Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Viruses ; 13(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34578361

RESUMO

Cell-free human cytomegalovirus (HCMV) can be inhibited by a soluble form of the cellular HCMV-receptor PDGFRα, resembling neutralization by antibodies. The cell-associated growth of recent HCMV isolates, however, is resistant against antibodies. We investigated whether PDGFRα-derivatives can inhibit this transmission mode. A protein containing the extracellular PDGFRα-domain and 40-mer peptides derived therefrom were tested regarding the inhibition of the cell-associated HCMV strain Merlin-pAL1502, hits were validated with recent isolates, and the most effective peptide was modified to increase its potency. The modified peptide was further analyzed regarding its mode of action on the virion level. While full-length PDGFRα failed to inhibit HCMV isolates, three peptides significantly reduced virus growth. A 30-mer version of the lead peptide (GD30) proved even more effective against the cell-free virus, and this effect was HCMV-specific and depended on the viral glycoprotein O. In cell-associated spread, GD30 reduced both the number of transferred particles and their penetration. This effect was reversible after peptide removal, which allowed the synchronized analysis of particle transfer, showing that two virions per hour were transferred to neighboring cells and one virion was sufficient for infection. In conclusion, PDGFRα-derived peptides are novel inhibitors of the cell-associated spread of HCMV and facilitate the investigation of this transmission mode.


Assuntos
Citomegalovirus/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/farmacologia , Infecções por Citomegalovirus/virologia , Humanos , Glicoproteínas de Membrana/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos
2.
PLoS Pathog ; 17(3): e1009471, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780515

RESUMO

Platelet-derived growth factor receptor alpha (PDGFRα) serves as an entry receptor for the human cytomegalovirus (HCMV), and soluble PDGFRα-Fc can neutralize HCMV at a half-maximal effective concentration (EC50) of about 10 ng/ml. While this indicates a potential for usage as an HCMV entry inhibitor PDGFRα-Fc can also bind the physiological ligands of PDGFRα (PDGFs), which likely interferes with the respective signaling pathways and represents a potential source of side effects. Therefore, we tested the hypothesis that interference with PDGF signaling can be prevented by mutations in PDGFRα-Fc or combinations thereof, without losing the inhibitory potential for HCMV. To this aim, a targeted mutagenesis approach was chosen. The mutations were quantitatively tested in biological assays for interference with PDGF-dependent signaling as well as inhibition of HCMV infection and biochemically for reduced affinity to PDGF-BB, facilitating quantification of PDGFRα-Fc selectivity for HCMV inhibition. Mutation of Ile 139 to Glu and Tyr 206 to Ser strongly reduced the affinity for PDGF-BB and hence interference with PDGF-dependent signaling. Inhibition of HCMV infection was less affected, thus increasing the selectivity by factor 4 and 8, respectively. Surprisingly, the combination of these mutations had an additive effect on binding of PDGF-BB but not on inhibition of HCMV, resulting in a synergistic 260fold increase of selectivity. In addition, a recently reported mutation, Val 242 to Lys, was included in the analysis. PDGFRα-Fc with this mutation was fully effective at blocking HCMV entry and had a drastically reduced affinity for PDGF-BB. Combining Val 242 to Lys with Ile 139 to Glu and/or Tyr 206 to Ser further reduced PDGF ligand binding beyond detection. In conclusion, this targeted mutagenesis approach identified combinations of mutations in PDGFRα-Fc that prevent interference with PDGF-BB but maintain inhibition of HCMV, which qualifies such mutants as candidates for the development of HCMV entry inhibitors.


Assuntos
Infecções por Citomegalovirus , Fragmentos Fc das Imunoglobulinas , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Becaplermina/efeitos dos fármacos , Becaplermina/metabolismo , Citomegalovirus , Fibroblastos , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Mutagênese Sítio-Dirigida , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/farmacologia
3.
Cell ; 184(5): 1232-1244.e16, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626330

RESUMO

Human cytomegalovirus (HCMV) infects the majority of the human population and represents the leading viral cause of congenital birth defects. HCMV utilizes the glycoproteins gHgLgO (Trimer) to bind to platelet-derived growth factor receptor alpha (PDGFRα) and transforming growth factor beta receptor 3 (TGFßR3) to gain entry into multiple cell types. This complex is targeted by potent neutralizing antibodies and represents an important candidate for therapeutics against HCMV. Here, we determine three cryogenic electron microscopy (cryo-EM) structures of the trimer and the details of its interactions with four binding partners: the receptor proteins PDGFRα and TGFßR3 as well as two broadly neutralizing antibodies. Trimer binding to PDGFRα and TGFßR3 is mutually exclusive, suggesting that they function as independent entry receptors. In addition, Trimer-PDGFRα interaction has an inhibitory effect on PDGFRα signaling. Our results provide a framework for understanding HCMV receptor engagement, neutralization, and the development of anti-viral strategies against HCMV.


