Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Expert Opin Ther Targets ; 28(4): 295-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622072

RESUMO

BACKGROUND: Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS: In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS: Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS: GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Sobrevivência Celular , Transtorno Depressivo Maior , Neurônios , Ratos Sprague-Dawley , Receptor Tipo 2 de Galanina , Receptores de Neuropeptídeo Y , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Receptor Tipo 2 de Galanina/metabolismo , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Modelos Animais de Doenças , Peptídeos , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G
2.
FASEB J ; 38(7): e23595, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572811

RESUMO

This study evaluates the sustained antidepressant-like effects and neurogenic potential of a 3-day intranasal co-administration regimen of galanin receptor 2 (GALR2) agonist M1145 and neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31, Pro34]NPY in the ventral hippocampus of adult rats, with outcomes analyzed 3 weeks post-treatment. Utilizing the forced swimming test (FST), we found that this co-administration significantly enhances antidepressant-like behaviors, an effect neutralized by the GALR2 antagonist M871, highlighting the synergistic potential of these neuropeptides in modulating mood-related behaviors. In situ proximity ligation assay (PLA) indicated a significant increase in GALR2/NPYY1R heteroreceptor complexes in the ventral hippocampal dentate gyrus, suggesting a molecular basis for the behavioral outcomes observed. Moreover, proliferating cell nuclear antigen (PCNA) immunolabeling revealed increased cell proliferation in the subgranular zone of the dentate gyrus, specifically in neuroblasts as evidenced by co-labeling with doublecortin (DCX), without affecting quiescent neural progenitors or astrocytes. The study also noted a significant uptick in the number of DCX-positive cells and alterations in dendritic morphology in the ventral hippocampus, indicative of enhanced neuronal differentiation and maturation. These morphological changes highlight the potential of these agonists to facilitate the functional integration of new neurons into existing neural circuits. By demonstrating the long-lasting effects of a brief, 3-day intranasal administration of GALR2 and NPY1R agonists, our findings contribute significantly to the understanding of neuropeptide-mediated neuroplasticity and herald novel therapeutic strategies for the treatment of depression and related mood disorders, emphasizing the therapeutic promise of targeting neurogenesis and neuronal maturation processes.


Assuntos
Neuropeptídeo Y , Neuropeptídeos , Ratos , Animais , Receptor Tipo 2 de Galanina/agonistas , Receptor Tipo 2 de Galanina/metabolismo , Administração Intranasal , Galanina/farmacologia , Galanina/metabolismo , Hipocampo/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Neuropeptídeos/farmacologia , Antidepressivos/farmacologia , Neurogênese
3.
Sci Rep ; 14(1): 8905, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632282

RESUMO

Glyphosate is the active ingredient of glyphosate-based herbicides and the most commonly used pesticide in the world. The goal of the present study was to verify whether low doses of glyphosate (equivalent to the environmental exposure) evoke changes in galanin expression in intramural neurons in the small intestine in pigs and to quantitatively determine changes in the level of galanin receptor encoding mRNA (GALR1, GALR2, GALR3) in the small intestine wall. The experiment was conducted on 15 sexually immature gilts divided into three study groups: control (C)-animals receiving empty gelatin capsules; experimental 1 (G1)-animals receiving a low dose of glyphosate (0.05 mg/kg b.w./day); experimental 2 (G2)-animals receiving a higher dose of glyphosate (0.5 mg/kg b.w./day) orally in gelatine capsules for 28 days. Glyphosate ingestion led to an increase in the number of GAL-like immunoreactive intramural neurons in the porcine small intestine. The results of RT-PCR showed a significant increase in the expression of mRNA, which encodes the GAL-receptors in the ileum, a decreased expression in the duodenum and no significant changes in the jejunum. Additionally, intoxication with glyphosate increased the expression of SOD2-encoding mRNA in the duodenum and decreased it in the jejunum and ileum, but it did not affect SOD1 expression. The results suggest that it may be a consequence of the cytotoxic and/or neurotoxic properties of glyphosate and/or its ability to induce oxidative stress.


