Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 848816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721749

RESUMO

The angiotensin type 2 (AT2) receptor and the bradykinin type 2 (B2) receptor are G protein-coupled receptors (GPCRs) that have major roles in the cardiovascular system. The two receptors are known to functionally interact at various levels, and there is some evidence that the observed crosstalk may occur as a result of heteromerization. We investigated evidence for heteromerization of the AT2 receptor and the B2 receptor in HEK293FT cells using various bioluminescence resonance energy transfer (BRET)-proximity based assays, including the Receptor Heteromer Investigation Technology (Receptor-HIT) and the NanoBRET ligand-binding assay. The Receptor-HIT assay showed that Gαq, GRK2 and ß-arrestin2 recruitment proximal to AT2 receptors only occurred upon B2 receptor coexpression and activation, all of which is indicative of AT2-B2 receptor heteromerization. Additionally, we also observed specific coupling of the B2 receptor with the Gαz protein, and this was found only in cells coexpressing both receptors and stimulated with bradykinin. The recruitment of Gαz, Gαq, GRK2 and ß-arrestin2 was inhibited by B2 receptor but not AT2 receptor antagonism, indicating the importance of B2 receptor activation within AT2-B2 heteromers. The close proximity between the AT2 receptor and B2 receptor at the cell surface was also demonstrated with the NanoBRET ligand-binding assay. Together, our data demonstrate functional interaction between the AT2 receptor and B2 receptor in HEK293FT cells, resulting in novel pharmacology for both receptors with regard to Gαq/GRK2/ß-arrestin2 recruitment (AT2 receptor) and Gαz protein coupling (B2 receptor). Our study has revealed a new mechanism for the enigmatic and poorly characterized AT2 receptor to be functionally active within cells, further illustrating the role of heteromerization in the diversity of GPCR pharmacology and signaling.


Assuntos
Receptor Tipo 2 de Angiotensina , Receptor B2 da Bradicinina , Bradicinina/farmacologia , Ligantes , Receptor Tipo 2 de Angiotensina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Receptores Acoplados a Proteínas G , beta-Arrestina 2
2.
Kidney360 ; 2(11): 1781-1792, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35373008

RESUMO

Background: The antifibrotic effects of recombinant human relaxin (RLX) in the kidney are dependent on an interaction between its cognate receptor (RXFP1) and the angiotensin type 2 receptor (AT2R) in male models of disease. Whether RLX has therapeutic effects, which are also mediated via AT2R, in hypertensive adult and aged/reproductively senescent females is unknown. Thus, we determined whether treatment with RLX provides cardiorenal protection via an AT2R-dependent mechanism in adult and aged female stroke-prone spontaneously hypertensive rats (SHRSPs). Methods: In 6-month-old (6MO) and 15-month-old ([15MO]; reproductively senescent) female SHRSP, systolic BP (SBP), GFR, and proteinuria were measured before and after 4 weeks of treatment with vehicle (Veh), RLX (0.5 mg/kg per day s.c.), or RLX+PD123319 (AT2R antagonist; 3 mg/kg per day s.c.). Aortic endothelium-dependent relaxation and fibrosis of the kidney, heart, and aorta were assessed. Results: In 6MO SHRSP, RLX significantly enhanced GFR by approximately 25% (P=0.001) and reduced cardiac fibrosis (P=0.01) as compared with vehicle-treated counterparts. These effects were abolished or blunted by PD123319 coadministration. In 15MO females, RLX reduced interstitial renal (P=0.02) and aortic (P=0.003) fibrosis and lowered SBP (13±3 mm Hg; P=0.04) relative to controls. These effects were also blocked by PD123319 cotreatment (all P=0.05 versus RLX treatment alone). RLX also markedly improved vascular function by approximately 40% (P<0.001) in 15MO SHRSP, but this was not modulated by PD123319 cotreatment. Conclusions: The antifibrotic and organ-protective effects of RLX, when administered to a severe model of hypertension, conferred cardiorenal protection in adult and reproductively senescent female rats to a great extent via an AT2R-mediated mechanism.


