Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
1.
Bioorg Chem ; 147: 107341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593531

RESUMO

A series of new indole-oxadiazole derivatives was designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited significant inhibitory activity with IC50 values ranging from 1.78 to 19.74 µM against ER-positive human breast cancer (BC) cell lines T-47D and MCF-7. Among them, compounds (5a, 5c, 5e-5h, 5j-5o) displayed superior activity against ER-α dominant (ratio of ER-α/ER-ß is 9/1) T-47D cells compared to the standard drug bazedoxifene (IC50 = 12.78 ± 0.92 µM). Compounds 5c and 5o exhibited remarkable anti-proliferative activity with IC50 values of 3.24 ± 0.46 and 1.72 ± 1.67 µM against T-47D cells, respectively. Further, compound 5o manifested 1589-fold higher ER-α binding affinity (213.4 pM) relative to bazedoxifene (339.2 nM) in a competitive ER-α binding assay, while compound 5c showed a binding affinity of 446.6 nM. The Western blot analysis proved that both compounds influenced the ER-α protein's expression, impeding its subsequent transactivation and signalling pathway within T-47D cells. Additionally, a molecular docking study suggests that compounds 5c and 5o bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Also, pharmacokinetic profiles showed that all compounds have drug-like properties. Further, molecular dynamic (MD) simulations and density functional theory (DFT) analysis confirmed the stability, conformational behaviour, reactivity, and biological feasibility of compounds 5c and 5o. In conclusion, based on our findings, compounds 5c and 5o, which exhibit significant ER-α antagonistic activity, can act as potential lead compounds for developing anti-breast cancer agents.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptor alfa de Estrogênio , Indóis , Oxidiazóis , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral
2.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049810

RESUMO

Despite the significant outcomes attained by scientific research, breast cancer (BC) still represents the second leading cause of death in women. Estrogen receptor-positive (ER+) BC accounts for the majority of diagnosed BCs, highlighting the disruption of estrogenic signalling as target for first-line treatment. This goal is presently pursued by inhibiting aromatase (AR) enzyme or by modulating Estrogen Receptor (ER) α. An appealing strategy for fighting BC and reducing side effects and resistance issues may lie in the design of multifunctional compounds able to simultaneously target AR and ER. In this paper, previously reported flavonoid-related potent AR inhibitors were suitably modified with the aim of also targeting ERα. As a result, homoisoflavone derivatives 3b and 4a emerged as well-balanced submicromolar dual acting compounds. An extensive computational study was then performed to gain insights into the interactions the best compounds established with the two targets. This study highlighted the feasibility of switching from single-target compounds to balanced dual-acting agents, confirming that a multi-target approach may represent a valid therapeutic option to counteract ER+ BC. The homoisoflavone core emerged as a valuable natural-inspired scaffold for the design of multifunctional compounds.


Assuntos
Inibidores da Aromatase , Aromatase , Neoplasias da Mama , Desenho de Fármacos , Receptor alfa de Estrogênio , Flavonoides , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Flavonoides/síntese química , Flavonoides/química , Flavonoides/farmacologia , Humanos , Feminino , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Simulação de Dinâmica Molecular , Aromatase/química , Aromatase/metabolismo , Termodinâmica , Concentração Inibidora 50 , Simulação de Acoplamento Molecular
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902278

