Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Infect Immun ; 89(11): e0040721, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34370509

RESUMO

During chronic infection with Helicobacter pylori, Schlafen 4-expressing myeloid-derived suppressor cells (SLFN4+ MDSCs) create a microenvironment favoring intestinal metaplasia and neoplastic transformation. SLFN4 can be induced by alpha interferon (IFN-α), which is mainly secreted from plasmacytoid dendritic cells (pDCs). This study tested the hypothesis that Helicobacter pylori infection promotes SLFN4+ MDSC differentiation by inducing pDCs to secrete IFN-α. C57BL/6 mice were gavaged with H. pylori, and infection lasted 2, 4, or 6 months. Mouse pDCs were isolated from bone marrow of wild-type C57BL/6J mice. The results showed that H. pylori infection increased the number of SLFN4+ MDSCs by inducing IFN-α expression in mice. Further mechanistic experiments unraveled that IFN-α induced SLFN4 transcription by binding to the Slfn4 promoter. Furthermore, H. pylori infection stimulated pDCs to secrete IFN-α by activating the TLR9-MyD88-IRF7 pathway. Collectively, Helicobacter pylori infection promotes SLFN4+ MDSC differentiation by inducing secretion of IFN-α from pDCs.


Assuntos
Proteínas de Transporte/genética , Células Dendríticas/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori , Interferon Tipo I/biossíntese , Células Supressoras Mieloides/citologia , Animais , Diferenciação Celular , Fator Regulador 7 de Interferon/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Regiões Promotoras Genéticas , Receptor Toll-Like 9/fisiologia
2.
J Autoimmun ; 123: 102686, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34325305

RESUMO

Cutaneous lupus erythematosus (CLE) is a relapsing autoimmune disease, but key elements that drive disease initiation and progression remain elusive. To date, the lack of ideal murine model which resemble human cutaneous lupus makes it extremely challenging for moving mechanistic discoveries and novel therapeutics. Here, we prompt a humanized murine model to develop an inducible rapid-onset murine that performs cutaneous rather than systemic lupus, depending on the successful human immune system reconstruction from active lupus patients and UVB irradiation as for essentially pathogenic triggers. In addition, we demonstrate a newly discovered population of B cell with a unique phenotype, that of the age-associated B cell (ABC, T-bet+ CD11b+), exhibits B cell clusters in humanized cutaneous lupus. In the response of IL-21 and TLR7/9 signals, recruitment of autoreactive B cells to the position of inflammation with subsequent localized antibody production of IgG2a, IgG2b, IgG3, has the potential to exacerbate ongoing inflammation and thus driving lupus-like autoimmunity in a B-cell-dominant fashion. Overall, our model provides a relevant system for exploring the pathophysiology of cutaneous lupus, a suitable model for drug development, as well as updating a potential role of IL-21 and TLR7/9 to be targeted by biologics.


Assuntos
Envelhecimento/imunologia , Linfócitos B/fisiologia , Interleucinas/fisiologia , Lúpus Eritematoso Cutâneo/etiologia , Adolescente , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/biossíntese , Lúpus Eritematoso Cutâneo/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Adulto Jovem
3.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800897

RESUMO

Neutrophil-mediated innate host defense mechanisms include pathogen elimination through bacterial phagocytosis, which activates the 5-lipoxygenase (5-LOX) product synthesis. Here, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs), which mimic the receptor-recognized sites of bacterial (CpG-ODNs) and genomic (G-rich ODNs) DNAs released from the inflammatory area, on the neutrophil functions after cell stimulation with Salmonella typhimurium. A possible mechanism for ODN recognition by Toll-like receptor 9 (TLR9) and RAGE receptor has been proposed. We found for the first time that the combination of the magic peptide LRR11 from the leucine-rich repeat (LRR) of TLR9 with the CpG-ODNs modulates the uptake and signaling from ODNs, in particular, dramatically stimulates 5-LOX pathway. Using thickness shear mode acoustic method, we confirmed the specific binding of CpG-ODNs, but not G-rich ODN, to LRR11. The RAGE receptor has been shown to play an important role in promoting ODN uptake. Thus, FPS-ZM1, a high-affinity RAGE inhibitor, suppresses the synthesis of 5-LOX products and reduces the uptake of ODNs by neutrophils; the inhibitor effect being abolished by the addition of LRR11. The results obtained revealed that the studied peptide-ODN complexes possess high biological activity and can be promising for the development of effective vaccine adjuvants and antimicrobial therapeutics.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Leucotrienos/biossíntese , Neutrófilos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor Toll-Like 9/fisiologia , Benzamidas/farmacologia , Cálcio/metabolismo , Ilhas de CpG , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Neutrófilos/efeitos dos fármacos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/farmacologia , Proteínas Opsonizantes , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Salmonella typhimurium
4.
Blood ; 137(6): 763-774, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33067633