Assuntos
Galanina , Glifosato , Animais , Feminino , Galanina/metabolismo , Glifosato/metabolismo , Glifosato/toxicidade , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Receptor Tipo 2 de Galanina/efeitos dos fármacos , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , RNA Mensageiro/metabolismo , Sus scrofa/genética , Suínos , Receptor Tipo 1 de Galanina/efeitos dos fármacos , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/efeitos dos fármacos , Receptor Tipo 3 de Galanina/genética , Receptor Tipo 3 de Galanina/metabolismo , Herbicidas/toxicidade
4.
Behav Brain Funct ; 20(1): 6, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549164

RESUMO

BACKGROUND: Spatial memory deficits and reduced neuronal survival contribute to cognitive decline seen in the aging process. Current treatments are limited, emphasizing the need for innovative therapeutic strategies. This research explored the combined effects of intranasally co-administered galanin receptor 2 (GALR2) and neuropeptide Y1 receptor (NPY1R) agonists, recognized for their neural benefits, on spatial memory, neuronal survival, and differentiation in adult rats. After intranasal co-delivery of the GALR2 agonist M1145 and a NPY1R agonist to adult rats, spatial memory was tested with the object-in-place task 3 weeks later. We examined neuronal survival and differentiation by assessing BrdU-IR profiles and doublecortin (DCX) labeled cells, respectively. We also used the GALR2 antagonist M871 to confirm GALR2's crucial role in promoting cell growth. RESULTS: Co-administration improved spatial memory and increased the survival rate of mature neurons. The positive effect of GALR2 in cell proliferation was confirmed by the nullifying effects of its antagonist. The treatment boosted DCX-labeled newborn neurons and altered dendritic morphology, increasing cells with mature dendrites. CONCLUSIONS: Our results show that intranasal co-delivery of GALR2 and NPY1R agonists improves spatial memory, boosts neuronal survival, and influences neuronal differentiation in adult rats. The significant role of GALR2 is emphasized, suggesting new potential therapeutic strategies for cognitive decline.


Assuntos
Disfunção Cognitiva , Receptor Tipo 2 de Galanina , Ratos , Animais , Receptor Tipo 2 de Galanina/agonistas , Receptor Tipo 2 de Galanina/fisiologia , Receptores de Neuropeptídeo Y , Galanina/farmacologia , Neurogênese , Cognição , Disfunção Cognitiva/tratamento farmacológico
5.
Peptides ; 171: 171096, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714335

RESUMO

Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Peptídicos , Humanos , Galanina/uso terapêutico , Galanina/farmacologia , Receptores de Galanina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hormônios Peptídicos/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Obesidade/tratamento farmacológico
6.
Proc Biol Sci ; 290(2009): 20231686, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876194

RESUMO

Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel role for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a circulating Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.


Assuntos
Peixes Listrados , Animais , Peixes Listrados/genética , Receptor Tipo 2 de Galanina/genética , Bahamas , Fenótipo
7.
Exp Neurol ; 370: 114569, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827229

RESUMO

The inhibitory neuropeptide Galanin (Gal) has been shown to mediate anticonvulsion and neuroprotection. Here we investigated whether Gal affects cortical spreading depolarization (CSD). CSD is considered the pathophysiological neuronal mechanism of migraine aura, and a neuronal mechanism aggravating brain damage upon afflictions of the brain. Immunohistochemistry localized Gal and the Gal receptors 1-3 (GalR1-3) in native rat cortex and evaluated microglial morphology after exposure to Gal. In anesthetized rats, Gal was applied alone and together with the GalR antagonists M40, M871, or SNAP 37889 locally to the exposed cortex. The spontaneous electrocorticogram and CSDs evoked by remote KCl pressure microinjection were measured. In rat cortex, Gal was present in all neurons of all cortical layers, but not in astrocytes, microglia and vessels. GalR2 and GalR3 were expressed throughout all neurons, whereas GalR1 was preponderantly located at neurons in layers IV and V, but only in about half of the neurons. In susceptible rats, topical application of Gal on cortex decreased CSD amplitude, slowed CSD propagation velocity, and increased the threshold for KCl to ignite CSD. In some rats, washout of previously applied Gal induced periods of epileptiform patterns in the electrocorticogram. Blockade of GalR2 by M871 robustly prevented all Gal effects on CSD, whereas blockade of GalR1 or GalR3 was less effective. Although microglia did not express GalRs, topical application of Gal changed microglial morphology indicating microglial activation. This effect of Gal on microglia was prevented by blocking neuronal GalR2. In conclusion, Gal has the potential to ameliorate CSD thus reducing pathophysiological neuronal events caused by or associated with CSD.