RESUMO

NOD-like receptor protein 3 (NLRP3) may contribute to the growth and propagation of breast cancer (BC). The effect of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) on NLRP3 activation in BC remains unknown. Additionally, our knowledge of the effect of blocking these receptors on NLRP3 expression is limited. We used GEPIA, UALCAN, and the Human Protein Atlas for transcriptomic profiling of NLRP3 in BC. Lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) were used to activate NLRP3 in luminal A MCF-7 and in TNBC MDA-MB-231 and HCC1806 cells. Tamoxifen (Tx), mifepristone (mife), and trastuzumab (Tmab) were used to block ER-α, PR, and HER2, respectively, on inflammasome activation in LPS-primed MCF7 cells. The transcript level of NLRP3 was correlated with ER-ɑ encoding gene ESR1 in luminal A (ER-α+, PR+) and TNBC tumors. NLRP3 protein expression was higher in untreated and LPS/ATP-treated MDA-MB-231 cells than in MCF7 cells. LPS/ATP-mediated NLRP3 activation reduced cell proliferation and recovery of wound healing in both BC cell lines. LPS/ATP treatment prevented spheroid formation in MDA-MB-231 cells but did not affect MCF7. HGF, IL-3, IL-8, M-CSF, MCP-1, and SCGF-b cytokines were secreted in both MDA-MB-231 and MCF7 cells in response to LPS/ATP treatment. Tx (ER-α inhibition) promoted NLRP3 activation and increased migration and sphere formation after LPS treatment of MCF7 cells. Tx-mediated activation of NLRP3 was associated with increased secretion of IL-8 and SCGF-b compared to LPS-only-treated MCF7 cells. In contrast, Tmab (Her2 inhibition) had a limited effect on NLRP3 activation in LPS-treated MCF7 cells. Mife (PR inhibition) opposed NLRP3 activation in LPS-primed MCF7 cells. We have found that Tx increased the expression of NLRP3 in LPS-primed MCF7. These data suggest a link between blocking ER-α and activation of NLRP3, which was associated with increased aggressiveness of the ER-α+ BC cells.


Assuntos
Neoplasias da Mama , Antagonistas de Estrogênios , Receptor alfa de Estrogênio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Tamoxifeno , Feminino , Humanos , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Interleucina-8/metabolismo , Lipopolissacarídeos , Células MCF-7 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tamoxifeno/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptores de Progesterona/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Antagonistas de Estrogênios/farmacologia
4.
Horm Mol Biol Clin Investig ; 43(4): 427-436, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512107

RESUMO

OBJECTIVES: Type 2 diabetes (T2D) is a major risk factor for cardiovascular disorders (CVD), characterized by pathological diastolic as well as systolic dysfunction, ventricular dilation, and cardiomyocyte hypertrophy. CVD is the main cause of death in postmenopausal women. Estradiol (E2) has protective effects on cardiovascular function. The biological effects of E2 are mainly mediated by classical estrogen receptors (ERs). The present study aimed to investigate the cardioprotective effects of classical ERs in ovariectomized (OVX) diabetic female rats. METHODS: T2D was induced in female rats by high-fat diet feeding along with a low dose of streptozotocin. Then diabetic animals were divided into eight groups: Sham-control, OVX, OVX + Vehicle (Veh), OVX + E2, OVX + E2 + MPP (ERα antagonist), OVX + E2 + PHTPP (ERß antagonist), OVX + E2 + Veh, OVX + E2 + MPP + PHTPP. Animals received E2, MPP, and PHTPP every four days for 28 days. At the end blood was collected, serum separated, and used for biochemical parameters. Heart tissue was used for cardiac angiotensin II and cytokines measurement. RESULTS: E2 treatment improved the metabolic disorders caused by T2D, and its receptor antagonists intensified the effects of T2D on the metabolic status. Also, E2 therapy decreased cardiac inflammatory cytokines, and MPP and PHTPP increased cardiac inflammation by increasing TNF-α and IL-6 and decreasing IL-10. CONCLUSIONS: Classical ERs have protective effects on diabetic hearts by improving the metabolic status and inflammatory balance.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Animais , Feminino , Ratos , Doenças Cardiovasculares/etiologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estradiol/farmacologia , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo
5.
J Biomol Struct Dyn ; 40(11): 5203-5210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33402049

