Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069420

RESUMO

Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.


Assuntos
Metabolismo dos Lipídeos/genética , Proteínas de Ligação a Selênio/metabolismo , Animais , Citocromo P-450 CYP4A/metabolismo , Expressão Gênica , Rim/patologia , Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , PPAR alfa/metabolismo , PPAR alfa/fisiologia , RNA Mensageiro/genética , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide alfa/fisiologia , Proteínas de Ligação a Selênio/genética , Fatores de Transcrição/metabolismo
2.
Metabolism ; 116: 154705, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422545

RESUMO

The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism. Thus, the aim of this study was to determine how these transcription factors interact to regulate the expression of amino acid catabolism genes. In vivo studies using PPARα-knockout mice (Pparα-null) fed different amounts of dietary protein showed that in the absence of PPARα, there was a significant increase in HNF4α abundance in the liver, which corresponded with an increase in amino acid catabolizing enzyme (AACE) expression and the generation of increased amounts of postprandial urea. Moreover, this effect was proportional to the increase in dietary protein consumed. Chromatin immunoprecipitation assays showed that HNF4α can bind to the promoter of AACE serine dehydratase (SDS), an effect that was potentiated by dietary protein in the Pparα-null mice. The mechanistic studies revealed that the presence of retinoid X receptor alpha (RXRα) is essential to repress HNF4α activity in the presence of PPARα, and this interaction accelerates HNF4α degradation via the proteasome pathway. These results showed that PPARα can downregulate liver amino acid catabolism in the presence of RXRα by inhibiting HNF4α activity.


Assuntos
Aminoácidos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , PPAR alfa/fisiologia , Receptor X Retinoide alfa/fisiologia , Animais , Regulação para Baixo/genética , Células HEK293 , Células Hep G2 , Humanos , Masculino , Metabolismo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Receptor X Retinoide alfa/genética
3.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 317-328, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529222

RESUMO

Retinoic acid (RA) promotes differentiation in multiple neurogenic cell types by promoting gene reprogramming through retinoid receptors and also by inducing cytosolic signaling events. The nuclear RXR receptors are one of the main mediators of RA cellular effects, classically by joining the direct receptors of RA, the nuclear RAR receptors, in RAR/RXR dimers which act as transcription factors. Distinct RXR genes lead to RXRα, RXRß and RXRγ subtypes, but their specific roles in neuronal differentiation remain unclear. We firstly investigated both RXRs and RARs expression profiles during RA-mediated neuronal differentiation of human neuroblastoma cell line SH-SY5Y, and found varying levels of retinoid receptors transcript and protein contents along the process. In order to understand the roles of the expression of distinct RXR subtypes to RA signal transduction, we performed siRNA-mediated silencing of RXRα and RXRß during the first stages of SH-SY5Y differentiation. Our results showed that RXRα is required for RA-induced neuronal differentiation of SH-SY5Y cells, since its silencing compromised cell cycle arrest and prevented the upregulation of neuronal markers and the adoption of neuronal morphology. Besides, silencing of RXRα affected the phosphorylation of ERK1/2. By contrast, silencing of RXRß improved neurite extension and led to increased expression of tau and synaptophysin, suggesting that RXRß may negatively regulate neuronal parameters related to neurite outgrowth and function. Our results indicate distinct functions for RXR subtypes during RA-dependent neuronal differentiation and reveal new perspectives for studying such receptors as clinical targets in therapies aiming at restoring neuronal function.


Assuntos
Neuritos/metabolismo , Receptor X Retinoide alfa/fisiologia , Receptor X Retinoide beta/fisiologia , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/fisiologia , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide beta/metabolismo , Receptores X de Retinoides , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional , Tretinoína/metabolismo , Tretinoína/farmacologia , Células Tumorais Cultivadas
4.
PLoS One ; 10(4): e0125171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915942