Assuntos
Galanina , Receptor Tipo 2 de Galanina , Ratos , Animais , Galanina/farmacologia , Galanina/metabolismo , Encéfalo/metabolismo , Receptores de Galanina/metabolismo
8.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373336

RESUMO

Galanin is a 30 amino acid peptide that stimulates three subtype receptors (GAL1-3R). M89b is a lanthionine-stabilized, C-terminally truncated galanin analog that specifically stimulates GAL2R. We investigated the potential of M89b as a therapeutic for pancreatic ductal adenocarcinoma (PDAC) and assessed its safety. The anti-tumor activity of subcutaneously injected M89b on the growth of patient-derived xenografts of PDAC (PDAC-PDX) in mice was investigated. In addition, the safety of M89b was assessed in vitro using a multi-target panel to measure the off-target binding and modulation of enzyme activities. In a PDAC-PDX with a high GAL2R expression, M89b completely inhibited the growth of the tumor (p < 0.001), while in two PDAC-PDXs with low GAL2R expression, low or negligeable inhibition of tumor growth was measured, and in the PDX without GAL2R expression no influence on the tumor growth was observed. The M89b treatment of the GAL2R high-PDAC-PDX-bearing mice led to a reduction in the expression of RacGap1 (p < 0.05), PCNA (p < 0.01), and MMP13 (p < 0.05). In vitro studies involving a multi-target panel of pharmacologically relevant targets revealedexcellent safety of M89b. Our data indicated that GAL2R is a safe and valuable target for treating PDACs with high GAL2R expression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Galanina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral , Neoplasias Pancreáticas
9.
J Cell Physiol ; 238(2): 459-474, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599082

RESUMO

Dysregulation of adult hippocampal neurogenesis is linked to major depressive disorder (MDD), with more than 300 million people diagnosed and worsened by the COVID-19 pandemic. Accumulating evidence for neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the proliferating role of GAL2 receptor (GALR2) and Y1R agonists interaction upon intranasal infusion in the ventral hippocampus. We studied their hippocampal proliferating actions using the proliferating cell nuclear antigen (PCNA) on neuroblasts or stem cells and the expression of the brain-derived neurothrophic factor (BDNF). Moreover, we studied the formation of Y1R-GALR2 heteroreceptor complexes and analyzed morphological changes in hippocampal neuronal cells. Finally, the functional outcome of the NPY and GAL interaction on the ventral hippocampus was evaluated in the forced swimming test. We demonstrated that the intranasal infusion of GALR2 and the Y1R agonists promotes neuroblasts proliferation in the dentate gyrus of the ventral hippocampus and the induction of the neurotrophic factor BDNF. These effects were mediated by the increased formation of Y1R-GALR2 heteroreceptor complexes, which may mediate the neurites outgrowth observed on neuronal hippocampal cells. Importantly, BDNF action was found necessary for the antidepressant-like effects after GALR2 and the Y1R agonists intranasal administration. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the ventral hippocampus for the novel therapy of MDD or depressive-affecting diseases.


Assuntos
COVID-19 , Transtorno Depressivo Maior , Administração Intranasal , Antidepressivos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , COVID-19/metabolismo , Transtorno Depressivo Maior/metabolismo , Hormônios Esteroides Gonadais/farmacologia , Hipocampo/metabolismo , Neurogênese , Neuropeptídeo Y/metabolismo , Pandemias , Masculino , Animais , Ratos , Receptor Tipo 2 de Galanina/agonistas , Receptores de Neuropeptídeo Y/agonistas
10.
Arch Physiol Biochem ; 129(4): 933-942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33632048