RESUMO

Estrogen receptor α (ERα) plays a critical role in breast cancer (BC) development. The standard therapeutic strategies for ERα- positive (ERα+) BC consist of impairing ERα signalling pathway by either estrogen competitors blocking its interaction with the ligand binding domain (LBD) or agents inhibiting the production of estrogen. These strategies are limited by many factors that lead to constitutive activation of ERα and consequently, resistance to treatment. Targeting the DNA binding domain (DBD) of ERα instead of its LBD with small-molecule inhibitors could be an alternative to impair ERα's signalling pathway. For this purpose, we conducted a structure based virtual screening of DrugBank against the crystal structure of ERα-DBD (PDB ID: 1HCQ) using the Glide module in standard precision (SP) and extra precision (XP) mode of docking. Molecules with XP Gscore less than -8 kcal/mol were selected and visually inspected to keep only the reasonable docking poses. Subsequently, these molecules were clustered using structural interaction fingerprints analysis and the complexes of the top ranked molecules of each cluster based on XP Gscore were subjected to 200 ns molecular dynamics simulations followed by MM-GBSA binding free energy calculation for the last 100 ns of each complex. In this study, we identified three molecules from DrugBank namely DB03450, DB02593 and DB08001 showing significant stability and strong interaction with the key amino acids during MD simulation suggesting a potential inhibition of the target. These molecules could be used as promising lead compounds to impair the ERα signalisation in hormone therapy-resistant breast cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Receptor alfa de Estrogênio , Antineoplásicos/química , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , DNA/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
6.
Eur J Med Chem ; 227: 113869, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710747

RESUMO

New twelve in silico designed coumarin-based ERα antagonists, namely 3DQ-1a to 3DQ-1е, were synthesized and confirmed as selective ERα antagonists, showing potencies ranging from single-digit nanomolar to picomolar. The hits were confirmed as selective estrogen receptor modulators and validated as antiproliferative agents using MCF-7 breast cancer cell lines exerting from picomolar to low nanomolar potency, at the same time showing no agonistic activity within endometrial cell lines. Their mechanism of action was inspected and revealed to be through the inhibition of the Raf-1/MAPK/ERK signal transduction pathway, preventing hormone-mediated gene expression on either genomic direct or genomic indirect level, and stopping the MCF-7 cells proliferation at G0/G1 phase. In vivo experiments, by means of the per os administration to female Wistar rats with pre-induced breast cancer, distinguished six derivatives, 3DQ-4a, 3DQ-2a, 3DQ-1a, 3DQ-1b, 3DQ-2b, and 3DQ-3b, showing remarkable potency as tumor suppressors endowed with optimal pharmacokinetic profiles and no significant histopathological profiles. The presented data indicate the new compounds as potential candidates to be submitted in clinical trials for breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cumarínicos/farmacologia , Desenho de Fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
7.
Cancer Res ; 82(2): 320-333, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34845001

RESUMO

Basal-like breast cancer is the most aggressive breast cancer subtype with the worst prognosis. Despite its high recurrence rate, chemotherapy is the only treatment for basal-like breast cancer, which lacks expression of hormone receptors. In contrast, luminal A tumors express ERα and can undergo endocrine therapy for treatment. Previous studies have tried to develop effective treatments for basal-like patients using various therapeutics but failed due to the complex and dynamic nature of the disease. In this study, we performed a transcriptomic analysis of patients with breast cancer to construct a simplified but essential molecular regulatory network model. Network control analysis identified potential targets and elucidated the underlying mechanisms of reprogramming basal-like cancer cells into luminal A cells. Inhibition of BCL11A and HDAC1/2 effectively drove basal-like cells to transition to luminal A cells and increased ERα expression, leading to increased tamoxifen sensitivity. High expression of BCL11A and HDAC1/2 correlated with poor prognosis in patients with breast cancer. These findings identify mechanisms regulating breast cancer phenotypes and suggest the potential to reprogram basal-like breast cancer cells to enhance their targetability. SIGNIFICANCE: A network model enables investigation of mechanisms regulating the basal-to-luminal transition in breast cancer, identifying BCL11A and HDAC1/2 as optimal targets that can induce basal-like breast cancer reprogramming and endocrine therapy sensitivity.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Tamoxifeno/uso terapêutico , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos Hormonais/farmacologia , Estudos de Coortes , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Humanos , Células MCF-7 , Fenótipo , Proteínas Repressoras/genética , Tamoxifeno/farmacologia , Transfecção , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
8.
Toxicol Appl Pharmacol ; 434: 115818, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890638