RESUMO

BACKGROUND: Rhabdomyosarcomas (RMS) are rare but very aggressive childhood tumors that arise as a consequence of a regulatory disruption in the growth and differentiation pathways of myogenic precursor cells. According to morphological criteria, there are two major RMS subtypes: embryonal RMS (ERMS) and alveolar RMS (ARMS) with the latter showing greater aggressiveness and metastatic potential with respect to the former. Efforts to unravel the complex molecular mechanisms underlying RMS pathogenesis and progression have revealed that microRNAs (miRNAs) play a key role in tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: The expression profiles of 8 different RMS cell lines were analyzed to investigate the involvement of miRNAs in RMS. The miRNA population from each cell line was compared to a reference sample consisting of a balanced pool of total RNA extracted from those 8 cell lines. Sixteen miRNAs whose expression discriminates between translocation-positive ARMS and negative RMS were identified. Attention was focused on the role of miR-27a that is up-regulated in the more aggressive RMS cell lines (translocation-positive ARMS) in which it probably acts as an oncogene. MiR-27a overexpressing cells showed a significant increase in their proliferation rate that was paralleled by a decrease in the number of cells in the G1 phase of the cell cycle. It was possible to demonstrate that miR-27a is implicated in cell cycle control by targeting the retinoic acid alpha receptor (RARA) and retinoic X receptor alpha (RXRA). CONCLUSIONS: Study results have demonstrated that miRNA expression signature profiling can be used to classify different RMS subtypes and suggest that miR-27a may have a therapeutic potential in RMS by modulating the expression of retinoic acid receptors.


Assuntos
Proliferação de Células/fisiologia , MicroRNAs/fisiologia , Receptores do Ácido Retinoico/fisiologia , Receptor X Retinoide alfa/fisiologia , Rabdomiossarcoma/fisiopatologia , Linhagem Celular Tumoral , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor alfa de Ácido Retinoico
5.
Biochem Pharmacol ; 93(1): 92-103, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25451687

RESUMO

Sex-based differences in the pharmacological profiles of many drugs are due in part to the female-predominant expression of CYP3A4, which is the most important CYP isoform responsible for drug metabolism. Transcription factors trigger the sexually dimorphic expression of drug-metabolizing enzymes in response to sex-dependent growth hormone (GH) secretion. We investigated the roles of HNF6, C/EBPα, and RXRα in the regulation of human female-predominant CYP3A4, mouse female-specific CYP3A41, and rat male-specific CYP3A2 expression by GH secretion patterns using HepG2 cells, growth hormone receptor (GHR) knockout mice as well as rat models of orchiectomy and hypophysectomy. The constitutive expression of HNF6 and RXRα was GH-dependent, and GHR deficiency decreased HNF6/C/EBPα complex levels and increased HNF6/RXRα complex levels. Feminine GH secretion induced the binding of HNF6 and C/EBPα to the CYP3A4 and Cyp3a41 promoters and HNF6/C/EBPα complex levels was more efficiently compared with masculine pattern. Additionally, a greater inhibition of the binding of RXRα to the CYP3A4 and Cyp3a41 promoters and HNF6/RXRα complex levels was observed by feminine GH secretion, but less inhibition was observed by masculine pattern. The binding of HNF6, C/EBPα, and RXRα to the CYP3A2 promoter was not directly regulated by androgens. RXRα completely abolished the synergistic activation of the CYP3A4, Cyp3a41, and CYP3A2 promoters by HNF6 and C/EBPα. The results demonstrate that sex-dependent GH secretion patterns affect the expressions and interactions of HNF6, C/EBPα, and RXRα as well as their binding to CYP3A genes. RXRα mediates the sex-dependent influence of GH on CYP3A expression as an important signalling molecule.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Hormônio do Crescimento/metabolismo , Fator 6 Nuclear de Hepatócito/fisiologia , Receptor X Retinoide alfa/fisiologia , Caracteres Sexuais , Animais , Citocromo P-450 CYP3A , Feminino , Células Hep G2 , Humanos , Fígado/fisiologia , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Wistar
6.
PLoS One ; 9(6): e99440, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936658

RESUMO

Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1), a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC) derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD). Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP). Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal) assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3) that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open.


Assuntos
Didrogesterona/farmacologia , Piperazinas/farmacologia , Pirazóis/farmacologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Ativação Transcricional/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Fator II de Transcrição COUP/antagonistas & inibidores , Fator II de Transcrição COUP/fisiologia , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/fisiologia , Genes Reporter , Células HeLa , Humanos , Concentração Inibidora 50 , Ligantes , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Modelos Moleculares , Dados de Sequência Molecular , Receptores Nucleares Órfãos , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Receptor X Retinoide alfa/antagonistas & inibidores , Receptor X Retinoide alfa/fisiologia , Transcrição Gênica/efeitos dos fármacos
7.
Circulation ; 130(9): 776-85, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24963038