RESUMO

Gene therapy has the potential to maintain therapeutic blood clotting factor IX (FIX) levels in patients with hemophilia B by delivering a functional human F9 gene into liver cells. This phase 1/2, open-label dose-escalation study investigated BAX 335 (AskBio009, AAV8.sc-TTR-FIXR338Lopt), an adeno-associated virus serotype 8 (AAV8)-based FIX Padua gene therapy, in patients with hemophilia B. This report focuses on 12-month interim analyses of safety, pharmacokinetic variables, effects on FIX activity, and immune responses for dosed participants. Eight adult male participants (aged 20-69 years; range FIX activity, 0.5% to 2.0%) received 1 of 3 BAX 335 IV doses: 2.0 × 1011; 1.0 × 1012; or 3.0 × 1012 vector genomes/kg. Three (37.5%) participants had 4 serious adverse events, all considered unrelated to BAX 335. No serious adverse event led to death. No clinical thrombosis, inhibitors, or other FIX Padua-directed immunity was reported. FIX expression was measurable in 7 of 8 participants; peak FIX activity displayed dose dependence (32.0% to 58.5% in cohort 3). One participant achieved sustained therapeutic FIX activity of ∼20%, without bleeding or replacement therapy, for 4 years; in others, FIX activity was not sustained beyond 5 to 11 weeks. In contrast to some previous studies, corticosteroid treatment did not stabilize FIX activity loss. We hypothesize that the loss of transgene expression could have been caused by stimulation of innate immune responses, including CpG oligodeoxynucleotides introduced into the BAX 335 coding sequence by codon optimization. This trial was registered at www.clinicaltrials.gov as #NCT01687608.


Assuntos
Ilhas de CpG/genética , Fator IX/uso terapêutico , Regulação da Expressão Gênica , Terapia Genética , Hemofilia B/terapia , Proteínas Recombinantes de Fusão/uso terapêutico , Adolescente , Adulto , Idoso , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fator IX/biossíntese , Fator IX/genética , Mutação com Ganho de Função , Hemofilia B/genética , Hemofilia B/imunologia , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Moléculas com Motivos Associados a Patógenos/imunologia , Estudos Prospectivos , Rabdomiólise/etiologia , Receptor Toll-Like 9/fisiologia , Transgenes , Adulto Jovem
5.
J Cell Mol Med ; 24(18): 10913-10923, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33140921

RESUMO

Doxorubicin is a commonly used anthracycline chemotherapeutic drug. Its application for treatment has been impeded by its cardiotoxicity as it is detrimental and fatal. DNA damage, cardiac inflammation, oxidative stress and cell death are the critical links in DOX-induced myocardial injury. Previous studies found that TLR9-related signalling pathways are associated with the inflammatory response of cardiac myocytes, mitochondrial dysfunction and cardiomyocyte death, but it remains unclear whether TLR9 could influence DOX-induced heart injury. Our current data imply that DOX-induced cardiotoxicity is ameliorated by TLR9 deficiency both in vivo and in vitro, manifested as improved cardiac function and reduced cardiomyocyte apoptosis and oxidative stress. Furthermore, the deletion of TLR9 rescued DOX-induced abnormal autophagy flux in vivo and in vitro. However, the inhibition of autophagy by 3-MA abolished the protective effects of TLR9 deletion on DOX-induced cardiotoxicity. Moreover, TLR9 ablation suppressed the activation of p38 MAPK during DOX administration and may promote autophagy via the TLR9-p38 MAPK signalling pathway. Our study suggests that the deletion of TLR9 exhibits a protective effect on doxorubicin-induced cardiotoxicity by enhancing p38-dependent autophagy. This finding could be used as a basis for the development of a prospective therapy against DOX-induced cardiotoxicity.