RESUMO

Modern anticancer therapies favor a targeted approach. Tyrosine kinase inhibitors (TKIs) are drugs that target molecular pathways involved in various types of malignancies. Although TKIs are safe and well tolerated, they remain not completely selective; e.g., endocrine-mediated adverse events have been observed with their use. In the present study, the effects of seven TKIs were determined on the activities of androgen receptor, estrogen receptor α (ERα), glucocorticoid receptor and thyroid receptor in vitro using stably transfected cell lines expressing firefly luciferase reporter gene: AR-EcoScreen, hERα-HeLa9903, MDA-kb2, and GH3.TRE-Luc cells, respectively. Antiandrogenic activity was seen for erlotinib, estrogenic activity for imatinib, antiestrogenic activity for dasatinib, erlotinib, nilotinib, regorafenib and sorafenib, glucocorticoid activity for erlotinib and ibrutinib, antiglucocorticoid activity for regorafenib and sorafenib, and antithyroid activity for ibrutinib. Additionally, synergism was seen for 1-5 µM dasatinib and 500 nM hydrocortisone combination for glucocorticoid activity in MDA-kb2 cells. The estrogenic activity of imatinib was confirmed as mediated through ERα, and interference of the TKIs with the reporter gene assays was ruled out in a cell-lysate-based firefly luciferase enzyme inhibition assay. Imatinib in combination with 4-hydroxytamoxifen showed concentration-dependent effects on the metabolic activity of ERα-expressing AN3CA, MCF-7, and SKOV3 cells, and on cell proliferation and adhesion of MCF-7 cells. These findings contribute to the understanding of the endocrine effects of TKIs, in terms of toxicity and effectiveness, and define the need to further evaluate the endocrine disrupting activities of TKIs to safeguard human and environmental health.


Assuntos
Antineoplásicos/farmacologia , Antitireóideos/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores de Glucocorticoides/antagonistas & inibidores , Antagonistas de Receptores de Andrógenos , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Hormônios Tireóideos
9.
Toxicol Appl Pharmacol ; 434: 115815, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848279

RESUMO

With growing scientific interest in phytoestrogens, a number of studies have investigated the estrogenic potential of phytoestrogens in a wide variety of assay systems. However, evaluations of individual phytoestrogens with different assay systems make it difficult for predicting their relative estrogenic potency. The objective of this study was to compare estrogenic properties of fifteen known phytoestrogens using an estrogen receptor-α (ER-α) dimerization assay and Organization for Economic Cooperation and Development (OECD) standardized methods including in vitro estrogen receptor (ER) transactivation assay using VM7Luc4E2 cells and in vivo uterotrophic assay using an immature rat model. Human ER-α dimerization assay showed positive responses of eight test compounds and negative responses of seven compounds. These results were consistently found in luciferase reporter assay results for evaluating ER transactivation ability. Seven test compounds exhibiting relatively higher in vitro estrogenic activities were subjected to uterotrophic bioassays. Significant increases in uterine weights were only found after treatments with biochanin A, 8-prenylnaringenin, and coumestrol. Importantly, their uterotrophic effects were lost when animals were co-treated with antagonist of ER, indicating their ER-dependent effects in the uterus. In addition, analysis of estrogen responsive genes revealed that these phytoestrogens regulated uterine gene expressions differently compared to estrogens. Test methods used in this study provided a high consistency between in vitro and in vivo results. Thus, they could be used as effective screening tools for phytoestrogens, particularly focusing on their interactions with ER-α.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Organização para a Cooperação e Desenvolvimento Econômico/normas , Fitoestrógenos/farmacologia , Animais , Regulação para Baixo , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Fulvestranto/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ratos , Ratos Wistar , Útero/efeitos dos fármacos , Útero/metabolismo
10.
Chem Biol Interact ; 351: 109753, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34801536