RESUMO

BACKGROUND: Pulmonary arterial hypertension is a chronic lung disease associated with severe pulmonary vascular changes. A pathogenic role of oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids is well established in vascular disease. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the role of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension are not well established. METHODS AND RESULTS: We studied 2 different rodent models of pulmonary hypertension (PH): a monocrotaline rat model and a hypoxia mouse model. Plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in PH. 4F treatment reduced these levels and rescued preexisting PH in both models. MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly downregulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with PH. In vivo miR193 overexpression in the lungs rescued preexisting PH and resulted in downregulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored PH-induced miR193 expression via transcription factor retinoid X receptor α. CONCLUSIONS: These studies establish the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the rescue of PH and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , MicroRNAs/fisiologia , Peptídeos/uso terapêutico , Animais , Proliferação de Células , Células Cultivadas , Humanos , Ácidos Hidroxieicosatetraenoicos/administração & dosagem , Hipertensão Pulmonar/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/genética , Receptor X Retinoide alfa/fisiologia
8.
PLoS Genet ; 10(5): e1004321, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810760

RESUMO

Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRß, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines. Reduced IFN-γ in the microenvironment alters UVR-induced apoptosis, and due to this, the survival of surrounding dermal fibroblasts is significantly decreased in mice lacking RXRα/ß. Interestingly, post-UVR survival of the melanocytes themselves is enhanced in the absence of RXRα/ß. Loss of RXRs α/ß specifically in the melanocytes results in an endogenous shift in homeostasis of pro- and anti-apoptotic genes in these cells and enhances their survival compared to the wild type melanocytes. Therefore, RXRs modulate post-UVR survival of dermal fibroblasts in a "non-cell autonomous" manner, underscoring their role in immune surveillance, while independently mediating post-UVR melanocyte survival in a "cell autonomous" manner. Our results emphasize a novel immunomodulatory role of melanocytes in controlling survival of neighboring cell types besides controlling their own, and identifies RXRs as potential targets for therapy against UV induced melanoma.


Assuntos
Ciclo Celular/efeitos da radiação , Imunidade Inata/fisiologia , Melanócitos/fisiologia , Receptor X Retinoide alfa/fisiologia , Receptor X Retinoide beta/fisiologia , Raios Ultravioleta , Animais , Melanócitos/efeitos da radiação , Camundongos , Camundongos Transgênicos , Receptor X Retinoide alfa/genética , Receptor X Retinoide beta/genética
9.
J Mol Graph Model ; 51: 27-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24858253

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of hepatic lipid metabolism which functions through ligand binding. Despite high amino acid sequence identity (>90%), marked differences in PPARα ligand binding, activation and gene regulation have been noted across species. Similar to previous observations with synthetic agonists, we have recently reported differences in ligand affinities and extent of activation between human PPARα (hPPARα) and mouse PPARα (mPPARα) in response to long chain fatty acids (LCFA). The present study was aimed to determine if structural alterations could account for these differences. The binding of PPARα to LCFA was examined through in silico molecular modeling and docking simulations. Modeling suggested that variances at amino acid position 272 are likely to be responsible for differences in saturated LCFA binding to hPPARα and mPPARα. To confirm these results experimentally, LCFA binding, circular dichroism, and transactivation studies were performed using a F272I mutant form of mPPARα. Experimental data correlated with in silico docking simulations, further confirming the importance of amino acid 272 in LCFA binding. Although the driving force for evolution of species differences at this position are yet unidentified, this study enhances our understanding of ligand-induced regulation by PPARα and demonstrates the efficacy of molecular modeling and docking simulations.


Assuntos
Ácidos Graxos/química , PPAR alfa/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Ácidos Graxos/fisiologia , Genes Reporter , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Camundongos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , PPAR alfa/fisiologia , Fenilalanina/química , Fenilalanina/genética , Ligação Proteica , Estrutura Secundária de Proteína , Receptor X Retinoide alfa/fisiologia , Homologia de Sequência de Aminoácidos , Termodinâmica , Ativação Transcricional
11.
Dig Dis Sci ; 59(4): 753-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24146318