Assuntos
Autofagia/fisiologia , Cardiomiopatias/prevenção & controle , Receptor Toll-Like 9/deficiência , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Doxorrubicina/toxicidade , Inflamação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Estresse Oxidativo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Organismos Livres de Patógenos Específicos , Receptor Toll-Like 9/fisiologia
6.
Sci Rep ; 10(1): 18110, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093516

RESUMO

Allergic asthma is one of most famous allergic diseases, which develops lung and airway inflammation. Recent studies have revealed the relationship between the pathology of allergic asthma and the increase of host-derived DNA in inflamed lung, but the role of the DNA-recognizing innate immune receptor for the inflammation is unknown well. Here we investigated the role of Toll-Like Receptor 9 in the pathogenesis of allergic asthma without synthesized CpG-ODNs. To examine that, we analyzed the pathology and immunology of house-dust-mite (HDM)-induced allergic asthma in Tlr9-/- mice and TLR9-inhibitory-antibody-treated mice. In Tlr9-/- mice, airway hyperresponsiveness (AHR) and the number of eosinophils decreased, and production of the Th2 cytokines IL-13, IL-5, and IL-4 was suppressed, compared with in wild-type mice. Interestingly, unlike Th2 cytokine production, IL-17A production was increased in Tlr9-/- mice. Furthermore, production of IL-2, which decreases IL-17A production, was reduced in Tlr9-/- mice. Blockade of TLR9 by treatment with TLR9-inhibitory-antibody, NaR9, effectively suppressed the development of allergic asthma pathology. IL-17A production in NaR9-treated mice was enhanced, which is comparable to Tlr9-/- mice. These results suggest that the TLR9-IL-2 axis plays an important role in Th2 inflammation by modulating IL-17A production in HDM-induced allergic asthma and that targeting of TLR9 might be a novel therapeutic method for allergic asthma.


Assuntos
Asma/patologia , Biomarcadores/metabolismo , Inflamação/patologia , Interleucina-17/metabolismo , Interleucina-2/metabolismo , Hipersensibilidade Respiratória/patologia , Receptor Toll-Like 9/fisiologia , Alérgenos/imunologia , Animais , Asma/etiologia , Asma/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-17/genética , Interleucina-2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/metabolismo , Células Th2
7.
Front Immunol ; 11: 356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194565

RESUMO

It is known that herpes simplex virus type 2 (HSV-2) triggers the activation of Toll-like receptor (TLR) 9 signaling pathway and the consequent production of antiviral cytokines in dendritic cells. However, the impact of HSV-2 infection on TLR9 expression and signaling in genital epithelial cells, the primary HSV-2 targets, has yet to be determined. In the current study, by using both human genital epithelial cell lines and primary genital epithelial cells as models, we found that HSV-2 infection enhances TLR9 expression at both mRNA and protein levels. Such enhancement is virus replication-dependent and CpG-independent, while the HSV-2-mediated upregulation of TLR9 does not activate TLR9 signaling pathway. Mechanistically, a SP1 binding site on TLR9 promoter appears to be essential for HSV-2-induced TLR9 transactivation. Upon HSV-2 infection, SP1 translocates from the cytoplasm to the nucleus, and consequently binds to TLR9 promoter. By using specific inhibitors, the JNK signaling pathway is shown to be involved in the HSV-2-induced TLR9 transactivation, while HSV-2 infection increases the phosphorylation but not the total level of JNK. In agreement, antagonism of JNK signaling pathway inhibits the HSV-2-induced SP1 nuclear translocation. Taken together, our study demonstrates that HSV-2 infection of human genital epithelial cells promotes TLR9 expression through SP1/JNK signaling pathway. Findings in this study provide insights into HSV-2-host interactions and potential targets for immune intervention.


Assuntos
Genitália/virologia , Herpesvirus Humano 2/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Fator de Transcrição Sp1/fisiologia , Receptor Toll-Like 9/genética , Células Epiteliais/virologia , Feminino , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Regiões Promotoras Genéticas , Transdução de Sinais/fisiologia , Receptor Toll-Like 9/fisiologia , Regulação para Cima , Replicação Viral
8.
Crit Rev Eukaryot Gene Expr ; 30(5): 457-474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33389882