RESUMO

This study declared effect of spexin (SPX) on renal dysfunction in obese rats and its potential mitigating mechanisms which could mediated via galanin receptor-2 (GALR-2). Thirty two 32 Wistar male rats were arranged into four groups: control, high fat/fructose diet (HFFD), HFFD + SPX and HFFD + M871 (galanin receptor 2 antagonist)+SPX. At the termination of the experiment, urine volume, body mass index, Lee index and mean arterial blood pressure were assessed. Renal function was evaluated. Lipid profile, fasting glucose, insulin, insulin resistance and SPX levels were estimated. Also, renal histopathological, immunohistochemical and relative gene expression of renal tissue were done. Also, renal protein carbonyl, reduced glutathione, interferon gamma, monocyte chemoattractant protein-1, interleukin-10 and hydroxyproline were determined.Our results explored that SPX treatment prominently mitigated the metabolic changes and renal dysfunction induced by HFFD via GALR-2. SPX improved insulin resistance, dyslipidemia, renal oxidative stress, inflammation, apoptosis, and fibrosis. So, SPX can be considered as prospective therapeutic agent for treating renal dysfunction.


Assuntos
Resistência à Insulina , Nefropatias , Animais , Masculino , Ratos , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/prevenção & controle , Obesidade/metabolismo , Ratos Wistar , Receptor Tipo 2 de Galanina , Receptores de Galanina
11.
Artigo em Inglês | MEDLINE | ID: mdl-35147137

RESUMO

AIMS: The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry. METHODS: Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease. RESULTS: The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes. CONCLUSION: This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.


Assuntos
Encefalomielite Autoimune Experimental , Galanina , Camundongos , Animais , Receptores de Galanina/genética , Receptores de Galanina/metabolismo , Galanina/genética , Galanina/metabolismo , Células Endoteliais , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo
12.
Neuropeptides ; 98: 102311, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36580831

RESUMO

Neuropathic pain is a chronic and debilitating condition characterised by episodes of hyperalgesia and allodynia. It occurs following nerve damage from disease, inflammation or injury and currently impacts up to 17% of the UK population. Existing therapies lack efficacy and have deleterious side effects that can be severely limiting. Galanin receptor 2 (GalR2) is a G-protein coupled receptor (GPCR) implicated in the control and processing of painful stimuli. Within the nervous system it is expressed in key tissues involved in these actions such as dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. Stimulation of GalR2 is widely reported to have a role in the attenuation of inflammatory and neuropathic pain. Several studies have indicated GalR2 as a possible drug target, highlighting the potential of specific GalR2 agonists to both provide efficacy and to address the side-effect profiles of current pain therapies in clinical use. A strong biological target for drug discovery will be well validated with regards to its role in the relevant disease pathology. Ideally there will be good translational models, sensitive probes, selective and appropriate molecular tools, translational biomarkers, a clearly defined patient population and strong opportunities for commercialisation. Before GalR2 can be considered as a drug target suitable for investment, key questions need to be asked regarding its expression profile, receptor signalling and ligand interactions. This article aims to critically review the available literature and determine the current strength of hypothesis of GalR2 as a target for the treatment of neuropathic pain.


Assuntos
Neuralgia , Receptor Tipo 2 de Galanina , Humanos , Receptor Tipo 2 de Galanina/agonistas , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Medula Espinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Gânglios Espinais/metabolismo
13.
Biomolecules ; 12(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36551197

RESUMO

Galanin (GAL) is an important neurotransmitter released by the enteric nervous system (ENS) neurons located in the muscularis externa and submucosa enteric plexuses that acts by binding to GAL receptors 1, 2 and 3 (GALR1, 2 and 3). In our previous studies, the GAL immunoexpression was compared in colorectal cancer (CRC) tissue and the adjacent parts of the large intestine wall including myenteric and submucosal plexuses. Recently we have also found that expression levels of GALR1 and GALR3 proteins are elevated in CRC tissue as compared with their expression in epithelial cells of unchanged mucosa. Moreover, higher GALR3 immunoreactivity in CRC cells correlated with better prognosis of CRC patients. To understand the distribution of GALRs in enteric plexuses distal and close to CRC invasion, in the present study we decided to evaluate GALRs expression within the myenteric and submucosal plexuses located proximally and distally to the cancer invasion and correlated the GALRs expression levels with the clinico-pathological data of CRC patients. The immunohistochemical and immunofluorescent methods showed only slightly decreased immunoexpression of GALR1 and GALR3 in myenteric plexuses close to cancer but did not reveal any correlation in the immunoexpression of all three GAL receptors in myenteric plexuses and tumour progression. No significant changes were found between the expression levels of GALRs in submucosal plexuses distal and close to the tumour. However, elevated GALR1 expression in submucosal plexuses in vicinity of CRC correlated with poor prognosis, higher tumour grading and shorter overall survival. When myenteric plexuses undergo morphological and functional alterations characteristic for atrophy, GALRs maintain or only slightly decrease their expression status. In contrast, the correlation between high expression of GALR1 in the submucosal plexuses and overall survival of CRC patients suggest that GAL and GALRs can act as a components of local neuro-paracrine pro-proliferative pathways accelerating the invasion and metastasis of cancer cell. The obtained results suggest an important role of GALR1 in submucosal plexuses function during the progression of CRC and imply that GALR1 expression in submucosal plexuses of ENS could be an important predictive factor for CRC progression.