RESUMO

BACKGROUND: In order for vitamin D to signal and regulate inflammatory pathways, it must bind to its receptor (VDR) which must heterodimerize with the retinoid X receptor alpha (RXRα). Although the role that vitamin D signaling plays in the development and progression of colitis, a disease characterized by excessive inflammation, has been suggested, little research has been done on determining the role that RXRα plays in acute colitis development. AIMS: This study sought to determine the effects that reduced availability of RXRα would have on the development of acute murine colitis. Expression of inflammatory markers, VDR and RXRα were investigated to determine if the reduction in expression of RXRα in RXRα(+/-) mice would result in increased inflammatory signaling and receptor downregulation as compared to their wild-type littermates. METHODS: An acute murine model of colitis, the axozymethane (AOM) and dextran sulfate sodium (DSS) model was utilized in wild-type and RXRα(+/-) mice. Gross manifestations of colitis measured included weight loss and colitis score. Immunblots and real-time PCR were performed for inflammatory markers and receptor expression. RESULTS: RXRα(+/-) mice induced with AOM/DSS colitis demonstrated increased gene expression of Snail and Snail2, transcription factors downstream of inflammatory mediators, as compared to their wild-type littermates. CONCLUSIONS: This demonstrates the importance of RXRα in regulating inflammation in acute colitis and also identifies RXRα expression as a new consideration when developing successful interventions for acute colitis due to the requirement of numerous receptors for RXRα.


Assuntos
Colite/fisiopatologia , Receptor X Retinoide alfa/fisiologia , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Heterozigoto , Immunoblotting , Inflamação/fisiopatologia , Camundongos , Receptores de Calcitriol/fisiologia
12.
Am J Chin Med ; 41(5): 1027-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24117066

RESUMO

Cerebral hypoperfusion or aging often results in the disturbances of cholesterol and lipoprotein, which have been well depicted as a common pathological status contributing to neurodegenerative diseases such as vascular dementia (VaD) and Alzheimer's dementia (AD). The pathway of the liver X receptor-ß (LXR-ß)/retinoic X receptor-α (RXR-α)/ABCA1 plays a vital role in lipoprotein metabolism. Curcumin, a kind of phenolic compound, has been widely used. It has been reported that curcumin can reduce the levels of cholesterol in serum, but the underlying mechanisms are poorly understood. In this study, we evaluated the effects of curcumin on the cholesterol level in brain, vascular cognitive impairment and explored whether the mechanisms for those effects are through activating LXR-ß/RXR-α and ABCA1 expression and apoA-I. With a Morris water test, we found that curcumin treatment could attenuate cognitive impairment. With HE and Nissl staining, we found that curcumin could significantly ameliorate the abnormal changes of pyramidal neurons. Meanwhile, the expression of LXR-ß, RXR-α, ABCA1 and apoA-I mRNA and protein were increased in a dose-dependent manner after curcumin treatment. Interestingly, both serum HDL cholesterol and total cholesterol levels were statistically higher in the curcumin treatment group than those other groups. We conclude that curcumin has the ability to activate permissive LXR-ß/RXR-α signaling and thereby modulate ABCA1 and apoA-I-mediated cholesterol transmembrane transportation, which is a new preventive and therapeutic strategy for cerevascular diseases.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Apolipoproteína A-I/fisiologia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Curcumina/farmacologia , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/fisiologia , Animais , Apolipoproteína A-I/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , HDL-Colesterol/metabolismo , Doença Crônica , Transtornos Cognitivos/tratamento farmacológico , Curcumina/uso terapêutico , Demência Vascular/etiologia , Demência Vascular/prevenção & controle , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Receptores X do Fígado , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/fisiologia , Fitoterapia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Cancer Res ; 73(10): 3097-108, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23612120

RESUMO

The transcription factor NRF2 (NFE2L2) is a pivotal activator of genes encoding cytoprotective and detoxifying enzymes that limit the action of cytotoxic therapies in cancer. NRF2 acts by binding antioxidant response elements (ARE) in its target genes, but there is relatively limited knowledge about how it is negatively controlled. Here, we report that retinoic X receptor alpha (RXRα) is a hitherto unrecognized repressor of NRF2. RNAi-mediated knockdown of RXRα increased basal ARE-driven gene expression and induction of ARE-driven genes by the NRF2 activator tert-butylhydroquinone (tBHQ). Conversely, overexpression of RXRα decreased ARE-driven gene expression. Biochemical investigations showed that RXRα interacts physically with NRF2 in cancer cells and in murine small intestine and liver tissues. Furthermore, RXRα bound to ARE sequences in the promoters of NRF2-regulated genes. RXRα loading onto AREs was concomitant with the presence of NRF2, supporting the hypothesis that a direct interaction between the two proteins on gene promoters accounts for the antagonism of ARE-driven gene expression. Mutation analyses revealed that interaction between the two transcription factors involves the DNA-binding domain of RXRα and a region comprising amino acids 209-316 in human NRF2 that had not been defined functionally, but that we now designate as the NRF2-ECH homology (Neh) 7 domain. In non-small cell lung cancer cells where NRF2 levels are elevated, RXRα expression downregulated NRF2 and sensitized cells to the cytotoxic effects of therapeutic drugs. In summary, our findings show that RXRα diminishes cytoprotection by NRF2 by binding directly to the newly defined Neh7 domain in NRF2.