RESUMO

Toll-like receptor 9 (TLR9) plays a fundamental role in innate immune responses through pathogen-associated and danger-associated molecular pattern recognition. Ligand recognition by TLR9 results in activation of several signaling pathways, including those involving nuclear factor-kappa B, mitogen-activated protein kinases, and interfer-on-regulatory factors, which promote secretion of proinflammatory cytokines and type I interferons. TLR9 is expressed by immune-mediated cells and in clinical specimens and cell lines of various human cancers. TLR9 appears to act as a double-edged sword in cancer, with some studies indicating that it is associated with increased malignancy and others indicating that it contributes to immune response against cancer. At present, the mechanisms underlying the role of TLR9 in cancer pathophysiology are not completely clear, although various TLR9 agonists and antagonists are being tested in in vitro and in vivo cancer models as well as clinical trials. This review summarizes the current state of knowledge regarding TLR9 features, isoforms, structure, ligands, and signaling, and discusses the roles of TLR9 in cancer pathogenesis. Recent efforts to utilize TLR9 agonists and antagonists as potential anticancer immunotherapy agents are also highlighted.


Assuntos
Neoplasias/fisiopatologia , Receptor Toll-Like 9/fisiologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/antagonistas & inibidores
9.
Am J Respir Cell Mol Biol ; 62(3): 364-372, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31647878

RESUMO

The immune system is designed to robustly respond to pathogenic stimuli but to be tolerant to endogenous ligands to not trigger autoimmunity. Here, we studied an endogenous damage-associated molecular pattern, mitochondrial DNA (mtDNA), during primary graft dysfunction (PGD) after lung transplantation. We hypothesized that cell-free mtDNA released during lung ischemia-reperfusion triggers neutrophil extracellular trap (NET) formation via TLR9 signaling. We found that mtDNA increases in the BAL fluid of experimental PGD (prolonged cold ischemia followed by orthotopic lung transplantation) and not in control transplants with minimal warm ischemia. The adoptive transfer of mtDNA into the minimal warm ischemia graft immediately before lung anastomosis induces NET formation and lung injury. TLR9 deficiency in neutrophils prevents mtDNA-induced NETs, and TLR9 deficiency in either the lung donor or recipient decreases NET formation and lung injury in the PGD model. Compared with human lung transplant recipients without PGD, severe PGD was associated with high levels of BAL mtDNA and NETs, with evidence of relative deficiency in DNaseI. We conclude that mtDNA released during lung ischemia-reperfusion triggers TLR9-dependent NET formation and drives lung injury. In PGD, DNaseI therapy has a potential dual benefit of neutralizing a major NET trigger (mtDNA) in addition to dismantling pathogenic NETs.


Assuntos
Isquemia Fria/efeitos adversos , DNA Mitocondrial/farmacologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/efeitos dos fármacos , Disfunção Primária do Enxerto/imunologia , Receptor Toll-Like 9/fisiologia , Lesão Pulmonar Aguda/etiologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citrulinação , DNA Mitocondrial/administração & dosagem , Desoxirribonuclease I/metabolismo , Humanos , Transplante de Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Disfunção Primária do Enxerto/metabolismo , Proteína-Arginina Desiminase do Tipo 4/deficiência , Proteína-Arginina Desiminase do Tipo 4/fisiologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Organismos Livres de Patógenos Específicos , Receptor Toll-Like 9/deficiência , Isquemia Quente/efeitos adversos
10.
J Immunol ; 203(9): 2443-2450, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578270

RESUMO

Skin tissue resident memory T cells (TRM) provide superior protection to a second infection. In this study, we evaluated the use of topical CpG oligodeoxynucleotide (ODN) as adjuvant to generate skin TRM in mice. Topical or s.c. CpG ODN adjuvant administration at the time of a s.c. Ag injection led to an accumulation of CD103- CD8 T cells in the epidermis. However, only mice with CpG ODN administered topically had significant numbers of CD103+ Ag-specific CD8 T cells persisting in the local epidermal skin, enhanced circulating memory cells in the blood, and showed protection from intradermal challenge with melanoma cells. Generation of Ag-specific CD8 T cells was dependent on TLR9 expression on hematopoietic cells and partially dependent on receptor expression on stromal cells. Topical challenge of immunized mice at a distal site led to significant expansion of Ag-specific T cells in the blood and accumulation in the challenged skin. We demonstrate that local and systemic T cell memory can be generated with topical CpG ODN at the time of s.c. immunization, suggesting a new method of enhancing current vaccine formulations to generate tissue TRM.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Memória Imunológica , Oligodesoxirribonucleotídeos/administração & dosagem , Pele/imunologia , Linfócitos T/fisiologia , Vacinação , Animais , Linhagem Celular Tumoral , Imunidade Inata , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Receptor Toll-Like 9/fisiologia
11.
J Leukoc Biol ; 106(1): 147-160, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900780