Assuntos
Hipertensão , Receptor Tipo 2 de Angiotensina , Relaxina , Animais , Feminino , Fibrose , Hipertensão/tratamento farmacológico , Masculino , Ratos , Ratos Endogâmicos SHR , Receptor Tipo 2 de Angiotensina/fisiologia , Proteínas Recombinantes/farmacologia , Relaxina/farmacologia
3.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1230-1233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32750889

RESUMO

Recently, it was confirmed that ACE2 is the receptor of SARS-CoV-2, the pathogen causing the recent outbreak of severe pneumonia around the world. It is confused that ACE2 is widely expressed across a variety of organs and is expressed moderately but not highly in lung, which, however, is the major infected organ. Therefore, we hypothesized that there could be some other genes playing key roles in the entry of SARS-CoV-2 into human cells. Here we found that AGTR2 (angiotensin II receptor type 2), a G-protein coupled receptor, has interaction with ACE2 and is highly expressed in lung with a high tissue specificity. More importantly, simulation of 3D structure based protein-protein interaction reveals that AGTR2 shows a higher binding affinity with the Spike protein of SARS-CoV-2 than ACE2 (energy: -8.2 vs. -5.1 [kcal/mol]). A number of compounds, biologics and traditional Chinese medicine that could decrease the expression level of AGTR2 were predicted. Finally, we suggest that AGTR2 could be a putative novel gene for the entry of SARS-CoV-2 into human cells, which could provide different insight for the research of SARS-CoV-2 proteins with their receptors.


Assuntos
COVID-19/genética , COVID-19/virologia , Receptor Tipo 2 de Angiotensina/genética , Receptores Virais/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/fisiologia , Antivirais/farmacologia , COVID-19/fisiopatologia , Biologia Computacional , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Mapas de Interação de Proteínas , Receptor Tipo 2 de Angiotensina/química , Receptor Tipo 2 de Angiotensina/fisiologia , Receptores Virais/química , Receptores Virais/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Transcriptoma/efeitos dos fármacos , Internalização do Vírus
4.
Med Hypotheses ; 144: 110213, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33254519

RESUMO

At the end of 2019, there was an outbreak of a new Coronavirus 2019 (COVID-19 disease). Studies suggest that SARS-CoV-2 can cause infection in the central nervous system (CNS) and trigger neurological symptoms that include headache, nausea and vomiting, mental confusion and loss of smell or taste. These findings reveal that Coronaviruses have neurological tropism and neuroinvasive capacity. The spread of SARS-CoV-2 in the brain tissue possibly occurs through the systemic circulation as reported in patients affected by SARS-CoV. Evidence highlights similarity between the SARS-CoV genome and SARS-CoV-2 and that both interact with the angiotensin-converting enzyme type 2 (ACE2) located in the brain tissue of infected patients. Hence, the presence of ACE2 is likely in the CNS to mediate the entry of the SARS-CoV-2 virus into neural tissue. Our hypothesis suggests that SARS-CoV-2 can cause encephalitis through the production of inflammatory mediators and activation of immune system cells resulting from the interaction of the ACE2 receptor with the viral Spike protein that causes an increase in angiotensin II. This mechanism has the ability to activate immune system cells by exacerbating stimuli at the angiotensin 2 receptor (AT2R). Thus, it leads to a status of brain injury preceded by vascular damage and destruction of the blood-brain barrier, making it responsible for the installation of acute inflammation.


Assuntos
Barreira Hematoencefálica/fisiopatologia , COVID-19/complicações , Encefalite Viral/etiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Enzima de Conversão de Angiotensina 2/fisiologia , Barreira Hematoencefálica/virologia , COVID-19/fisiopatologia , COVID-19/virologia , Encefalite Viral/fisiopatologia , Encefalite Viral/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Neurológicos , Pandemias , SARS-CoV-2/patogenicidade
5.
Exp Physiol ; 105(8): 1316-1325, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515106