Assuntos
Citomegalovirus/química , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Microscopia Crioeletrônica , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas do Envelope Viral/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153146

RESUMO

Gastrointestinal stromal tumors (GISTs) are the most common Mesenchymal Neoplasm of the gastrointestinal tract. The tumorigenesis of GISTs has been associated with the gain-of-function mutation and abnormal activation of the stem cell factor receptor (c-KIT) and platelet-derived growth factor receptor alpha (PDGFRα) kinases. Hence, inhibitors that target c-KIT and PDGFRα could be a therapeutic option for the treatment of GISTs. The available approved c-KIT/PDGFRα inhibitors possessed low efficacy with off-target effects, which necessitated the development of potent inhibitors. We performed computational studies of 48 pyrazolopyridine derivatives that showed inhibitory activity against c-KIT and PDGFRα to study the structural properties important for inhibition of both the kinases. The derivative of phenylurea, which has high activities for both c-KIT (pIC50 = 8.6) and PDGFRα (pIC50 = 8.1), was used as the representative compound for the dataset. Molecular docking and molecular dynamics simulation (100 ns) of compound 14 was performed. Compound 14 showed the formation of hydrogen bonding with Cys673, Glu640, and Asp810 in c-KIT, and Cys677, Glu644, and Asp836 in PDGFRα. The results also suggested that Thr670/T674 substitution in c-KIT/PDGFRα induced conformational changes at the binding site of the receptors. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed based on the inhibitors. Contour map analysis showed that electropositive and bulky substituents at the para-position and the meta-position of the benzyl ring of compound 14 was favorable and may increase the inhibitory activity against both c-KIT and PDGFRα. Analysis of the results suggested that having bulky and hydrophobic substituents that extend into the hydrophobic pocket of the binding site increases the activity for both c-KIT and PDGFRα. Based on the contour map analysis, 50 compounds were designed, and the activities were predicted. An evaluation of binding free energy showed that eight of the designed compounds have potential binding affinity with c-KIT/PDGFRα. Absorption, distribution, metabolism, excretion and toxicity (ADMET) and synthetic feasibility tests showed that the designed compounds have reasonable pharmaceutical properties and synthetic feasibility. Further experimental study of the designed compounds is recommended. The structural information from this study could provide useful insight into the future development of c-KIT and PDGFRα inhibitors.


Assuntos
Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Modelos Moleculares , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Substituição de Aminoácidos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sítios de Ligação , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirazóis/química , Piridinas/química , Relação Quantitativa Estrutura-Atividade , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
5.
PLoS Pathog ; 16(6): e1008647, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559251

RESUMO

A trimeric glycoprotein complex on the surface of human cytomegalovirus (HCMV) binds to platelet-derived growth factor (PDGF) receptor α (PDGFRα) to mediate host cell recognition and fusion of the viral and cellular membranes. Soluble PDGFRα potently neutralizes HCMV in tissue culture, and its potential use as an antiviral therapeutic has the benefit that any escape mutants will likely be attenuated. However, PDGFRα binds multiple PDGF ligands in the human body as part of developmental programs in embryogenesis and continuing through adulthood. Any therapies with soluble receptor therefore come with serious efficacy and safety concerns, especially for the treatment of congenital HCMV. Soluble virus receptors that are orthogonal to human biology might resolve these concerns. This engineering problem is solved by deep mutational scanning on the D2-D3 domains of PDGFRα to identify variants that maintain interactions with the HCMV glycoprotein trimer in the presence of competing PDGF ligands. Competition by PDGFs is conformation-dependent, whereas HCMV trimer binding is independent of proper D2-D3 conformation, and many mutations at the receptor-PDGF interface are suitable for functionally separating trimer from PDGF interactions. Purified soluble PDGFRα carrying a targeted mutation succeeded in displaying wild type affinity for HCMV trimer with a simultaneous loss of PDGF binding, and neutralizes trimer-only and trimer/pentamer-expressing HCMV strains infecting fibroblasts or epithelial cells. Overall, this work makes important progress in the realization of soluble HCMV receptors for clinical application.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Estrutura Quaternária de Proteína , Receptores Virais , Linhagem Celular , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Humanos , Mutação , Domínios Proteicos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo
6.
Sci Rep ; 9(1): 2172, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778083