Assuntos
Elementos de Resposta Antioxidante/fisiologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Receptor X Retinoide alfa/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/fisiologia , Estrutura Terciária de Proteína
14.
Curr Mol Med ; 12(8): 982-94, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22827437

RESUMO

Protein phosphatase-2A (PP-2A) is a major serine/threonine phosphatase abundantly expressed in eukaryotes. PP-2A is a heterotrimer that contains a 65 kD scaffold A subunit, a 36 kD catalytic C subunit, and a regulatory B subunit of variable isoforms ranging from 54-130 kDs. The scaffold subunits, PP2A-Aα/ß, act as platforms for both the C and B subunits to bind, and thus are key structural components for PP-2A activity. Mutations in both genes encoding PP2A-Aα and PP2A-Aß lead to carcinogenesis and likely other human diseases. Our previous work showed that the gene coding for PP2A-Aα is positively regulated by multiple transcription factors including Ets-1, CREB, and AP-2α but negatively regulated by SP-1/SP-3. In the present study, we have functionally dissected the promoter of the mouse PP2A-Aß gene. Our results demonstrate that three major cis-elements, including the binding sites for Ets-1, SP1/SP3, and RXRα/ß, are present in the proximal promoter of the mouse PP2A-Aß gene. Gel mobility shifting assays reveal that Ets-1, SP1/SP3, and RXRα/ß all bind to PP2A-Aß gene promoter. In vitro mutagenesis and reporter gene activity assays demonstrate that while Ets-1 displays negative regulation, SP1/SP3 and RXRα/ß positively regulate the promoter of the PP2A-Aß gene. Co-expression of the cDNAs encoding Ets-1, SP1/SP3, or RXRα/ß and the luciferase reporter gene driven by PP2A-Aß promoter further confirm their control over the PP2A-Aß promoter. Finally, ChIP assays demonstrate that Ets-1, SP1/SP3, and RXRα/ß can all bind to the PP2A-Aß gene promoter. Together, our results reveal that multiple transcription factors regulate the PP2A-Aß gene. Moreover, our results provide important information explaining why PP2A-Aα and PP2A-Aß display distinct expression levels.


Assuntos
Regulação da Expressão Gênica , Proteína Fosfatase 2/genética , Proteína Proto-Oncogênica c-ets-1/fisiologia , Receptor X Retinoide alfa/fisiologia , Receptor X Retinoide beta/fisiologia , Fator de Transcrição Sp1/fisiologia , Fator de Transcrição Sp3/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Genes Reporter , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Análise de Sequência de DNA , Ativação Transcricional
15.
J Immunol ; 189(1): 411-24, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661092

RESUMO

Mononuclear cell migration into the vascular subendothelium constitutes an early event of the atherogenic process. Because the effect of retinoid X receptor (RXR)α on arterial mononuclear leukocyte recruitment is poorly understood, this study investigated whether RXR agonists can affect this response and the underlying mechanisms involved. Decreased RXRα expression was detected after 4 h stimulation of human umbilical arterial endothelial cells with TNF-α. Interestingly, under physiological flow conditions, TNF-α-induced endothelial adhesion of human mononuclear cells was concentration-dependently inhibited by preincubation of the human umbilical arterial endothelial cells with RXR agonists such as bexarotene or 9-cis-retinoid acid. RXR agonists also prevented TNF-α-induced VCAM-1 and ICAM-1 expression, as well as endothelial growth-related oncogene-α and MCP-1 release. Suppression of RXRα expression with a small interfering RNA abrogated these responses. Furthermore, inhibition of MAPKs and NF-κB pathways were involved in these events. RXR agonist-induced antileukocyte adhesive effects seemed to be mediated via RXRα/peroxisome proliferator-activated receptor (PPAR)γ interaction, since endothelial PPARγ silencing abolished their inhibitory responses. Furthermore, RXR agonists increased RXR/PPARγ interaction, and combinations of suboptimal concentrations of both nuclear receptor ligands inhibited TNF-α-induced mononuclear leukocyte arrest by 60-65%. In vivo, bexarotene dose-dependently inhibited TNF-α-induced leukocyte adhesion to the murine cremasteric arterioles and decreased VCAM-1 and ICAM-1 expression. Therefore, these results reveal that RXR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps of the mononuclear recruitment cascade. Thus, RXR agonists may constitute a new therapeutic tool in the control of the inflammatory process associated with cardiovascular disease.