RESUMO

NEW FINDINGS: What is the central question of this study? What is the role of the renin-angiotensin system with angiotensin II acting via its receptor AT1a in spinal cord injury-induced cardiac atrophy? What is the main finding and its importance? Knockout of AT1a did not protect mice that had undergone thoracic level 4 transection from cardiac atrophy. There were no histopathological signs but there was reduced load-dependent left ventricular function (lower stroke volume and cardiac output) with preserved ejection fraction. ABSTRACT: Spinal cord injury (SCI) leads to cardiac atrophy often accompanied by functional deficits. The renin-angiotensin system (RAS) with angiotensin II (AngII) signalling via its receptor AT1a might contribute to cardiac atrophy post-SCI. We performed spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation in female wild-type mice (WT, n = 27) and mice deficient in AT1a (Agtr1a-/- , n = 27). Echocardiography (0, 7, 21 and 28 days post-SCI) and histology and gene expression analyses at 1 and 2 months post-SCI were performed. We found cardiac atrophy post-SCI: reduced heart weight, reduced estimated left ventricular mass in Agtr1a-/- , and reduced cardiomyocyte diameter in WT mice. Although, the latter as well as stroke volume (SV) and cardiac output (CO) were reduced in Agtr1a-/- mice already at baseline, cardiomyocyte diameter was even smaller in injured Agtr1a-/- mice compared to injured WT mice. SV and CO were reduced in WT mice post-SCI. Ejection fraction and fractional shortening were preserved post-SCI in both genotypes. There were no histological signs of fibrosis and pathology in the cardiac sections of either genotype post-SCI. Gene expression of Agtr1a showed a trend for up-regulation at 2 months post-SCI; angiotensinogen was up-regulated at 2 month post-SCI in both genotypes. AngII receptor type 2 (Agtr2) was up- and down-regulated at 1 and 2 months post-SCI in WT mice, respectively, and Ang-(1-7) receptor (Mas) at 1 and 2 months post-SCI. Atrogin-1/MAFbx and MuRF1, atrophy markers, were not significantly up-regulated post-SCI. Our data show that lack of AT1a does not protect from cardiac atrophy post-SCI.


Assuntos
Atrofia , Miocárdio/patologia , Receptor Tipo 2 de Angiotensina/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Angiotensina II , Animais , Ecocardiografia , Feminino , Coração/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Hypertension ; 76(1): 121-132, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32475319

RESUMO

The present study tested the hypotheses that overexpression of an intracellular Ang II (angiotensin II) fusion protein, mito-ECFP/Ang II, selectively in the mitochondria of mouse proximal tubule cells induces mitochondrial oxidative and glycolytic responses and elevates blood pressure via the Ang II/AT1a receptor/superoxide/NHE3 (the Na+/H+ exchanger 3)-dependent mechanisms. A PT-selective, mitochondria-targeting adenoviral construct encoding Ad-sglt2-mito-ECFP/Ang II was used to test the hypotheses. The expression of mito-ECFP/Ang II was colocalized primarily with Mito-Tracker Red FM in mouse PT cells or with TMRM in kidney PTs. Mito-ECFP/Ang II markedly increased oxygen consumption rate as an index of mitochondrial oxidative response (69.5%; P<0.01) and extracellular acidification rate as an index of mitochondrial glycolytic response (34%; P<0.01). The mito-ECFP/Ang II-induced oxygen consumption rate and extracellular acidification rate responses were blocked by AT1 blocker losartan (P<0.01) and a mitochondria-targeting superoxide scavenger mito-TEMPO (P<0.01). By contrast, the nonselective NO inhibitor L-NAME alone increased, whereas the mitochondria-targeting expression of AT2 receptors (mito-AT2/GFP) attenuated the effects of mito-ECFP/Ang II (P<0.01). In the kidney, overexpression of mito-ECFP/Ang II in the mitochondria of the PTs increased systolic blood pressure 12±3 mm Hg (P<0.01), and the response was attenuated in PT-specific PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Conversely, overexpression of AT2 receptors selectively in the mitochondria of the PTs induced natriuretic responses in PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Taken together, these results provide new evidence for a physiological role of PT mitochondrial Ang II/AT1a/superoxide/NHE3 and Ang II/AT2/NO/NHE3 signaling pathways in maintaining blood pressure homeostasis.