RESUMO

New semi-synthetic effective and safe anticancer agents isoeugenol derivatives were synthesized, characterized, and screened for their cytotoxic activity against MCF-7. Moreover, their selective cytotoxicity was assessed against MCF-10A. Three derivatives, 2, 8 and 10 were significantly more active than the reference drug 5-FU with IC50 values of 6.59, 8.07 and 9.63 and 30.93 µM, respectively. Also interestingly, these derivatives demonstrated some degree of selectivity to cancer cells over normal cells. Furthermore, derivative 2 was subjected to other in vitro experiments against MCF-7 where it inhibited colony formation by 87.5% and lowered ERα concentration to 395.7 pg/mL compared to 1129 pg/mL in untreated control cells. In continuation of the investigation, the apoptotic activity of compound 2, was assessed where it significantly enhanced total apoptotic cell death by 9.16-fold (18.70% compared to 1.64% for the untreated MCF-7 control cells) and arrested the cell cycle at the G2/M phase. Furthermore, the molecular mechanism of apoptotic activity was investigated at both the gene (RT-PCR) and protein (western plotting) levels where upregulation of pro-apoptotic and down regulation of anti-apoptotic genes was detected. Additionally, compound 2 treatment enhanced the antioxidant (GSH, CAT, SOD) activities. Finally, in vivo experiments verified the effective anticancer activity of compound 2 through inhibition of tumor proliferation by 47.6% compared to 22.9% for 5-FU and amelioration of the hematological, biochemical, and histopathological examinations near normal. In effect, compound 2 can be viewed as a promising semi-synthetic derivative of isoeugenol with some degree of selectivity for management of breast cancer through apoptotic induction and ERα downregulation.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Eugenol/análogos & derivados , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Eugenol/farmacologia , Eugenol/uso terapêutico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos
11.
Front Endocrinol (Lausanne) ; 12: 749449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925230

RESUMO

The absence of leptin results in contrasting growth pattern of appendicular and axial bone growth in ob/ob mice. Endochondral bone formation is an important procedure of growth plate determining the bone growth, where this procedure is also regulated by estrogen and its receptor (ER) signaling pathway. The present study is undertaken to explore the roles of ERs in regulating the different growth patterns in ob/ob mice. In this study, C57BL/6 female mice were used as wild-type (WT) mice; ob/ob mice and WT mice were age-matched fed, and bone length is analyzed by X-ray plain film at the 12 weeks old. We confirm that ob/ob mice have shorter femoral length and longer spine length than WT mice (p < 0.05). The contrasting expression patterns of chondrocyte proliferation proteins and hypertrophic marker proteins are also observed from the femur and spinal growth plate of ob/ob mice compared with WT mice (p < 0.01). Spearman's analysis showed that body length (axial and appendicular length) is positively related to the expression level of ERα in growth plate. Three-week-old female ob/ob mice are randomized divided into three groups: 1) ob/ob + ctrl, 2) ob/ob + ERα antagonist (MPP), and 3) ob/ob + ERß antagonist (PHTPP). Age-matched C57BL/6 mice were also divided into three groups, same as the groups of ob/ob mice. MPP and PHTPP were administered by intraperitoneal injection for 6 weeks. However, the results of X-ray and H&E staining demonstrate that leptin deficiency seems to disturb the regulating effects of ER antagonists on longitudinal bone growth. These findings suggested that region-specific expression of ERα might be associated with contrasting phenotypes of axial and appendicular bone growth in ob/ob mice. However, ER signaling on longitudinal bone growth was blunted by leptin deficiency in ob/ob mice, and the underlying association between ERs and leptin needs to be explored in future work.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Fêmur/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Moduladores de Receptor Estrogênico/farmacologia , Camundongos , Camundongos Obesos , Pirimidinas/farmacologia
12.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771077

RESUMO

Hormone therapy is one of the most effective breast cancer treatments, however, its application is limited by the progression of hormonal resistance, both primary or acquired. The development of hormonal resistance is caused either by an irreversible block of hormonal signalling (suppression of the activity or synthesis of hormone receptors), or by activation of oestrogen-independent signalling pathways. Recently the effect of exosome-mediated intercellular transfer of hormonal resistance was revealed, however, the molecular mechanism of this effect is still unknown. Here, the role of exosomal miRNAs (microRNAs) in the transferring of hormonal resistance in breast cancer cells has been studied. The methods used in the work include extraction, purification and RNAseq of miRNAs, transfection of miRNA mimetics, immunoblotting, reporter analysis and the MTT test. Using MCF7 breast cancer cells and MCF7/T tamoxifen-resistant sub-line, we have found that some miRNAs, suppressors of oestrogen receptor signalling, are overexpressed in the exosomes of the resistant breast cancer cells. The multiple (but not single) transfection of one of the identified miRNA, miR-181a-2, into oestrogen-dependent MCF7 cells induced the irreversible tamoxifen resistance associated with the continuous block of the oestrogen receptor signalling and the activation of PI3K/Akt pathway. We suppose that the miRNAs-ERα suppressors may act as trigger agents inducing the block of oestrogen receptor signalling and breast cancer cell transition to an aggressive oestrogen-independent state.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Exossomos/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Exossomos/genética , Exossomos/metabolismo , Feminino , Humanos , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Eur J Med Chem ; 226: 113870, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34610548