Assuntos
Inibição de Migração Celular/imunologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , PPAR gama/metabolismo , Receptor X Retinoide alfa/agonistas , Bexaroteno , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular , Inibição de Migração Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Endotélio Vascular/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/sangue , Leucócitos Mononucleares/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Microcirculação/imunologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , PPAR gama/fisiologia , Receptor X Retinoide alfa/biossíntese , Receptor X Retinoide alfa/fisiologia , Tetra-Hidronaftalenos/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/fisiologia , Artérias Umbilicais/efeitos dos fármacos , Artérias Umbilicais/imunologia , Artérias Umbilicais/patologia , Molécula 1 de Adesão de Célula Vascular/sangue
16.
Leuk Res ; 36(9): 1075-81, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710246

RESUMO

The retinoid X receptor alpha is the obligatory heterodimerization partner for a range of nuclear hormone receptors, and is required for signaling through the pathways mediated by those receptors. While RXR alpha has critical roles in embryonic development, it appears to be dispensable in adult hematopoiesis. Strikingly, recent evidence has indicated that proper functioning of RXR alpha is necessary for the pathogenesis of acute promyelocytic leukemia (APL), suggesting a novel avenue that can be exploited in the management and treatment of this disease. In this review we highlight recent studies that clarify the role of RXR alpha in normal and malignant hematopoiesis.


Assuntos
Neoplasias Hematológicas/genética , Hematopoese/genética , Receptor X Retinoide alfa/fisiologia , Adulto , Animais , Regulação Neoplásica da Expressão Gênica/genética , Hematologia/tendências , Hematopoese/fisiologia , Humanos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/fisiologia , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Placenta ; 32(11): 877-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21937108

RESUMO

PLAC1 expression, first characterized as restricted to developing placenta among normal tissues, is also found in a wide range of tumors and transformed cell lines. To understand the basis for its unusual expression profile, we have analyzed the gene structure and its mode of transcription. We find that the gene has a hitherto unique feature, with two promoters, P1 and P2, separated by 105 kb. P2 has been described before. Here we define P1 and show that it and P2 are activated by RXRα in conjunction with LXRα or LXRß. In placenta, P2 is the preferred promoter, whereas various tumor cell lines tend to express predominantly either one or the other promoter. Furthermore, when each promoter is fused to a luciferase reporter gene and transfected into cancer cell lines, the promoter corresponding to the more active endogenous promoter is preferentially transcribed. Joint expression of activating nuclear receptors can partially account for the restricted expression of PLAC1 in placenta, and may be co-opted for preferential P1 or P2 PLAC1 expression in various tumor cells.


Assuntos
Neoplasias/genética , Receptores Nucleares Órfãos/fisiologia , Placenta/metabolismo , Proteínas da Gravidez/genética , Regiões Promotoras Genéticas , Receptor X Retinoide alfa/fisiologia , Ativação Transcricional , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores X do Fígado , Camundongos , Neoplasias/metabolismo , Especificidade de Órgãos/genética , Receptores Nucleares Órfãos/metabolismo , Gravidez , Proteínas da Gravidez/metabolismo , Receptor X Retinoide alfa/metabolismo , Ativação Transcricional/genética , Células Tumorais Cultivadas
18.
J Pharmacol Exp Ther ; 339(2): 704-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862659