Assuntos
Angiotensina II/fisiologia , Túbulos Renais Proximais/fisiologia , Mitocôndrias/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Células Cultivadas , Glicólise , Hipertensão/fisiopatologia , Imidazóis/farmacologia , Córtex Renal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptor Tipo 1 de Angiotensina/deficiência , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio/deficiência , Trocador 1 de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Can J Cardiol ; 36(5): 683-693, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389341

RESUMO

It is common knowledge that the renin-angiotensin system (RAS), in particular angiotensin II acting through the angiotensin AT1-receptor (AT1R), is pivotal for the regulation of blood pressure (BP) and extracellular volume. More recent findings have revealed that the RAS is far more complex than initially thought and that it harbours additional mediators and receptors, which are able to counteract and thereby fine-tune AT1R-mediated actions. This review will focus on the angiotensin AT2-receptor (AT2R), which is one of the "counter-regulatory" receptors within the RAS. It will review and discuss data related to the role of the AT2R in regulation of BP and focus on the following 3 questions: Do peripheral AT2R have an impact on BP regulation, and, if so, does this effect become apparent only under certain conditions? Are central nervous system AT2R involved in regulation of BP, and, if so, which brain areas are involved and what are the mechanisms? Does dysfunction of AT2R contribute to the pathogenesis of hypertension in preeclampsia?


Assuntos
Hipertensão/fisiopatologia , Receptor Tipo 2 de Angiotensina/fisiologia , Sistema Renina-Angiotensina/fisiologia , Encéfalo/fisiologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Vasodilatação/fisiologia
9.
Curr Hypertens Rep ; 22(3): 22, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32114685

RESUMO

PURPOSE OF REVIEW: The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors. RECENT FINDINGS: Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II-induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1-7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms. Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Sistema Renina-Angiotensina , Angiotensina II , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Bloqueadores do Receptor Tipo 2 de Angiotensina II , Humanos , Proto-Oncogene Mas , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos
10.
J Neurochem ; 152(6): 675-696, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386177

RESUMO

Neuropathic and inflammatory pain results from cellular and molecular changes in dorsal root ganglion (DRG) neurons. The type-2 receptor for Angiotensin-II (AT2R) has been involved in this type of pain. However, the underlying mechanisms are poorly understood, including the role of the type-1 receptor for Angiotensin-II (AT1R). Here, we used a combination of immunohistochemistry and immunocytochemistry, RT-PCR and in vitro and in vivo pharmacological manipulation to examine how cutaneous inflammation affected the expression of AT1R and AT2R in subpopulations of rat DRG neurons and studied their impact on inflammation-induced neuritogenesis. We demonstrated that AT2R-neurons express C- or A-neuron markers, primarily IB4, trkA, and substance-P. AT1R expression was highest in small neurons and co-localized significantly with AT2R. In vitro, an inflammatory soup caused significant elevation of AT2R mRNA, whereas AT1R mRNA levels remained unchanged. In vivo, we found a unique pattern of change in the expression of AT1R and AT2R after cutaneous inflammation. AT2R increased in small neurons at 1 day and in medium size neurons at 4 days. Interestingly, cutaneous inflammation increased AT1R levels only in large neurons at 4 days. We found that in vitro and in vivo AT1R and AT2R acted co-operatively to regulate DRG neurite outgrowth. In vivo, AT2R inhibition impacted more on non-peptidergic C-neurons neuritogenesis, whereas AT1R blockade affected primarily peptidergic nerve terminals. Thus, cutaneous-induced inflammation regulated AT1R and AT2R expression and function in different DRG neuronal subpopulations at different times. These findings must be considered when targeting AT1R and AT2R to treat chronic inflammatory pain. Cover Image for this issue: doi: 10.1111/jnc.14737.