RESUMO

Platelet-Derived Growth Factor Receptor Alpha (PDGFRA) mutations occur in approximately 5-7% of gastrointestinal stromal tumours (GIST). Over half of all PDGFRA mutations are represented by the substitution at position 842 in the A-loop of an aspartic acid (D) with a valine (V), recognized as D842V, conferring primary resistance to imatinib in vitro and in clinical observations due to the conformation of the kinase domain, which negatively affects imatinib binding. The lack of interaction between imatinib and the D842V PDGFRA mutated model has been established and widely confirmed in vivo. However, for the other PDGFRA mutations, the correlation between pre-clinical and clinical data is still unclear. An in silico evaluation of the p.His845_Asn848delinsPro mutation involving exon 18 of PDGFRA in a metastatic GIST patient responding to first-line imatinib has been provided. Docking analyses were performed, and the ligand-receptor interactions were evaluated with the jCE algorithm for structural alignment. The docking simulation and structural superimposition analysis show that PDGFRA p.His845_Asn848delinsPro stabilizes the imatinib binding site with the residues that are conserved in KIT. The in vivo evidence that PDGFRA p.His845_Asn848delinsPro is sensitive to imatinib was confirmed by the molecular modelling, which may represent a reliable tool for the prediction of clinical outcomes and treatment selection in GIST, especially for rare mutations.


Assuntos
Neoplasias Gastrointestinais/enzimologia , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/enzimologia , Tumores do Estroma Gastrointestinal/genética , Mutação INDEL , Proteínas Mutantes/química , Proteínas Mutantes/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Idoso , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sítios de Ligação , Simulação por Computador , Éxons , Feminino , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Humanos , Mesilato de Imatinib/farmacocinética , Mesilato de Imatinib/uso terapêutico , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Mutantes/metabolismo , Conformação Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1863(1): 82-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253204

RESUMO

Single-point mutations in the transmembrane (TM) region of receptor tyrosine kinases (RTKs) can lead to abnormal ligand-independent activation. We use a combination of computational modeling, NMR spectroscopy and cell experiments to analyze in detail the mechanism of how TM domains contribute to the activation of wild-type (WT) PDGFRA and its oncogenic V536E mutant. Using a computational framework, we scan all positions in PDGFRA TM helix for identification of potential functional mutations for the WT and the mutant and reveal the relationship between the receptor activity and TM dimerization via different interfaces. This strategy also allows us design a novel activating mutation in the WT (I537D) and a compensatory mutation in the V536E background eliminating its constitutive activity (S541G). We show both computationally and experimentally that single-point mutations in the TM region reshape the TM dimer ensemble and delineate the structural and dynamic determinants of spontaneous activation of PDGFRA via its TM domain. Our atomistic picture of the coupling between TM dimerization and PDGFRA activation corroborates the data obtained for other RTKs and provides a foundation for developing novel modulators of the pathological activity of PDGFRA.


Assuntos
Mutação Puntual , Domínios Proteicos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Sítio Alostérico , Biologia Computacional , Simulação por Computador , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese , Fosfatidilcolinas/química , Multimerização Proteica
8.
Nat Commun ; 9(1): 4583, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389923