RESUMO

Concomitant inhibition of estrogen receptor alpha (ERα) and histone deacetylase (HDAC) signaling has been proven effective in endocrine-resistant ER+ breast cancers. Herein, a series of tetrahydroisoquinoline (THIQ)-hydroxamate conjugates were rationally designed and synthesized as dual SERDs/HDAC inhibitors by incorporating the hydroxamate, a known HDAC pharmacophore, into a privileged THIQ scaffold of selective ERα degraders (SERDs). Some of these THIQ-hydroxamate conjugates displayed remarkable HDAC6 inhibition and improved antiproliferative activity against MCF-7 cells. Particularly, the most potent HDAC inhibitor 19k also exhibits potent ERα binding affinity, good ERα degradation efficacy and the best antiproliferative activity. Besides, 19k displayed superior antitumor efficacy than the drug combination (Fulvestrant + SAHA) through promoting ERα degradation and histone acetylation in an MCF-7 xenograft model, without causing observable toxicity. Collectively, this study validates the therapeutic potential of a dual-acting compound with potent ERα degradation efficacy and HDAC6 inhibition in breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenvolvimento de Medicamentos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Feminino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/química , Células Tumorais Cultivadas
14.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681897

RESUMO

Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70-80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called "sun burst". Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(-) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER-/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/tratamento farmacológico , Tamoxifeno/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Ciclo Celular , Proliferação de Células , Antagonistas de Estrogênios/farmacologia , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
15.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502280

RESUMO

Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17ß-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Estradiol/química , Receptor alfa de Estrogênio/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Tamoxifeno/química , Tamoxifeno/metabolismo
16.
Bioorg Med Chem ; 47: 116395, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509864

RESUMO

Estrogen receptor α emerged as a well validated therapeutic target of breast cancer for decades. However, approximately 50% of patients who initially responding to standard-of-care (SoC), such as undergo therapy of Tamoxifen, generally inevitably progress to an endocrine-resistance ER+ phenotype. Recently, selective estrogen receptor covalent antagonists (SERCAs) targeted to ERα have been demonstrated as a therapeutic alternative. In the present study, series of novel 6-OH-benzothiophene (BT) derivatives targeting ERα and deriving from Raloxifene were designed, synthesized, and biologically evaluated as covalent antagonists. Driven by the antiproliferative efficacy in ER+ breast cancer cells, our chemical optimization finally led to compound 19d that with potent antagonistic activity in ER+ tumor cells while without agonistic activity in endometrial cells. Moreover, the docking simulation was carried out to elucidate the binding mode, revealing 19d as an antagonist and covalently binding to the cysteine residue at the 530 position of ER helix H11.


Assuntos
Desenho de Fármacos , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Tiofenos/farmacologia , Relação Dose-Resposta a Droga , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/química , Receptor alfa de Estrogênio/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
17.
Bioorg Med Chem Lett ; 52: 128383, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592434