RESUMO

TLRs are a class of pattern recognition receptors (PRRs) that detect invading microbes by recognizing pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, TLRs activate a signaling cascade that leads to the production of inflammatory mediators. The localization of TLRs, either on the plasma membrane or in the endolysosomal compartment, has been considered to be a fundamental aspect to determine to which ligands the receptors bind, and which transduction pathways are induced. However, new observations have challenged this view by identifying complex trafficking events that occur upon TLR-ligand binding. These findings have highlighted the central role that endocytosis and receptor trafficking play in the regulation of the innate immune response. Here, we review the TLR4 and TLR9 transduction pathways and the importance of their different subcellular localization during the inflammatory response. Finally, we discuss the implications of TLR9 subcellular localization in autoimmunity.


Assuntos
Receptor 4 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Animais , Doenças Autoimunes/imunologia , Citocinas/biossíntese , Proteínas de Ligação a DNA/fisiologia , Endocitose , Granulinas/fisiologia , Proteína HMGB1/fisiologia , Humanos , Glicoproteínas de Membrana/fisiologia , Receptores de Interleucina-1/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia
12.
Science ; 363(6423)2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30630901

RESUMO

Cytopenias are an important clinical problem associated with inflammatory disease and infection. We show that specialized phagocytes that internalize red blood cells develop in Toll-like receptor 7 (TLR7)-driven inflammation. TLR7 signaling caused the development of inflammatory hemophagocytes (iHPCs), which resemble splenic red pulp macrophages but are a distinct population derived from Ly6Chi monocytes. iHPCs were responsible for anemia and thrombocytopenia in TLR7-overexpressing mice, which have a macrophage activation syndrome (MAS)-like disease. Interferon regulatory factor 5 (IRF5), associated with MAS, participated in TLR7-driven iHPC differentiation. We also found iHPCs during experimental malarial anemia, in which they required endosomal TLR and MyD88 signaling for differentiation. Our findings uncover a mechanism by which TLR7 and TLR9 specify monocyte fate and identify a specialized population of phagocytes responsible for anemia and thrombocytopenia associated with inflammation and infection.


Assuntos
Anemia/fisiopatologia , Síndrome de Ativação Macrofágica/fisiopatologia , Glicoproteínas de Membrana/fisiologia , Fagócitos/citologia , Transdução de Sinais , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/fisiologia , Inflamação/fisiopatologia , Fatores Reguladores de Interferon/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Fator 88 de Diferenciação Mieloide/fisiologia , Plasmodium yoelii , Baço/citologia , Trombocitopenia/fisiopatologia , Transcriptoma
13.
Cell Immunol ; 342: 103682, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-28888664

RESUMO

Adeno-associated viral (AAV) gene delivery to skeletal muscle is being explored for systemic delivery of therapeutic proteins. To better understand the signals that govern antibody formation against secreted transgene products in this approach, we administered an intramuscular dose of AAV1 vector expressing human coagulation factor IX (hFIX), which does not cause antibody formation against hFIX in C57BL/6 mice. Interestingly, co-administration of a TLR9 agonist (CpG-deoxyoligonucleotide, ODN) but not of lipopolysaccharide, caused a transient anti-hFIX response. ODN activated monocyte-derived dendritic cells and enhanced T follicular helper cell responses. While depletion of regulatory T cells (Tregs) also caused an antibody response, TLR9 activation combined with Treg depletion instead resulted in prolonged CD8+ T cell infiltration of transduced muscle. Thus, Tregs modulate the response to the TLR9 agonist. Further, Treg re-population eventually resolved humoral and cellular immune responses. Therefore, specific modes of TLR9 activation and Tregs orchestrate antibody formation in muscle gene transfer.