Assuntos
Dermatite/fisiopatologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Células Cultivadas , Dermatite/etiologia , Feminino , Adjuvante de Freund/administração & dosagem , Gânglios Espinais/citologia , Neuritos/fisiologia , Dor/fisiopatologia , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/análise , Receptor Tipo 2 de Angiotensina/análise , Células Receptoras Sensoriais/química , Pele/inervação
11.
Mol Cell Endocrinol ; 498: 110576, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520674

RESUMO

Obesity is the major risk factor for several cardiovascular and metabolic disorders. Previous studies reported that deletion of Angiotensin II type 2 receptor (AT2R) protects against metabolic dysfunctions induced by high fat (HF) diet. However, the role of AT2R in obesity-induced cardiac hypertrophy remains unclear. Male AT2R knockout (AT2RKO) and wild type (AT2RWT) mice were fed with control or HF diet for 10 weeks. HF diet increased cardiac expression of AT2R in obese mice. Deletion of AT2R did not affect body weight gain, glucose intolerance and fat mass gain induced by HF feeding. However, loss of AT2R prevented HF diet-induced hypercholesterolemia and cardiac remodeling. Mechanistically, we found that pharmacological inhibition or knockdown of AT2R prevented leptin-induced cardiomyocyte hypertrophy in vitro. Collectively, our results suggest that AT2R is involved in obesity-induced cardiac hypertrophy.


Assuntos
Cardiomegalia/etiologia , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Hipercolesterolemia/etiologia , Resistência à Insulina , Obesidade/complicações , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Leptina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
12.
Mol Cell Endocrinol ; 498: 110587, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539597

RESUMO

The renin-angiotensin system modulates insulin action. Pharmacological stimulation of angiotensin type 2 receptor (AT2R) was shown to have beneficial metabolic effects in various animal models of insulin resistance and type 2 diabetes and also to increase insulin sensitivity in wild type mice. In this study we further explored the role of the AT2R on insulin action and glucose homeostasis by investigating the glycemic profile and in vivo insulin signaling status in insulin-target tissues from both male and female AT2R knockout (KO) mice. When compared to the respective wild-type (WT) group, glycemia and insulinemia was unaltered in AT2RKO mice regardless of sex. However, female AT2RKO mice displayed decreased insulin sensitivity compared to their WT littermates. This was accompanied by a compensatory increase in adiponectinemia and with a specific attenuation of the activity of main insulin signaling components (insulin receptor, Akt and ERK1/2) in adipose tissue with no apparent alterations in insulin signaling in either liver or skeletal muscle. These parameters remained unaltered in male AT2RKO mice as compared to male WT mice. Present data show that the AT2R has a physiological role in the conservation of insulin action in female but not in male mice. Our results suggest a sexual dimorphism in the control of insulin action and glucose homeostasis by the AT2R and reinforce the notion that pharmacological modulation of the balance between the AT1R and AT2R receptor could be important for treatment of metabolic syndrome and type 2 diabetes.


Assuntos
Adiponectina/sangue , Biomarcadores/sangue , Glicemia/metabolismo , Resistência à Insulina , Insulina/sangue , Receptor Tipo 2 de Angiotensina/fisiologia , Caracteres Sexuais , Tecido Adiposo/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Transdução de Sinais
13.
J Am Soc Nephrol ; 30(11): 2191-2207, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511361

RESUMO

BACKGROUND: Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS: We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS: The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS: These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.


Assuntos
Rim/patologia , Miocárdio/patologia , Miofibroblastos/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Peptídeos/fisiologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Benzimidazóis/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Células Cultivadas , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptor Tipo 2 de Angiotensina/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Proteínas Recombinantes , Relaxina/fisiologia , Tetrazóis/uso terapêutico
14.
Biol Psychiatry ; 86(12): 899-909, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420088