RESUMO

The repurposing of old drugs for new treatments has recently garnered increased attention in the face of new diseases and declining productivity of the pharmaceutial industry. This report draws attention to potential opportunities hiding in plain sight within the SAR of off-patent drugs. Herein we explore the untapped potential of Selective Estrogen Receptor Modulators (SERMs). SERMs are a class of molecules that have been highly influential in the treatment of estrogen receptor-positive breast cancers. However, the most commonly prescribed SERM, tamoxifen, has been found to increase the risk of endometrial cancer. Another SERM, raloxifene, does not increase incidence of endometrial cancer, but has been abandoned as a breast cancer treatment. We report the design, synthesis, and evaluation of an unexplored tamoxifen substitution pattern which mimics the geometry of raloxifene to confer its favorable pharmacodynamics. This substitution pattern was found to maintain excellent binding affinity to estrogen receptor-α.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/química , Neoplasias da Mama/metabolismo , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Estrutura Molecular , Cloridrato de Raloxifeno/química , Moduladores Seletivos de Receptor Estrogênico/química , Relação Estrutura-Atividade , Tamoxifeno/química
18.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34576301

RESUMO

Organochlorine pesticides, such as DDT, methoxychlor, and their metabolites, have been characterized as endocrine disrupting chemicals (EDCs); suggesting that their modes of action involve interaction with or abrogation of endogenous endocrine function. This study examined whether embryonic thymocyte death and alteration of differentiation induced by the primary metabolite of methoxychlor, HPTE, rely upon estrogen receptor binding and concurrent T cell receptor signaling. Estrogen receptor inhibition of ERα or GPER did not rescue embryonic thymocyte death induced by HPTE or the model estrogen diethylstilbestrol (DES). Moreover, adverse effects induced by HPTE or DES were worsened by concurrent TCR and CD2 differentiation signaling, compared with EDC exposure post-signaling. Together, these data suggest that HPTE- and DES-induced adverse effects on embryonic thymocytes do not rely solely on ER alpha or GPER but may require both. These results also provide evidence of a potential collaborative signaling mechanism between TCR and estrogen receptors to mediate adverse effects on embryonic thymocytes, as well as highlight a window of sensitivity that modulates EDC exposure severity.


Assuntos
Diferenciação Celular , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Timócitos/efeitos dos fármacos , Animais , Antígenos CD2/metabolismo , Morte Celular , Células Cultivadas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais , Timócitos/citologia , Timócitos/metabolismo
19.
Drug Des Devel Ther ; 15: 3523-3533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408404

RESUMO

BACKGROUND: Cancer is a leading cause of death worldwide, with breast cancer being the most common invasive cancer type in women. Several therapeutic strategies have been explored to reduce the mortality rates of breast cancer. Chemotherapy is the most commonly used systemic treatment, but associated with numerous side-effects. Development of anticancer agents with high efficacy and minimal negative effects is therefore an important focus of research. Natural materials provide an excellent source of bioactive compounds. For instance, Garcinia porrecta from the Clusiaceae family has multiple pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antiviral, anti-HIV, antidepressant, and anticancer properties. PURPOSE: The main objective of this study was to investigate the potential anticancer effects of compounds extracted from the bark of G. porrecta. MATERIALS AND METHODS: Our experiments were divided into three steps: (1) chromatographic isolation of compounds using various separation techniques, such as extraction, separation and purification, (2) characterization via infrared (IR), nuclear magnetic resonance (NMR) and mass spectroscopy, and (3) evaluation of anticancer activity in vitro (MTT assay) and in silico (via analysis of molecular docking against caspase-9, tumor necrosis factor alpha (TNF-α), estrogen receptor alpha (ER-α), and human epidermal growth factor receptor 2 (HER-2)). RESULTS: Depsidone (1) and benzophenone (2) from the ethyl acetate extract of bark of G. porrecta were identified as bioactive components. Examination of the activities of these compounds against MCF-7 cells revealed an IC50 value of 119.3 µg/mL for benzophenone, whereas IC50 for depsidone could not be estimated. Benzophenone activity was lower than that of the positive control doxorubicin (6.9 µg/mL). Depsidone showed the highest binding affinity for HER-2 (-9.2 kcal.mol-1) and benzophenone for ER-α (-8.0 kcal.mol-1). CONCLUSION: Benzophenone displays potency as an anticancer agent through blocking ER-α.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Garcinia/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Benzofenonas/administração & dosagem , Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Depsídeos/administração & dosagem , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Doxorrubicina/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Concentração Inibidora 50 , Lactonas/administração & dosagem , Lactonas/isolamento & purificação , Lactonas/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química
20.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452998

RESUMO

Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Feminino , Humanos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...