Assuntos
Dependovirus/genética , Fator IX/genética , Fator IX/imunologia , Técnicas de Transferência de Genes , Linfócitos T Reguladores/imunologia , Receptor Toll-Like 9/fisiologia , Animais , Formação de Anticorpos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Transgenes
14.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429335

RESUMO

Murine gammaherpesvirus 68 (MHV68) is a small-animal model suitable for study of the human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. Here, we have characterized the roles of the endosomal Toll-like receptor (TLR) escort protein UNC93B, endosomal TLR7, -9, and -13, and cell surface TLR2 in MHV68 detection. We found that the alpha interferon (IFN-α) response of plasmacytoid dendritic cells (pDC) to MHV68 was reduced in Tlr9-/- cells compared to levels in wild type (WT) cells but not completely lost. Tlr7-/- pDC responded similarly to WT. However, we found that in Unc93b-/- pDC, as well as in Tlr7-/-Tlr9-/- double-knockout pDC, the IFN-α response to MHV68 was completely abolished. Thus, the only pattern recognition receptors contributing to the IFN-α response to MHV68 in pDC are TLR7 and TLR9, but the contribution of TLR7 is masked by the presence of TLR9. To address the role of UNC93B and TLR for MHV68 infection in vivo, we infected mice with MHV68. Lytic replication of MHV68 after intravenous infection was enhanced in the lungs, spleen, and liver of UNC93B-deficient mice, in the spleen of TLR9-deficient mice, and in the liver and spleen of Tlr7-/-Tlr9-/- mice. The absence of TLR2 or TLR13 did not affect lytic viral titers. We then compared reactivation of MHV68 from latently infected WT, Unc93b-/-, Tlr7-/-Tlr9-/-, Tlr7-/-, and Tlr9-/- splenocytes. We observed enhanced reactivation and latent viral loads, particularly from Tlr7-/-Tlr9-/- splenocytes compared to levels in the WT. Our data show that UNC93B-dependent TLR7 and TLR9 cooperate in and contribute to detection and control of MHV68 infection.IMPORTANCE The two human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), can cause aggressive forms of cancer. These herpesviruses are strictly host specific, and therefore the homolog murine gammaherpesvirus 68 (MHV68) is a widely used model to obtain in vivo insights into the interaction between these two gammaherpesviruses and their host. Like EBV and KSHV, MHV68 establishes lifelong latency in B cells. The innate immune system serves as one of the first lines of host defense, with pattern recognition receptors such as the Toll-like receptors playing a crucial role in mounting a potent antiviral immune response to various pathogens. Here, we shed light on a yet unanticipated role of Toll-like receptor 7 in the recognition of MHV68 in a subset of immune cells called plasmacytoid dendritic cells, as well as on the control of this virus in its host.


Assuntos
Células Dendríticas/imunologia , Endossomos/imunologia , Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/diagnóstico , Glicoproteínas de Membrana/fisiologia , Células-Tronco Mesenquimais/imunologia , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Endossomos/metabolismo , Endossomos/virologia , Feminino , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Ativação Viral , Latência Viral , Replicação Viral
15.
J Biol Chem ; 293(27): 10425-10434, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29666186

RESUMO

Dendritic cells (DC) and cytokines produced by DC play crucial roles in inducing and regulating pro-/anti-inflammatory and Th1/Th2 responses. DC are known to produce a Th1-promoting cytokine, interleukin (IL)-12, in response to malaria and other pathogenic infections, but it is thought that DC do not produce Th2-promoting cytokine, IL-4. Here, we show that a protein factor of malaria parasites induces IL-4 responses by CD11chiMHCIIhiCD3ϵ-CD49b-CD19-FcϵRI- DC via PI3K-Akt-NF-κB signaling independent of TLR-MyD88/TRIF. Malaria parasite-activated DC induced IL-4 responses by T cells both in vitro and in vivo, favoring Th2, and il-4-deficient DC were unable to induce IL-4 expression by T cells. Interestingly, lethal parasites, Plasmodium falciparum and Plasmodium berghei ANKA, induced IL-4 response primarily by CD8α- DC, whereas nonlethal Plasmodium yoelii induced IL-4 by both CD8α+ and CD8α- DC. In both P. berghei ANKA- and P. yoelii-infected mice, IL-4-expressing CD8α- DC did not express IL-12, but a distinct CD8α- DC subset expressed IL-12. In P. berghei ANKA infection, CD8α+ DC expressed IL-12 but not IL-4, whereas in P. yoelii infection, CD8α+ DC expressed IL-4 but not IL-12. These differential IL-4 and IL-12 responses by DC subsets may contribute to different Th1/Th2 development and clinical outcomes in lethal and nonlethal malaria. Our results for the first time demonstrate that a malaria protein factor induces IL-4 production by DC via PI3K-Akt-NF-κB signaling, revealing signaling and molecular mechanisms that initiate and promote Th2 development.