RESUMO

Activation of platelet-derived growth factor receptor alpha (PDGFRA) by genomic aberrations contributes to tumor progression in several tumor types. In this study, we characterize 16 novel PDGFRA mutations identified from different tumor types and identify three previously uncharacterized activating mutations that promote cell survival and proliferation. PDGFRA Y288C, an extracellular domain mutation, is primarily high mannose glycosylated consistent with trapping in the endoplasmic reticulum (ER). Strikingly, PDGFRA Y288C is constitutively dimerized and phosphorylated in the absence of ligand suggesting that trapping in the ER or aberrant glycosylation is sufficient for receptor activation. Importantly, PDGFRA Y288C induces constitutive phosphorylation of Akt, ERK1/2, and STAT3. PDGFRA Y288C is resistant to PDGFR inhibitors but sensitive to PI3K/mTOR and MEK inhibitors consistent with pathway activation results. Our findings further highlight the importance of characterizing functional consequences of individual mutations for precision medicine.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Espaço Extracelular/química , Terapia de Alvo Molecular , Mutação/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Linhagem Celular , Proliferação de Células , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Camundongos , Fenótipo , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
9.
Int J Mol Sci ; 19(3)2018 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-29510530

RESUMO

Gastrointestinal stromal tumors (GIST) carrying the D842V activating mutation in the platelet-derived growth factor receptor alpha (PDGFRA) gene are a very rare subgroup of GIST (about 10%) known to be resistant to conventional tyrosine kinase inhibitors (TKIs) and to show an indolent behavior. In this study, we performed an integrated molecular characterization of D842V mutant GIST by whole-transcriptome and whole-exome sequencing coupled with protein-ligand interaction modelling to identify the molecular signature and any additional recurrent genomic event related to their clinical course. We found a very specific gene expression profile of D842V mutant tumors showing the activation of G-protein-coupled receptor (GPCR) signaling and a relative downregulation of cell cycle processes. Beyond D842V, no recurrently mutated genes were found in our cohort. Nevertheless, many private, clinically relevant alterations were found in each tumor (TP53, IDH1, FBXW7, SDH-complex). Molecular modeling of PDGFRA D842V suggests that the mutant protein binds imatinib with lower affinity with respect to wild-type structure, showing higher stability during the interaction with other type I TKIs (like crenolanib). D842V mutant GIST do not show any actionable recurrent molecular events of therapeutic significance, therefore this study supports the rationale of novel TKIs development that are currently being evaluated in clinical studies for the treatment of D842V mutant GIST.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Mutação de Sentido Incorreto , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Transcriptoma , Adulto , Idoso , Benzimidazóis/farmacologia , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Piperidinas/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Sci Transl Med ; 9(414)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093181

RESUMO

Targeting oncogenic kinase drivers with small-molecule inhibitors can have marked therapeutic benefit, especially when administered to an appropriate genomically defined patient population. Cancer genomics and mechanistic studies have revealed that heterogeneous mutations within a single kinase can result in various mechanisms of kinase activation. Therapeutic benefit to patients can best be optimized through an in-depth understanding of the disease-driving mutations combined with the ability to match these insights to tailored highly selective drugs. This rationale is presented for BLU-285, a clinical stage inhibitor of oncogenic KIT and PDGFRA alterations, including activation loop mutants that are ineffectively treated by current therapies. BLU-285, designed to preferentially interact with the active conformation of KIT and PDGFRA, potently inhibits activation loop mutants KIT D816V and PDGFRA D842V with subnanomolar potency and also inhibits other well-characterized disease-driving KIT mutants both in vitro and in vivo in preclinical models. Early clinical evaluation of BLU-285 in a phase 1 study has demonstrated marked activity in patients with diseases associated with KIT (aggressive systemic mastocytosis and gastrointestinal stromal tumor) and PDGFRA (gastrointestinal stromal tumor) activation loop mutations.


Assuntos
Mutação/genética , Medicina de Precisão , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química
11.
Sci Rep ; 7(1): 9043, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831081

RESUMO

Concurrent amplifications of EGFR and PDGFRA have been reported in up to 5% of glioblastoma (GBM) and it remains unclear why such independent amplification events, and associated receptor overexpression, would be adaptive during glioma evolution. Here, we document that EGFR and PDGFRA protein co-expression occurs in 37% of GBM. There is wide cell-to-cell variation in the expressions of these receptor tyrosine kinases (RTKs) in stable tumor sphere lines, frequently defining tumor cell subpopulations with distinct sensitivities to growth factors and RTK inhibitors. We also find evidence for functional transactivation of PDGFRA by EGFR and EGF-induced receptor heterodimerization, both of which are abolished by EGFR inhibitors. These results indicate that GBM growth responses to targeted therapies previously tested in clinical trials are strongly influenced by the balance of EGFR and PDGFRA activation in individual cells, which is heterogeneous at baseline.