RESUMO

BACKGROUND: The renin-angiotensin system has been implicated in posttraumatic stress disorder; however, the mechanisms responsible for this connection and the therapeutic potential of targeting the renin-angiotensin system in posttraumatic stress disorder remain unknown. Using an angiotensin receptor bacterial artificial chromosome (BAC) and enhanced green fluorescent protein (eGFP) reporter mouse, combined with neuroanatomical, pharmacological, and behavioral approaches, we examined the role of angiotensin II type 2 receptor (AT2R) in fear-related behavior. METHODS: Dual immunohistochemistry with retrograde labeling was used to characterize AT2R-eGFP+ cells in the amygdala of the AT2R-eGFP-BAC reporter mouse. Pavlovian fear conditioning and behavioral pharmacological analyses were used to demonstrate the effects of AT2R activation on fear memory in male C57BL/6 mice. RESULTS: AT2R-eGFP+ neurons in the amygdala were predominantly expressed in the medial amygdala and the medial division of the central amygdala (CeM), with little AT2R-eGFP expression in the basolateral amygdala or lateral division of the central amygdala. Characterization of AT2R-eGFP+ neurons in the CeM demonstrated distinct localization to gamma-aminobutyric acidergic projection neurons. Mice receiving acute intra-central amygdala injections of the selective AT2R agonist compound 21 prior to tests for cued or contextual fear expression displayed less freezing. Retrograde labeling of AT2R-eGFP+ neurons projecting to the periaqueductal gray revealed AT2R-eGFP+ neuronal projections from the CeM to the periaqueductal gray, a key brain structure mediating fear-related freezing. CONCLUSIONS: These findings suggest that CeM AT2R-expressing neurons can modulate central amygdala outputs that play a role in fear expression, providing new evidence for a novel angiotensinergic circuit in the regulation of fear.


Assuntos
Núcleo Central da Amígdala/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Ansiedade/fisiopatologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/metabolismo , Condicionamento Clássico , Corticosterona/sangue , Locomoção , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Neurônios/metabolismo , Substância Cinzenta Periaquedutal/citologia , Receptor Tipo 2 de Angiotensina/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 39(3): 459-466, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602301

RESUMO

Objective- Pharmacological inhibition of the AT1R (angiotensin II type 1 receptor) with losartan can attenuate ascending aortic remodeling induced by transverse aortic constriction (TAC). In this study, we investigated the role of the AT2R (angiotensin II type 2 receptor) and MasR (Mas receptor) in TAC-induced ascending aortic dilation and remodeling. Approach and Results- Wild-type C57BL/6J mice were subjected to sham or TAC surgeries in the presence and absence of various drugs. Aortic diameters were assessed by echocardiography, central blood pressure was measured in the ascending aorta 2 weeks post-operation, and histology and gene expression analyses completed. An angiotensin-converting enzyme inhibitor, captopril, decreased systolic blood pressure to the same level as losartan but did not attenuate aortic dilation, adventitial inflammation, medial collagen deposition, elastin breakage, or Mmp9 (matrix metalloproteinase-9) expression when compared with TAC mice. In contrast, co-administration of captopril with an AT2R agonist, compound 21, attenuated aortic dilation, medial collagen content, elastin breaks, and Mmp9 expression, whereas co-administration of captopril with a MasR agonist (AVE0991) did not reverse aortic dilation and led to aberrant aortic remodeling. An AT2R antagonist, PD123319, reversed the protective effects of losartan in TAC mice. Treatment with compound 21 alone showed no effect on TAC-induced aortic enlargement, blood pressure, elastin breakage, or Mmp9 expression. Conclusions- Our data indicate that when AT1R signaling is blocked, AT2R activation is a key modulator to prevent aortic dilation that occurs with TAC. These data suggest that angiotensin-converting enzyme inhibitor may not be as effective as losartan for slowing aneurysm growth because losartan requires intact AT2R signaling to prevent aortic enlargement.