Assuntos
Células Dendríticas/imunologia , Interleucina-4/metabolismo , Malária/imunologia , Plasmodium yoelii/imunologia , Proteínas de Protozoários/metabolismo , Células Th2/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Interleucina-4/fisiologia , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/genética , Transdução de Sinais , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/parasitologia , Células Th2/metabolismo , Células Th2/parasitologia , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia
16.
Virol J ; 14(1): 240, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258535

RESUMO

BACKGROUND: Hemophagocytic lymphohistiocytosis (HLH) is a rare immunological disorder caused by unbridled activation of T cells and macrophages, culminating in a life-threatening cytokine storm. A genetic and acquired subtype are distinguished, termed primary and secondary HLH, respectively. Clinical manifestations of both forms are frequently preceded by a viral infection, predominantly with herpesviruses. The exact role of the viral infection in the development of the hemophagocytic syndrome remains to be further elucidated. METHODS: We utilized a recently developed murine model of cytomegalovirus-associated secondary HLH and dissected the respective contributions of lytic viral replication and immunopathology in its pathogenesis. RESULTS: HLH-like disease only developed in cytomegalovirus-susceptible mouse strains unable to clear the virus, but the severity of symptoms was not correlated to the infectious viral titer. Lytic viral replication and sustained viremia played an essential part in the pathogenesis since abortive viral infection was insufficient to induce a full-blown HLH-like syndrome. Nonetheless, a limited set of symptoms, in particular anemia, thrombocytopenia and elevated levels of soluble CD25, appeared less dependent of the viral replication but rather mediated by the host's immune response, as corroborated by immunosuppressive treatment of infected mice with dexamethasone. CONCLUSION: Both virus-mediated pathology and immunopathology cooperate in the pathogenesis of full-blown virus-associated secondary HLH and are closely entangled. A certain level of viremia appears necessary to elicit the characteristic HLH-like symptoms in the model.


Assuntos
Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica/fisiopatologia , Linfo-Histiocitose Hemofagocítica/virologia , Muromegalovirus/fisiologia , Viroses/fisiopatologia , Replicação Viral/fisiologia , Animais , Antivirais/farmacologia , Cidofovir , Citosina/análogos & derivados , Citosina/farmacologia , Dexametasona/farmacologia , Humanos , Imunossupressores/farmacologia , Subunidade alfa de Receptor de Interleucina-2/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Organofosfonatos/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/fisiologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/fisiologia , Replicação Viral/efeitos dos fármacos
17.
PLoS One ; 12(10): e0186614, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088270

RESUMO

Burkitt's lymphoma (BL) is the most common childhood cancer in equatorial Africa, and is endemic to areas where people are chronically co-infected with Epstein-Barr virus (EBV) and the malaria pathogen Plasmodium falciparum. The contribution of these pathogens in the oncogenic process remains poorly understood. We showed earlier that the activation of Toll-like receptor (TLR) 9 by hemozoin, a disposal product formed from the digestion of blood by P. falciparum, suppresses the lytic reactivation of EBV in BL cells. EBV lytic reactivation is regulated by the expression of transcription factor Zta (ZEBRA), encoded by the EBV gene BZLF1. Here, we explore in the BL cell line Akata, the mechanism involved in repression by TLR9 of expression of BZLF1. We show that BZLF1 repression is mediated upon TLR9 engagement by a mechanism that is largely independent of de novo protein synthesis. By CRISPR/Cas9-induced inactivation of TLR9, MyD88, IRAK4 and IRAK1 we confirm that BZLF1 repression is dependent on functional TLR9 and MyD88 signaling, and identify IRAK4 as an essential element for TLR9-induced repression of BZLF1 expression upon BCR cross-linking. Our results unprecedentedly show that TLR9-mediated inhibition of lytic EBV is largely independent of new protein synthesis and demonstrate the central roles of MyD88 and IRAK4 in this process contributing to EBV's persistence in the host's B-cell pool.