Assuntos
Receptores ErbB/química , Receptores ErbB/genética , Expressão Gênica , Glioblastoma/genética , Multimerização Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Imuno-Histoquímica , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
12.
Cancer Sci ; 108(2): 200-207, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27960034

RESUMO

Fusion tyrosine kinases play a crucial role in the development of hematological malignancies. FIP1L1-PDGFRA is a leukemogenic fusion kinase that causes chronic eosinophilic leukemia. As a constitutively active kinase, FIP1L1-PDGFRA stimulates downstream signaling molecules, leading to cellular proliferation and the generation of an anti-apoptotic state. Contribution of the N-terminal FIP1L1 portion is necessary for FIP1L1-PDGFRA to exert its full transforming activity, but the underlying mechanisms have not been fully characterized. We identified PIAS1 as a FIP1L1-PDGFRA association molecule by yeast two-hybrid screening. Our analyses indicate that the FIP1L1 portion of FIP1L1-PDGFRA is required for efficient association with PIAS1. As a consequence of the association, FIP1L1-PDGFRA phosphorylates PIAS1. Moreover, the kinase activity of FIP1L1-PDGFRA stabilizes PIAS1. Therefore, PIAS1 is one of the downstream targets of FIP1L1-PDGFRA. Moreover, we found that PIAS1, as a SUMO E3 ligase, sumoylates and stabilizes FIP1L1-PDGFRA. In addition, suppression of PIAS1 activity by a knockdown experiment resulted in destabilization of FIP1L1-PDGFRA. Therefore, FIP1L1-PDGFRA and PIAS1 form a positive cross-talk through their enzymatic activities. Suppression of sumoylation by ginkgolic acid, a small molecule compound inhibiting a SUMO E1-activating enzyme, also destabilizes FIP1L1-PDGFRA, and while the tyrosine kinase inhibitor imatinib suppresses FIP1L1-PDGFRA-dependent cell growth, ginkgolic acid or siRNA of PIAS1 has a synergistic effect with imatinib. In conclusion, our results suggest that sumoylation by PIAS1 is a potential target in the treatment of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Transcrição STAT1/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Apoptose , Células HEK293 , Humanos , Síndrome Hipereosinofílica/tratamento farmacológico , Síndrome Hipereosinofílica/metabolismo , Mesilato de Imatinib/uso terapêutico , Immunoblotting , Imunoprecipitação , Proteínas de Fusão Oncogênica/química , Proteínas Inibidoras de STAT Ativados/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Fator de Transcrição STAT1/química , Transdução de Sinais , Sumoilação , Transfecção/métodos , Fatores de Poliadenilação e Clivagem de mRNA/química
13.
Nature ; 540(7632): 276-279, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27894125

RESUMO

Platelet-derived growth factor receptor α (PDGFRα) exhibits divergent effects in skeletal muscle. At physiological levels, signalling through this receptor promotes muscle development in growing embryos and angiogenesis in regenerating adult muscle. However, both increased PDGF ligand abundance and enhanced PDGFRα pathway activity cause pathological fibrosis. This excessive collagen deposition, which is seen in aged and diseased muscle, interferes with muscle function and limits the effectiveness of gene- and cell-based therapies for muscle disorders. Although compelling evidence exists for the role of PDGFRα in fibrosis, little is known about the cells through which this pathway acts. Here we show in mice that PDGFRα signalling regulates a population of muscle-resident fibro/adipogenic progenitors (FAPs) that play a supportive role in muscle regeneration but may also cause fibrosis when aberrantly regulated. We found that FAPs produce multiple transcriptional variants of Pdgfra with different polyadenylation sites, including an intronic variant that codes for a protein isoform containing a truncated kinase domain. This variant, upregulated during regeneration, acts as a decoy to inhibit PDGF signalling and to prevent FAP over-activation. Moreover, increasing the expression of this isoform limits fibrosis in vivo in mice, suggesting both biological relevance and therapeutic potential of modulating polyadenylation patterns in stem-cell populations.


