive endometrium. Embryo development and endometrial receptivity must be synchronized and an adequate two-way dialogue between them is necessary for maternal recognition and implantation. Proteases have been described as blastocyst-secreted proteins involved in the hatching process and early implantation events. These enzymes stimulate intracellular calcium signaling pathways in endometrial epithelial cells (EEC). However, the exact molecular players underlying protease-induced calcium signaling, the subsequent downstream signaling pathways and the biological impact of its activation remain elusive. METHODS: To identify gene expression of the receptors and ion channels of interest in human and mouse endometrial epithelial cells, RNA sequencing, RT-qPCR and in situ hybridization experiments were conducted. Calcium microfluorimetric experiments were performed to study their functional expression. RESULTS: We showed that trypsin evoked intracellular calcium oscillations in EEC of mouse and human, and identified the protease-activated receptor 2 (PAR2) as the molecular entity initiating protease-induced calcium responses in EEC. In addition, this study unraveled the molecular players involved in the downstream signaling of PAR2 by showing that depletion and re-filling of intracellular calcium stores occurs via PLC, IP3R and the STIM1/Orai1 complex. Finally, in vitro experiments in the presence of a specific PAR2 agonist evoked an upregulation of the 'Window of implantation' markers in human endometrial epithelial cells. CONCLUSIONS: These findings provide new insights into the blastocyst-derived protease signaling and allocate a key role for PAR2 as maternal sensor for signals released by the developing blastocyst.


Assuntos
Sinalização do Cálcio , Receptor PAR-2 , Feminino , Humanos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Peptídeo Hidrolases/metabolismo , Cálcio/metabolismo , Endométrio/metabolismo , Blastocisto/fisiologia , Implantação do Embrião/fisiologia , Células Epiteliais/metabolismo
17.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835398

RESUMO

We aimed to investigate the relationship between mast cell (MC) infiltration into the bladder with urothelial barrier dysfunction and bladder hyperactivity in a chronic bladder ischemia (CBI) rat model. We compared CBI rats (CBI group; n = 10) with normal rats (control group; n = 10). We measured the expression of mast cell tryptase (MCT) and protease-activated receptor 2 (PAR2), which are correlated with C fiber activation via MCT, and Uroplakins (UP Ia, Ib, II and III), which are critical to urothelial barrier function, via Western blotting. The effects of FSLLRY-NH2, a PAR2 antagonist, administered intravenously, on the bladder function of CBI rats were evaluated with a cystometrogram. In the CBI group, the MC number in the bladder was significantly greater (p = 0.03), and the expression of MCT (p = 0.02) and PAR2 (p = 0.02) was significantly increased compared to that of the control group. The 10 µg/kg FSLLRY-NH2 injection significantly increased the micturition interval of CBI rats (p = 0.03). The percentage of UP-II-positive cells on the urothelium with immunohistochemical staining was significantly lower in the CBI group than in the control group (p < 0.01). Chronic ischemia induces urothelial barrier dysfunction via impairing UP II, consequently inducing MC infiltration into the bladder wall and increased PAR2 expression. PAR2 activation by MCT may contribute to bladder hyperactivity.


Assuntos
Isquemia , Receptor PAR-2 , Triptases , Bexiga Urinária Hiperativa , Bexiga Urinária , Animais , Ratos , Isquemia/metabolismo , Mastócitos/metabolismo , Receptor PAR-2/metabolismo , Triptases/metabolismo , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/metabolismo , Uroplaquina II/metabolismo , Urotélio/metabolismo , Bexiga Urinária Hiperativa/metabolismo
18.
Sci Rep ; 13(1): 1124, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670151