Assuntos
Neoplasias Colorretais , Plexo Mientérico , Receptor Tipo 1 de Galanina , Receptor Tipo 2 de Galanina , Receptor Tipo 3 de Galanina , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Intestinos/inervação , Plexo Mientérico/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/metabolismo , Invasividade Neoplásica , Metástase Neoplásica
14.
Biomed Pharmacother ; 153: 113508, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076594

RESUMO

Alcohol Use Disorder (AUD) is among the most prevalent mental illnesses, and due to the low efficacy of the current medication, it is essential to find new biological targets that could modulate alcohol consumption. Since Galanin (1-15) [GAL(1-15)] produces a loss of motivational behaviour by an artificial reinforcer and decreases the preference an alcohol consumption in a voluntary alcohol intake, we have studied the role of GAL(1-15) in alcohol-seeking behaviour and the involvement of the corticomesolimbic system as well as the role of GAL(1-15) in context-induced alcohol relapse. In rats, we have studied GAL(1-15)-effects on alcohol-seeking in self-administration, in fixed-ratio (FR1) and progressive-ratio (PR), and the involvement of GAL receptors using siRNA GALR1 or GALR2 knockdown animals. We have analysed the transcriptional changes of C-Fos, dopamine receptors, GAL receptors and 5HT1A receptors in the corticomesolimbic system. Also, we have examined the effect of GAL(1-15) in context-induced alcohol relapse. GAL(1-15) substantially reduced alcohol-seeking behaviour in the operant self-administration model in an FR1 protocol and at the breaking point in a PR schedule. GALR1and GALR2 were involved in these effects, as indicated by the analysis by GALR2 antagonist and GALR1 and GALR2 knockdown animals. Notably, the mechanism of GAL(1-15)-mediated actions involved changes in C-Fos, Dopamine receptors and 5HT1A expression in the ventral tegmental area, accumbens nucleus and prefrontal cortex. Significantly, GAL(1-15) reduced the context-induced alcohol relapse. These results open up the possibility to use GAL(1-15) as a novel strategy in AUD.


Assuntos
Alcoolismo , Galanina , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Animais , Etanol , Galanina/metabolismo , Galanina/farmacologia , Galanina/uso terapêutico , Fragmentos de Peptídeos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptor Tipo 2 de Galanina/efeitos dos fármacos , Receptor Tipo 2 de Galanina/metabolismo , Receptores Dopaminérgicos , Receptores de Galanina/efeitos dos fármacos , Receptores de Galanina/metabolismo , Recidiva
15.
Biochem Biophys Res Commun ; 627: 207-213, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055012

RESUMO

Spexin (SPX) is a newly identified neuropeptide, a natural ligand for the galanin receptors (GALR) 2/3, which is involved in maintaining physiological functions including female reproduction. One of the most common endocrine disorder in reproductive system is polycystic ovary syndrome (PCOS), however the role of SPX in PCOS is still unknown. The objective of this study was to determine the expression of mRNA and peptide levels of SPX and its receptors GALR2/3 in the hypothalamus and ovary (by real time PCR and Western blot) as well as plasma levels of SPX (ELISA) in letrozole - induced PCOS rats. We observed that SPX plasma level does not change in PCOS rats. In the hypothalamus transcript level of Spx and Galr3 were significantly higher in PCOS rats compared to the control, while mRNA of Galr2 and protein expression of GALR2/3 were lower. Moreover, expression of Spx and Galr2/3 mRNA as well as GALR2/3 peptide production were lower in the ovary of PCOS rats. In summary, while our results did not show differences in plasma SPX levels, we observed tissue-dependent significant differences in the SPX/GALR2/3 levels between PCOS and control rats, what indicates possible new mechanisms of PCOS neuroendocrinology.