Assuntos
Íntrons/genética , Músculo Esquelético/patologia , Doenças Musculares/prevenção & controle , Poliadenilação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regeneração/genética , Células-Tronco/metabolismo , Adipócitos/citologia , Adipócitos/patologia , Adipogenia , Animais , Fibroblastos/citologia , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Fibrose/prevenção & controle , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/patologia
14.
J Med Chem ; 59(17): 7901-14, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27502700

RESUMO

A series of potent PDGFR inhibitors has been identified. The series was optimized for duration of action in the lung. A novel kinase occupancy assay was used to directly measure target occupancy after i.t. dosing. Compound 25 shows 24 h occupancy of the PDGFR kinase domain, after a single i.t. dose and has efficacy at 0.03 mg/kg, in the rat moncrotaline model of pulmonary arterial hypertension. Examination of PK/PD data from the optimization effort has revealed in vitro:in vivo correlations which link duration of action in vivo with low permeability and high basicity and demonstrate that nonspecific binding to lung tissue increases with lipophilicity.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Niacinamida/análogos & derivados , Pirazóis/química , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Administração por Inalação , Animais , Linhagem Celular , Proliferação de Células , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Membranas Artificiais , Simulação de Acoplamento Molecular , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Niacinamida/síntese química , Niacinamida/química , Niacinamida/farmacologia , Permeabilidade , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/química , Pirazóis/síntese química , Pirazóis/farmacologia , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Receptores do Fator de Crescimento Derivado de Plaquetas/química , Relação Estrutura-Atividade
15.
Biochem Biophys Res Commun ; 477(4): 667-672, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27349873

RESUMO

Platelet-derived growth factor receptor α (PDGFRA) is a Type III receptor tyrosine kinase, and this kinase is a target for treatment of gastrointestinal stromal tumors (GIST) as it is frequently mutated in these cancers. Most of the mutations that cause constitutive activation of PDGFRA occur in either the activation loop (A-loop) or in the juxtamembrane (JM) domain, such as the mutations D842V or V561D respectively. Treatment of PDGFRA-mutated GIST with imatinib is successful in some cases, but the D842V mutation is imatinib-resistant. To better understand the mechanism of PDGFRA drug-resistance, we have determined the crystal structure of the PDGFRA kinase domain in the auto-inhibited form, and studied the kinetics of the D842V mutation. Auto-inhibited PDGFRA is stabilized by the JM domain, which inserts into the active site of the kinase. The conserved residue Asp842 makes extensive contacts with several A-loop residues to maintain PDGFRA in the "DFG out" conformation, which stabilizes the kinase in the inactive state and facilitates the binding of imatinib. The D842V mutation would therefore be expected to activate the kinase and hinder the binding of drug through destabilizing the "DFG out" conformation. Furthermore, our kinetic data show that drug resistance in the D842V mutation may also in part result from its increased affinity for ATP. The PDGFRA kinase domain structure we report in this study has potential to facilitate development of new agents which can inhibit this kinase, including both its activating and drug-resistant mutations.


Assuntos
Trifosfato de Adenosina/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
16.
Arthritis Rheumatol ; 67(7): 1891-903, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808833

RESUMO

OBJECTIVE: To identify the epitopes recognized by autoantibodies targeting platelet-derived growth factor receptor α (PDGFRα) in systemic sclerosis (SSc) and develop novel assays for detection of serum anti-PDGFRα autoantibodies. METHODS: Epstein-Barr virus-immortalized B cells from 1 patient with SSc (designated PAM) were screened for expression of IgG binding to PDGFRα and induction of reactive oxygen species in fibroblasts. The variable regions of anti-PDGFRα IgG were cloned into an IgG expression vector to generate distinct recombinant human monoclonal autoantibodies (mAb), which were characterized by binding and functional assays. The epitopes of anti-PDGFRα recombinant human mAb were defined by molecular docking, surface plasmon resonance binding assays, screening of a conformational peptide library spanning the PDGFRα extracellular domains, and expression analyses of alanine-scanned PDGFRα mutants. Direct or competitive enzyme-linked immunosorbent assays were established to detect all serum anti-PDGFRα autoantibodies or, selectively, the agonistic ones. RESULTS: Three types of anti-PDGFRα recombinant human mAb, with the same VH but distinct VL chains, were generated. Nonagonistic VH PAM-Vκ 13B8 recognized 1 linear epitope, whereas agonistic VH PAM-Vλ 16F4 and VH PAM-Vκ 16F4 recognized 2 distinct conformational epitopes. Serum anti-PDGFRα antibodies were detected in 66 of 70 patients with SSc, 63 of 130 healthy controls, 11 of 26 patients with primary Raynaud's phenomenon (RP), and 13 of 29 patients with systemic lupus erythematosus (SLE). Serum VH PAM-Vκ 16F4-like antibodies were found in 24 of 34 patients with SSc, but not in healthy controls, patients with primary RP, or patients with SLE. Peptides composing the VH PAM-Vκ 16F4 epitope inhibited PDGFRα signaling triggered by serum IgG from SSc patients. CONCLUSION: Agonistic anti-PDGFRα autoantibodies are enriched in SSc sera and recognize specific conformational epitopes that can be used to discriminate agonistic from nonagonistic antibodies and block PDGFRα signaling in patients with SSc.