RESUMO

Osteoarthritis (OA) is the most prevalent joint disorder with increasing worldwide incidence. Mechanistic insights into OA pathophysiology are evolving and there are currently no disease-modifying OA drugs. An increase in protease activity is linked to progressive degradation of the cartilage in OA. Proteases also trigger inflammation through a family of G protein-coupled receptors (GPCRs) called the Proteinase-Activated Receptors (PARs). PAR signaling can trigger pro-inflammatory responses and targeting PARs is proposed as a therapeutic approach in OA. Several enzymes can cleave the PAR N-terminus, but the endogenous protease activators of PARs in OA remain unclear. Here we characterized PAR activating enzymes in knee joint synovial fluids from OA patients and healthy donors using genetically encoded PAR biosensor expressing cells. Calcium signaling assays were performed to examine receptor activation. The class and type of enzymes cleaving the PARs was further characterized using protease inhibitors and fluorogenic substrates. We find that PAR1, PAR2 and PAR4 activating enzymes are present in knee joint synovial fluids from healthy controls and OA patients. Compared to healthy controls, PAR1 activating enzymes are elevated in OA synovial fluids while PAR4 activating enzyme levels are decreased. Using enzyme class and type selective inhibitors and fluorogenic substrates we find that multiple PAR activating enzymes are present in OA joint fluids and identify serine proteinases (thrombin and trypsin-like) and matrix metalloproteinases as the major classes of PAR activating enzymes in the OA synovial fluids. Synovial fluid driven increase in calcium signaling was significantly reduced in cells treated with PAR1 and PAR2 antagonists, but not in PAR4 antagonist treated cells. OA associated elevation of PAR1 cleavage suggests that targeting this receptor may be beneficial in the treatment of OA.


Assuntos
Osteoartrite , Receptor PAR-1 , Humanos , Receptor PAR-1/metabolismo , Líquido Sinovial/metabolismo , Corantes Fluorescentes , Trombina/metabolismo , Receptor PAR-2/metabolismo
19.
Fetal Pediatr Pathol ; 42(3): 423-437, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36657618

RESUMO

BACKGROUND: Bronchopulmonary dysplasia is a chronic lung disease commonly seen in preterm infants. It is characterized by delayed development of the alveoli and lung fibrosis. Protease-activated receptor 2 (PAR2) is an inflammatory driver that plays a proinflammatory role mainly through the P38 MAPK/NF-κB signaling pathway. METHODS: Newborn rat pups were kept under air or oxygen at >60% concentration. Lung tissues were collected at postnatal days (P) 1, 4, 7, and 10 to observe pathological changes and take measurements. RESULTS: In the hyperoxic group, P4 and P7 rats showed delayed alveolar development, septal thickening, and disturbances in alveolar structure.PAR2, P38 MAPK, NF-κB, and IL-18 expression at P4, P7, and P10 was significantly higher than in the air group. CONCLUSION: PAR2 is involved in lung injury induced by persistent hyperoxia. Activated PAR2 promotes IL-18 overexpression through the P38 MAPK/NF-κB signaling pathway, which may be an important mechanism of PAR2-mediated lung injury in bronchopulmonary dysplasia.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Recém-Nascido , Humanos , Animais , Ratos , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Interleucina-18/metabolismo , Receptor PAR-2/metabolismo , NF-kappa B/metabolismo , Animais Recém-Nascidos , Recém-Nascido Prematuro , Pulmão , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças
20.
Braz Oral Res ; 37: e002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36629588

RESUMO

Protease-activated receptor-2 (PAR2) is associated with the pathogenesis of many chronic diseases with inflammatory characteristics, including periodontitis. This study aimed to evaluate how the activation of PAR2 can affect the osteogenic activity of human periodontal ligament stem cells (PDLSCs) in vitro. PDLSCs collected from three subjects were treated in osteogenic medium for 2, 7, 14, and 21 days with trypsin (0.1 U/mL), PAR2 specific agonist peptide (SLIGRL-NH2) (100 nM), and PAR2 antagonist peptide (FSLLRY-NH2) (100 nM). Gene (RT-qPCR) expression and protein expression (ELISA) of osteogenic factors, bone metabolism, and inflammatory cytokines, cell proliferation, alkaline phosphatase (ALP) activity, alizarin red S staining, and supernatant concentration were assessed. Statistical analysis of the results with a significance level of 5% was performed. Activation of PAR2 led to decreases in cell proliferation and calcium deposition (p < 0.05), calcium concentration (p < 0.05), and ALP activity (p < 0.05). Additionally, PAR2 activation increased gene and protein expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) (p < 0.05) and significantly decreased the gene and protein expression of osteoprotegerin (p <0. 05). Considering the findings, the present study demonstrated PAR2 activation was able to decrease cell proliferation, decreased osteogenic activity of PDLSCs, and upregulated conditions for bone resorption. PAR2 may be considered a promising target in periodontal regenerative procedures.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Diferenciação Celular , Receptor PAR-2/metabolismo , Cálcio , Células-Tronco , Proliferação de Células , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...