Assuntos
Aneurisma Aórtico/fisiopatologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Aorta/fisiopatologia , Aneurisma Aórtico/etiologia , Aneurisma Aórtico/prevenção & controle , Aortite/tratamento farmacológico , Aortite/etiologia , Aortite/fisiopatologia , Fenômenos Biomecânicos , Captopril/farmacologia , Constrição , Hipertensão/complicações , Hipertensão/fisiopatologia , Imidazóis/farmacologia , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/fisiologia , Piridinas/farmacologia , Distribuição Aleatória , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Remodelação Vascular/efeitos dos fármacos
16.
Kidney Int ; 94(5): 937-950, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190172

RESUMO

Diabetic nephropathy correlates more closely to defective mitochondria and increased oxidative stress in the kidney than to hyperglycemia. A key driving factor of diabetic nephropathy is angiotensin II acting via the G-protein-coupled cell membrane type 1 receptor. The present study aimed to investigate the role of the angiotensin II type 2 receptor (AT2R) at the early stages of diabetic nephropathy. Using receptor binding studies and immunohistochemistry we found that the mitochondria in renal tubules contain high-affinity AT2Rs. Increased renal mitochondrial AT2R density by transgenic overexpression was associated with reduced superoxide production of isolated mitochondria from non-diabetic rats. Streptozotocin-induced diabetes (28 days) caused a drop in the ATP/oxygen ratio and an increase in the superoxide production of isolated renal mitochondria from wild-type diabetic rats. This correlated with changes in the renal expression profile and increased tubular epithelial cell proliferation. AT2R overexpression in tubular epithelial cells inhibited all diabetes-induced renal changes including a drop in mitochondrial bioenergetics efficiency, a rise in mitochondrial superoxide production, metabolic reprogramming, and increased proliferation. Thus, AT2Rs translocate to mitochondria and can contribute to reno-protective effects at early stages of diabetes. Hence, targeted AT2R overexpression in renal cells may open new avenues to develop novel types of drugs preventing diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Túbulos Renais/fisiologia , Mitocôndrias/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Masculino , Mitocôndrias/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 2 de Angiotensina/análise , Estreptozocina
17.
Physiol Rep ; 6(16): e13824, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30156060

RESUMO

The renin-angiotensin system modulates insulin action. Angiotensin type 1 receptor exerts a deleterious effect, whereas the angiotensin type 2 receptor (AT2R) appears to have beneficial effects providing protection against insulin resistance and type 2 diabetes. To further explore the role of the AT2R on insulin action and glucose homeostasis, in this study we administered C57Bl/6 mice with the synthetic agonist of the AT2R C21 for 12 weeks (1 mg/kg per day; ip). Vehicle-treated animals were used as control. Metabolic parameters, glucose, and insulin tolerance, in vivo insulin signaling in main insulin-target tissues as well as adipose tissue levels of adiponectin, and TNF-α were assessed. C21-treated animals displayed decreased glycemia together with unaltered insulinemia, increased insulin sensitivity, and increased glucose tolerance compared to nontreated controls. This was accompanied by a significant decrease in adipocytes size in epididymal adipose tissue and significant increases in both adiponectin and UCP-1 expression in this tissue. C21-treated mice showed an increase in both basal Akt and ERK1/2 phosphorylation levels in the liver, and increased insulin-stimulated Akt activation in adipose tissue. This positive modulation of insulin action induced by C21 appeared not to involve the insulin receptor. In C21-treated mice, adipose tissue and skeletal muscle became unresponsive to insulin in terms of ERK1/2 phosphorylation levels. Present data show that chronic pharmacological activation of AT2R with C21 increases insulin sensitivity in mice and indicate that the AT2R has a physiological role in the conservation of insulin action.


Assuntos
Resistência à Insulina/fisiologia , Receptor Tipo 2 de Angiotensina/agonistas , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Tamanho Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Teste de Tolerância a Glucose , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Receptor Tipo 2 de Angiotensina/fisiologia , Transdução de Sinais , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
18.
J Neurosci ; 38(32): 7032-7057, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29976627