Assuntos
Especificidade de Anticorpos/imunologia , Autoanticorpos/imunologia , Epitopos/imunologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/imunologia , Escleroderma Sistêmico/imunologia , Sequência de Aminoácidos , Autoanticorpos/sangue , Autoanticorpos/química , Estudos de Casos e Controles , Colágeno/metabolismo , Mapeamento de Epitopos , Epitopos/química , Feminino , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Pessoa de Meia-Idade , Dados de Sequência Molecular , Conformação Proteica , Doença de Raynaud/sangue , Doença de Raynaud/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Escleroderma Sistêmico/sangue
17.
Biochem Biophys Res Commun ; 459(3): 443-9, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25744030

RESUMO

Neuropilin-1 (NRP-1) is involved in angiogenesis, but the role of NRP-1 in megakaryocytopoiesis is not yet fully understood. In this study, we investigated whether thrombopoietin (TPO) regulates the expression of platelet-derived growth factor (PDGF) and its receptors (PDGFRs) on TPO-dependent UT-7/TPO cells and whether PDGFRs and NRP-1 on UT-7/TPO cells form complexes during megakaryocytic differentiation. When UT-7/TPO cells were starved of TPO for 24 h and then stimulated with 5 ng/ml TPO, the expression of PDGF-B, PDGFRα, and PDGFRß were significantly up-regulated after the addition of TPO. TPO also induced tyrosine phosphorylation of PDGFRα but not PDGFRß, and promoted the formation of PDGFRαß heterodimer complexes. Furthermore, megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of PDGFRß and NRP-1 protein expression, complex formation between PDGFRs and NRP-1, PDGFRαß heterodimer complexes, and an increase in PDGF-BB-binding activity. Immunocytochemistry confirmed complex formation between PDGFRs and NRP-1 and PDGFRαß heterodimer complexes in PMA-differentiated UT-7/TPO cells. Our observations suggest that NRP-1 is involved in megakaryocytopoiesis through complex formation with PDGFRs, and that NRP-1-PDGFR-complexes may contribute to effective cellular functions mediated by TPO and PDGF in megakaryocytic cells.


Assuntos
Megacariócitos/citologia , Megacariócitos/metabolismo , Neuropilina-1/química , Neuropilina-1/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Trombopoese/fisiologia , Trombopoetina/metabolismo , Becaplermina , Linhagem Celular , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-sis/química , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Recombinantes/metabolismo , Trombopoese/genética
18.
Leukemia ; 29(8): 1763-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25761934

RESUMO

FIP1L1-PDGFRA is a constitutively activated kinase described in chronic eosinophilic leukemia (CEL) and hypereosinophilic syndrome (HES). Imatinib is clinically active in FIP1L1-PDGFRA-positive diseases. Using in vitro screening to identify imatinib-resistant mutations, we frequently detected a Phe to Ser exchange at position 604 (F604S) of FIP1L1-PDGFRA alone or in combination with other exchanges. Surprisingly, FIP1L1-PDGFRA/F604S did not increase the biochemical or cellular IC50 value of imatinib when compared with unmutated FIP1L1-PDGFRA. However, FIP1L1-PDGFRA/F604S more efficiently induced growth factor independence in cell lines and primary mouse bone marrow cells. Pulse chase analysis revealed that the F604S exchange strongly stabilized FIP1L1-PDGFRA/F604S. The F604S mutation creates a binding site for the phosphatase domain of SHP-2, leading to lower autophosphorylation of FIP1L1-PDGFRA/F604S. This is associated with a reduced activation of SRC and CBL by FIP1L1-PDGFRA/F604S compared with the unmutated oncogene. As SRC inhibition and knockdown resulted in FIP1L1-PDGFRA stabilization, this explains the extended half-life of FIP1L1-PDGFRA/F604S. Interestingly, FIP1L1-PDGFRA/L629P, a recently identified mutation in an imatinib-resistant CEL patient, also showed protein stabilization similar to that observed with FIP1L1-PDGFRA/F604S. Therefore, resistance mutations in FIP1L1-PDGFRA that do not interfere with drug binding but rather increase target protein stability seem to be one of the drug-resistance mechanisms in FIP1L1-PDGFRA-positive disease.