Assuntos
Linfoma de Burkitt/patologia , Herpesvirus Humano 4/genética , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Receptor Toll-Like 9/fisiologia , Transativadores/genética , Linfoma de Burkitt/virologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Herpesvirus Humano 4/fisiologia , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Ativação Viral
18.
Immunity ; 47(5): 913-927.e6, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150239

RESUMO

Although apoptotic cells (ACs) contain nucleic acids that can be recognized by Toll-like receptors (TLRs), engulfment of ACs does not initiate inflammation in healthy organisms. Here we identified macrophage populations that continually engulf ACs in distinct tissues and found that these macrophages share characteristics compatible with immunologically silent clearance of ACs; such characteristics include high expression of AC recognition receptors, low expression of TLR9, and reduced TLR responsiveness to nucleic acids. Removal of the macrophages from tissues resulted in loss of many of these characteristics and the ability to generate inflammatory responses to AC-derived nucleic acids, suggesting that cues from the tissue microenvironment program macrophages for silent AC clearance. The transcription factors KLF2 and KLF4 control the expression of many genes within this AC clearance program. The coordinated expression of AC receptors with genes that limit responses to nucleic acids might ensure maintenance of homeostasis and thus represent a central feature of tissue macrophages.


Assuntos
Apoptose , Macrófagos/imunologia , Animais , Feminino , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/fisiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia
19.
Postepy Hig Med Dosw (Online) ; 71(0): 867-875, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29039348

RESUMO

Toll-like receptors (TLR), especially TLR3, 7 and 9, play an important role in the pathogenesis of systemic lupus erythematosus (SLE). In our study blood was collected from 16 patients with SLE and from 8 healthy volunteers. Concentrations of IL-6, IL-10 and sIL-2R were measured by ELISA in mononuclear cell culture supernatant after 24 hours of stimulation by agonists and antagonists of TLR3 and 9 (for TLR3-poli I/C, resveratrol and for TLR9-ODN2006, IRS 945). Stimulation of TLR9 by ODN2006 led to an increase of IL-6 concentration in cell culture supernatants from the cells of healthy volunteers compared with unstimulated cells from controls. Inhibition of TLR3 activation by resveratrol caused a significantly lower concentration of IL-10 in cell culture supernatants derived from both patients and healthy donors. Moreover, resveratrol significantly decreased the level of IL-10 and sIL-2R in culture supernatants of cells derived from patients with active disease compared to the inactive stage. A positive correlation was also found between IL-6 concentration following ODN2006 administration and disease activity. In conclusions, our results indicate that TLRs play a role in the modulation of the inflammatory response in SLE patients. This suppressive action on IL-10 synthesis demonstrated by resveratrol suggests that it may be useful in SLE therapy.


Assuntos
Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Receptor 3 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Adulto , Estudos de Casos e Controles , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunossupressores/uso terapêutico , Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Masculino , Receptores de Interleucina-2/metabolismo , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/antagonistas & inibidores
20.
PLoS One ; 12(10): e0185708, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973009

RESUMO

In the present study, we address the important issue of whether B-cells protected from irradiation-induced cell death, may survive with elevated levels of DNA damage. If so, such cells would be at higher risk of gaining mutations and undergoing malignant transformation. We show that stimulation of B-cells with the TLR9 ligands CpG-oligodeoxynucleotides (CpG-ODN) prevents spontaneous and irradiation-induced death of normal peripheral blood B-cells, and of B-cells from patients diagnosed with Common variable immunodeficiency (CVID). The TLR9-mediated survival is enhanced by the vitamin A metabolite retinoic acid (RA). Importantly, neither stimulation of B-cells via TLR9 alone or with RA increases irradiation-induced DNA strand breaks and DNA damage responses such as activation of ATM and DNA-PKcs. We prove that elevated levels of γH2AX imposed by irradiation of stimulated B-cells is not due to induction of DNA double strand breaks, but merely reflects increased levels of total H2AX upon stimulation. Interestingly however, we unexpectedly find that TLR9 stimulation of B-cells induces low amounts of inactive p53, explained by transcriptional induction of TP53. Taken together, we show that enhanced survival of irradiated B-cells is not accompanied by elevated levels of DNA damage. Our results imply that TLR9-mediated activation of B-cells not only promotes cell survival, but may via p53 provide cells with a barrier against harmful consequences of enhanced activation and proliferation. As CVID-derived B-cells are more radiosensitive and prone to undergo apoptosis than normal B-cells, our data support treatment of CVID patients with CpG-ODN and RA.


Assuntos
Linfócitos B/fisiologia , Imunodeficiência de Variável Comum/genética , Dano ao DNA , Raios Infravermelhos , Receptor Toll-Like 9/fisiologia , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/genética , Estudos de Casos e Controles , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...