RESUMO

Injury, inflammation, and nerve damage initiate a wide variety of cellular and molecular processes that culminate in hyperexcitation of sensory nerves, which underlies chronic inflammatory and neuropathic pain. Using behavioral readouts of pain hypersensitivity induced by angiotensin II (Ang II) injection into mouse hindpaws, our study shows that activation of the type 2 Ang II receptor (AT2R) and the cell-damage-sensing ion channel TRPA1 are required for peripheral mechanical pain sensitization induced by Ang II in male and female mice. However, we show that AT2R is not expressed in mouse and human dorsal root ganglia (DRG) sensory neurons. Instead, expression/activation of AT2R on peripheral/skin macrophages (MΦs) constitutes a critical trigger of mouse and human DRG sensory neuron excitation. Ang II-induced peripheral mechanical pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs. Furthermore, AT2R activation in MΦs triggers production of reactive oxygen/nitrogen species, which trans-activate TRPA1 on mouse and human DRG sensory neurons via cysteine modification of the channel. Our study thus identifies a translatable immune cell-to-sensory neuron signaling crosstalk underlying peripheral nociceptor sensitization. This form of cell-to-cell signaling represents a critical peripheral mechanism for chronic pain and thus identifies multiple druggable analgesic targets.SIGNIFICANCE STATEMENT Pain is a widespread health problem that is undermanaged by currently available analgesics. Findings from a recent clinical trial on a type II angiotensin II receptor (AT2R) antagonist showed effective analgesia for neuropathic pain. AT2R antagonists have been shown to reduce neuropathy-, inflammation- and bone cancer-associated pain in rodents. We report that activation of AT2R in macrophages (MΦs) that infiltrate the site of injury, but not in sensory neurons, triggers an intercellular redox communication with sensory neurons via activation of the cell damage/pain-sensing ion channel TRPA1. This MΦ-to-sensory neuron crosstalk results in peripheral pain sensitization. Our findings provide an evidence-based mechanism underlying the analgesic action of AT2R antagonists, which could accelerate the development of efficacious non-opioid analgesic drugs for multiple pain conditions.


Assuntos
Angiotensina II/fisiologia , Hiperalgesia/fisiopatologia , Macrófagos Peritoneais/metabolismo , Neuralgia/fisiopatologia , Receptor Tipo 2 de Angiotensina/fisiologia , Células Receptoras Sensoriais/fisiologia , Canal de Cátion TRPA1/fisiologia , Angiotensina II/toxicidade , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Comunicação Celular/fisiologia , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Genes Reporter , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Imidazóis/farmacologia , Ativação de Macrófagos , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/tratamento farmacológico , Ativação de Neutrófilo , Oxirredução , Piridinas/farmacologia , Receptor Tipo 2 de Angiotensina/genética , Células Receptoras Sensoriais/química , Pele/citologia , Canal de Cátion TRPA1/deficiência , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia
19.
Curr Hypertens Rep ; 20(5): 41, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717388

RESUMO

PURPOSE OF REVIEW: Angiotensin type 2 receptor (AT2R) and receptor Mas (MasR) are part of the "protective arm" of the renin angiotensin system. Gene and pharmacological manipulation studies reveal that AT2R and MasR are involved in natriuretic, vasodilatory, and anti-inflammatory responses and in lowering blood pressure in various animal models under normal and pathological conditions such as salt-sensitive hypertension, obesity, and diabetes. The scope of this review is to discuss co-localization and heterodimerization as potential molecular mechanisms of AT2R- and MasR-mediated functions including antihypertensive activities. RECENT FINDINGS: Accumulating evidences show that AT2R and MasR are co-localized, make a heterodimer, and are functionally interdependent in producing their physiological responses. Moreover, ang-(1-7) preferably may be an AT1R-biased agonist while acting as a MasR agonist. The physical interactions of AT2R and MasR appear to be an important mechanism by which these receptors are involved in blood pressure regulation and antihypertensive activity. Whether heteromers of these receptors influence affinity or efficacy of endogenous or synthetic agonists remains a question to be considered.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Dimerização , Humanos , Hipertensão/fisiopatologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia
20.
Cell Mol Neurobiol ; 38(1): 305-316, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28695320

RESUMO

The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.


Assuntos
Pressão Sanguínea/fisiologia , Córtex Cerebral/metabolismo , Frequência Cardíaca/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Estresse Psicológico/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Lobo Límbico/efeitos dos fármacos , Lobo Límbico/metabolismo , Masculino , Ratos , Ratos Wistar , Restrição Física/fisiologia , Restrição Física/psicologia , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...