RESUMO

Naturally occurring splice variants of human constitutive androstane receptor (hCAR) exist, including hCAR-SV23 (insertion of amino acids SPTV), hCAR-SV24 (APYLT), and hCAR-SV25 (SPTV and APYLT). An extract of Ginkgo biloba was reported to activate hCAR-SV24 and the wild type (hCAR-WT). However, it is not known whether it selectively affects hCAR splice variants, how it activates hCAR isoforms, and which chemical is responsible for the effects of the extract. Therefore, we evaluated the impact of G. biloba extract on the functionality of hCAR-SV23, hCAR-SV24, hCAR-SV25, and hCAR-WT and compared it with that of phenobarbital, di-(2-ethylhexyl)phthalate (DEHP), 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO), and 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) in cell-based reporter gene assays. Among the hCAR splice variants investigated, only hCAR-SV23 was activated by G. biloba extract, and this required cotransfection of a retinoid X receptor α (RXRα) expression plasmid. The extract activated hCAR-SV23 to a lesser extent than hCAR-WT, but ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, and bilobalide were not responsible for the effects of the extract. CITCO activated hCAR-SV23, hCAR-SV24, and hCAR-WT. By comparison, phenobarbital activated hCAR-WT, whereas DEHP activated hCAR-SV23, hCAR-SV24 (with exogenous RXRα supplementation), and hCAR-WT. TCPOBOP did not affect the activity of any of the isoforms. G. biloba extract and phenobarbital did not bind or recruit coactivators to the ligand-binding domains of hCAR-WT and hCAR-SV23, whereas positive results were obtained with the controls (CITCO for hCAR-WT and DEHP for hCAR-SV23). In conclusion, G. biloba extract activates hCAR in an isoform-selective manner, and hCAR-SV23, hCAR-SV24, and hCAR-WT have overlapping, but distinct, sets of ligands.


Assuntos
Ginkgo biloba/química , Ginkgolídeos/farmacologia , Extratos Vegetais/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptor Constitutivo de Androstano , Genes Reporter , Ginkgolídeos/química , Células Hep G2 , Humanos , Ligantes , Extratos Vegetais/química , Plasmídeos , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor X Retinoide alfa/agonistas , Receptor X Retinoide alfa/fisiologia , Transfecção , Técnicas do Sistema de Duplo-Híbrido
19.
Biochem Pharmacol ; 82(2): 175-83, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21549104

RESUMO

Convincing evidence from studies with peroxisome proliferator-activated receptor (PPAR)α-deficient mice suggested that the carnitine biosynthetic enzyme γ-butyrobetaine dioxygenase (BBD) is regulated by PPARα. However, the identification of BBD as a direct PPARα target gene as well as its exact regulation remained to be demonstrated. In silico-analysis of the mouse BBD promoter revealed seven putative peroxisome proliferator response elements (PPRE) with high similarity to the consensus PPRE. Luciferase reporter gene assays using mutated and non-mutated serial 5'-truncation BBD promoter reporter constructs revealed that one PPRE located at -75 to -87 relative to the transcription start site in the proximal BBD promoter is probably functional. Using gel shift assays we observed in vitro-binding of PPARα/RXRα heterodimer to this PPRE confirming that it is functional. In conclusion, the present study clearly shows that mouse BBD is a direct PPARα target gene and that transcriptional up-regulation of mouse BBD by PPARα is likely mediated by binding of the PPARα/RXR heterodimer to one PPRE located in its proximal promoter region. The results confirm emerging evidence from recent studies that PPARα plays a key role in the regulation of carnitine homeostasis by controlling genes involved in both, carnitine synthesis and carnitine uptake.


Assuntos
PPAR alfa/fisiologia , Regiões Promotoras Genéticas , Elementos de Resposta/fisiologia , gama-Butirobetaína Dioxigenase/genética , Animais , Carnitina/metabolismo , Células Hep G2 , Humanos , Camundongos , Multimerização Proteica , Receptor X Retinoide alfa/fisiologia
20.
J Immunol ; 186(1): 621-31, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21135166

RESUMO

Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE.


Assuntos
Apoptose/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Macrófagos/imunologia , Macrófagos/patologia , PPAR gama/deficiência , Fagocitose/imunologia , Receptor X Retinoide alfa/deficiência , Animais , Anticorpos Antinucleares/biossíntese , Anticorpos Antinucleares/metabolismo , Anticorpos Antinucleares/fisiologia , Apoptose/genética , Feminino , Nefrite Lúpica/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , PPAR gama/genética , PPAR gama/fisiologia , Fagocitose/genética , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/fisiologia , Tolerância a Antígenos Próprios/genética , Tolerância a Antígenos Próprios/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...