Assuntos
Hormônios Peptídicos/metabolismo , Síndrome do Ovário Policístico , Receptor Tipo 3 de Galanina/metabolismo , Animais , Feminino , Humanos , Hipotálamo/metabolismo , Letrozol , Síndrome do Ovário Policístico/induzido quimicamente , RNA Mensageiro , Ratos , Receptor Tipo 2 de Galanina/metabolismo
16.
PLoS Biol ; 20(8): e3001714, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35913979

RESUMO

Galanin is a neuropeptide expressed in the central and peripheral nervous systems, where it regulates various processes including neuroendocrine release, cognition, and nerve regeneration. Three G-protein coupled receptors (GPCRs) for galanin have been discovered, which is the focus of efforts to treat diseases including Alzheimer's disease, anxiety, and addiction. To understand the basis of the ligand preferences of the receptors and to assist structure-based drug design, we used cryo-electron microscopy (cryo-EM) to solve the molecular structure of GALR2 bound to galanin and a cognate heterotrimeric G-protein, providing a molecular view of the neuropeptide binding site. Mutant proteins were assayed to help reveal the basis of ligand specificity, and structural comparison between the activated GALR2 and inactive hß2AR was used to relate galanin binding to the movements of transmembrane (TM) helices and the G-protein interface.


Assuntos
Galanina/química , Proteínas Heterotriméricas de Ligação ao GTP , Receptor Tipo 2 de Galanina/química , Microscopia Crioeletrônica , Galanina/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Receptor Tipo 2 de Galanina/metabolismo
17.
Mol Cell Endocrinol ; 552: 111688, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654225

RESUMO

It was reported that spexin as an adipocyte-secreted protein could regulate obesity and insulin resistance. However, the specific metabolic contribution of spexin to fatty liver remains incompletely understood. Herein, we investigated the effects of spexin on hepatosteatosis and explored the underlying molecular mechanisms. HFD-fed mice were injected with spexin and/or GALR2 antagonist M871, while PA-induced HepG2 cells were treated with spexin in the absence or presence of M871 for 12 h, respectively. Gene expression in liver tissues and hepatocytes was assessed by qRT-PCR and western blotting, respectively. The results showed that body weight, visceral fat content, liver lipid droplet formation, hepatic intracellular triglyceride, and serum triglyceride were reduced in spexin-treated mice. Furthermore, spexin increased the expression of hepatic CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK in vivo and in vitro. Additionally, spexin treatment improved glucose tolerance and insulin sensitivity in mice fed the HFD. Interestingly, these spexin-mediated beneficial effects were abolished by the GALR2 antagonist M871 in mice fed HFD and PA-induced HepG2 cells, suggesting that spexin mitigated HFD-induced hepatic steatosis by activating the GALR2, thereby increasing CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK expression. Taken together, these data suggest that spexin ameliorates NAFLD by improving lipolysis and fatty acid oxidation via activation of GALR2 signaling.


Assuntos
Resistência à Insulina , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Hormônios Peptídicos/farmacologia , Ração Animal , Animais , Dieta Hiperlipídica , Resistência à Insulina/fisiologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Sirtuína 1/metabolismo , Triglicerídeos/metabolismo
18.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409094