Assuntos
Mutação/genética , Proteína Oncogênica pp60(v-src)/metabolismo , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética , Animais , Apoptose , Western Blotting , Células Cultivadas , Células HEK293 , Humanos , Síndrome Hipereosinofílica , Camundongos , Células NIH 3T3 , Proteína Oncogênica pp60(v-src)/genética , Células Precursoras de Linfócitos B , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Ann Hematol ; 93(9): 1473-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24763514

RESUMO

FIP1-like 1 (FIP1L1) is associated with two leukemogenic fusion genes: FIP1L1-retinoic acid receptor alpha (RARA) and FIP1L1-platelet-derived growth factor receptor alpha (PDGFRA). Analyses of a series of deletion mutants revealed that the FIP1 motif in FIP1L1-RARA plays a pivotal role in its homodimerization and transcriptional repressor activity. However, in FIP1L1-PDGFRA, the C-terminal PDGFRA portion possesses the ability of forming a homodimer by itself, making FIP1L1 dispensable for constitutive activation of this kinase. Both the full-length and the C-terminal PDGFRA portion of FIP1L1-PDGFRA could transform the IL-3-dependent hematopoietic cell line, BAF-B03. Moreover, when either the full-length or the C-terminal PDGFRA portion of FIP1L1-PDGFRA was introduced in these cells, they grew in the absence of IL-3. The cells having the C-terminal PDGFRA portion of FIP1L1-PDGFRA, however, were partially IL-3 dependent, whereas the cells having the full-length FIP1L1-PDGFRA became completely IL-3 independent for their growth. Taken together, these results show that FIP1L1 differentially contributes to the pathogenesis of distinct types of leukemia.


Assuntos
Leucemia/classificação , Leucemia/genética , Proteínas de Fusão Oncogênica/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-3/farmacologia , Proteínas de Fusão Oncogênica/química , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Fatores de Poliadenilação e Clivagem de mRNA/química
20.
Oncogene ; 33(20): 2568-76, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23752188

RESUMO

Activating mutations in the platelet-derived growth factor (PDGF) receptor alpha (PDGFRA) have been described in patients with gastrointestinal stromal tumors or myeloid malignancies associated with hypereosinophilia. These patients respond well to imatinib mesylate, raising the question as to whether patients with a PDGF receptor mutation in other tumor types should receive a tyrosine kinase inhibitor treatment. We characterized 10 novel somatic point mutations in PDGFRA that have been reported in isolated cases of glioblastoma, melanoma, acute myeloid leukemia, peripheral nerve sheath tumors and neuroendocrine carcinoma. The PDGFRA transmembrane domain mutation V536E stimulated Ba/F3 cell growth and signaling via ERK and STAT5 in the absence of ligand. This mutant, identified in glioblastoma, was strongly inhibited by imatinib. Modeling suggested that the mutation modulates the packing of the transmembrane domain helices in the receptor dimer. By contrast, two mutations in highly conserved residues affected the receptor traffic to the cell surface or kinase activity, thereby preventing the response to PDGF. The other mutations had no significant impact on the receptor activity. This functional analysis matched the predictions of SIFT and PolyPhen for only five mutations and these algorithms do not discriminate gain from loss of function. Finally, an E996K variant that had been identified in a melanoma cell line was not expressed in these cells. Altogether, several newly identified PDGFRA mutations do not activate the receptor and may therefore represent passenger mutations. Our results also underline the importance of characterizing novel kinase alterations in cancer patients.


Assuntos
Neoplasias/genética , Mutação Puntual , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Sequência de Aminoácidos , Citometria de Fluxo , Glicosilação , Humanos , Dados de Sequência Molecular , Transporte Proteico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...