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer in women and the third in men. The postoperative pathomorphological evaluation of patients with CRC is extremely important for future therapeutic decisions. Although our previous studies demonstrated high galanin (GAL) presence within tumor tissue and an elevated concentration of GAL in the serum of CRC patients, to date, there is a lack of data regarding GAL receptor (GalR) protein expression in CRC cells. Therefore, the aim of this study was to evaluate the presence of all three types of GalRs (GalR1, GalR2 and GalR3) within epithelial cells of the human colon and CRC tissue with the use of the immunohistochemical method and to correlate the results with the clinical-pathological data. We found stronger immunoreactivity of GalR1 and GalR3 in CRC cells compared to epithelial cells of the unchanged mucosa of the large intestine. No differences in the GalR2 protein immunoreactivity between the studied tissues were noted. We also found that the increased immunoexpression of the GalR3 in CRC tissue correlated with the better prognosis and longer survival (p < 0.0079) of CRC patients (n = 55). The obtained results suggest that GalR3 may play the role of a prognostic factor for CRC patients. Based on data from the TCGA-COAD project deposited in the GDC Data Portal, we also found that GalR mRNA in cancer samples and the adjacent normal tissue did not correlate with immunoexpression of the GalR proteins in CRC cells and epithelial cells of the unchanged mucosa.


Assuntos
Neoplasias Colorretais , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina , Receptor Tipo 3 de Galanina/metabolismo , Neoplasias Colorretais/genética , Feminino , Humanos , Masculino , RNA Mensageiro/metabolismo , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Receptores de Galanina/genética , Receptores de Galanina/metabolismo
19.
Cell Oncol (Dordr) ; 45(2): 241-256, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35267186

RESUMO

PURPOSE: Galanin receptor 2 (GALR2) plays a significant role in the progression of head and neck squamous cell carcinomas (HNSCC). Since there is virtually no information on immunomodulation mediated by its ligand in the tumor microenvironment, we assessed the effects of galanin on peripheral blood mononuclear cells (PBMCs). METHODS: After verification of GALR2 expression and it activity in PBMCs we evaluated the effect of galanin and conditioned media from HNSCC cell lines silenced for galanin or antibody-depleted, on proliferation, apoptosis, cytokine expression and activation/differentiation of immune cells. RESULTS: We found that galanin alone and as a component of the HNSCC secretome decreased HNSCC cell proliferation and expression of pro-inflammatory cytokines (IFNγ, IL-12, IL-17A, IL-1α, IL-6 and TNF-α), whilst increasing apoptosis and expression of pro-tumoral cytokines/growth factors (IL-10, IL-4, PDGF and GM-CSF). T cell activation (using CD69 as activation marker) and anti-tumoral phenotypes in CD4+ T cells (Th1 and Th17) were found to be suppressed. In vivo, tumor growth was found to be increased in the presence of galanin-stimulated PBMCs. Data from The Cancer Genome Atlas (TCGA) revealed that high expression of galanin was associated with a reduced overall survival of patients with HNSCC. CONCLUSION: Our data indicate that galanin secreted by HNSCC cells exhibits immune-suppressive and pro-tumoral effects.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Galanina/metabolismo , Galanina/farmacologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Terapia de Imunossupressão , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral
20.
J Biomol Struct Dyn ; 40(23): 12964-12974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34632940

RESUMO

The Galaninergic system consist of Galanin and its receptors, involved in neuromodulation and neurotransmission. Galanin regulate its physiologic and pathologic functions by interacting with three G-protein coupled receptors; GalR1, GalR2 and GalR3. The widespread distribution of Galanin and its receptor subtypes in central and peripheral nervous system makes them an attractive drug target for the treatment of neurological diseases. However, subtypes selective ligands paucity and little structural information related to either Galanin receptors and Galanin receptor-ligand complexes hampered the structure-based drug design. Thus computational modeling characterization strategy was utilized for Galanin receptor 3D structure prediction and subtypes ligands binding selectivity. Reported ligands with experimental activity were docked against the homology model of Galanin receptors. Further, the MD simulation and binding free energy calculation were carried out to determine the binding interactions pattern consistency and selectivity towards receptor subtype. Results of binding free energy of per residue indicate key contribution of GalR1 Phe115 and His267 in the selective binding of ligands while Tyr103, Tyr270 and His277 play major role in the selective binding of GalR3 ligands. Our study provide rationale for further in silico virtual screening of small molecules for the development of selective ligands against Galanin receptor subtypes.Communicated by Ramaswamy H. Sarma.


Assuntos
Galanina , Receptor Tipo 2 de Galanina , Receptores de Galanina/metabolismo , Galanina/química , Galanina/metabolismo , Ligantes , Receptor Tipo 2 de Galanina/química , Receptor Tipo 2 de Galanina/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...