Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Nat Commun ; 15(1): 5919, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004626

RESUMO

Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of ß-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.


Assuntos
Dieta Hiperlipídica , Galactosiltransferases , Resistência à Insulina , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade , Receptor de Pregnano X , Animais , Obesidade/metabolismo , Obesidade/genética , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Camundongos , Dieta Hiperlipídica/efeitos adversos , Mucosa Intestinal/metabolismo , Masculino , Intestinos , Humanos
2.
Basic Clin Pharmacol Toxicol ; 135(2): 148-163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887973

RESUMO

Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver. Here, we investigated the metabolism activity of CYP1A2, CYP3A1/2 and CYP2C6/11 during PXR activation-induced liver enlargement and regeneration in rats after cocktail dosing of CYP probe drugs. For PCN-induced hepatomegaly, a notable increase in the metabolic activity of CYP3A1/2 and CYP2C6/11, as evidenced by the plasma exposure of probe substrates and the AUC ratios of the characteristic metabolites to its corresponding probe substrates. The metabolic activity of CYP1A2, CYP3A1/2 and CYP2C6/11 decreased significantly after PHx. However, PCN treatment obviously enhanced the metabolic activity of CYP2C6/11 and CYP3A1/2 in PHx rats. Furthermore, the protein expression levels of CYP3A1/2 and CYP2C6/11 in liver were up-regulated. Taken together, this study demonstrates that PXR activation not only induces hepatomegaly and liver regeneration in rats, but also promotes the protein expression and metabolic activity of the PXR downstream metabolizing enzymes such as CYP3A1/2 and CYP2C6/11 in the body.


Assuntos
Citocromo P-450 CYP3A , Hepatomegalia , Regeneração Hepática , Fígado , Receptor de Pregnano X , Carbonitrila de Pregnenolona , Animais , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Regeneração Hepática/efeitos dos fármacos , Masculino , Citocromo P-450 CYP3A/metabolismo , Carbonitrila de Pregnenolona/farmacologia , Fígado/metabolismo , Fígado/enzimologia , Fígado/efeitos dos fármacos , Ratos , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/genética , Ratos Sprague-Dawley , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética , Esteroide 16-alfa-Hidroxilase/metabolismo , Esteroide 16-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Esteroide 12-alfa-Hidroxilase/genética , Hepatectomia
3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928005

RESUMO

The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.


Assuntos
Toxinas Marinhas , Mytilus , Receptor de Pregnano X , Animais , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Mytilus/metabolismo , Mytilus/genética , Humanos , Microcistinas/metabolismo , Microalgas/metabolismo , Microalgas/genética , Xenobióticos/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas de Cianobactérias
4.
Expert Opin Drug Metab Toxicol ; 20(6): 529-539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38712502

RESUMO

BACKGROUND: Antiretrovirals have the potential to cause drug interactions leading to inefficacy or toxicity via induction of efflux transporters through nuclear receptors, altering drug concentrations at their target sites. RESEARCH DESIGN AND METHODS: This study used molecular dynamic simulations and qRT-PCR to investigate bictegravir's interactions with nuclear receptors PXR and CAR, and its effects on efflux transporters (P-gp, BCRP, MRP1) in rat PBMCs. PBMC/plasma drug concentrations were measured using LC-MS/MS to assess the functional impact of transporter expression. RESULTS: Bictegravir significantly increased the expression of ABC transporters, with Car identified as a key mediator. This suggests that bictegravir's influence on nuclear receptors could affect drug transport and efficacy at the cellular level. CONCLUSIONS: Bictegravir activates nuclear receptors enhancing efflux transporter expression. Understanding these interactions is crucial for preventing drug-drug interactions and reducing toxicity in clinical use. Combining CAR antagonists with bictegravir may prevent drug resistance and toxicity. However, these findings are based on preclinical data and necessitate further clinical trials to confirm their applicability in clinical settings.


Assuntos
Interações Medicamentosas , Compostos Heterocíclicos de 4 ou mais Anéis , Leucócitos Mononucleares , Espectrometria de Massas em Tandem , Animais , Ratos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Piperazinas/farmacologia , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptor Constitutivo de Androstano , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida/métodos , Ratos Sprague-Dawley , Dioxolanos/farmacologia , Dioxolanos/farmacocinética , Dioxolanos/administração & dosagem , Amidas , Piridonas
5.
Toxicol Lett ; 397: 79-88, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734220

RESUMO

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.


Assuntos
Proliferação de Células , Hepatócitos , Hepatomegalia , Fígado , PPAR alfa , Receptor de Pregnano X , Pirimidinas , Proteínas de Sinalização YAP , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hidrocarboneto de Aril Hidroxilases , beta Catenina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP3A , Citocromo P-450 CYP4A/metabolismo , Citocromo P-450 CYP4A/genética , Família 2 do Citocromo P450 , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Antígeno Ki-67/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , PPAR alfa/agonistas , PPAR alfa/metabolismo , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases , Proteínas de Sinalização YAP/metabolismo
6.
Biochem Pharmacol ; 225: 116309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788959

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, plays a critical role in the metabolism of endogenous and exogenous substances in the liver. Here, we investigate whether PXR plays a role in pathogenesis of HCC. We show that liver tumors were developed in diethylnitrosamine (DEN)-treated in PXR knockout (KO) mice. Hepatic levels of prostaglandin F2α (PGF2α) and aldo-keto reductase family 1 member C18 (Akr1c18), a prostaglandin synthase of catalyzing reduction of PGH2 to PGF2α, were significantly elevated in DEN-treated PXR KO mice. Hepatic mRNA levels of alpha fetoprotein (AFP), cyclin D1 (Ccnd1), fibroblast growth factor 21 (FGF21), and inflammatory cytokine interleukin 6 (IL-6) were significantly increased in DEN-treated PXR KO mice. Other members of Akr1c family, liver metabolizing enzymes including Cyp1a2, Cyp2b10 and Cyp3a11, and bile acid synthesis enzyme Cyp7a1 mRNA levels were significantly decreased in DEN-treated PXR KO mice. Our findings revealed that PXR deficiency promoted DEN-induced HCC in mice via induction of Akr1c18 expression and PGF2α levels and the increased PGF2α levels synthetized by Akr1c18 enhanced hepatocytes proliferation and induced inflammatory cytokine production, which accelerated liver tumor development after DEN treatment, suggesting that PXR deficiency may create a microenvironment that is more prone to DEN-induced liver tumors and targeting PXR and Akr1c18 to reduce PGF2α biosynthesis may be a potential and novel therapeutic strategy for HCC.


Assuntos
Dinoprosta , Receptor de Pregnano X , Animais , Humanos , Masculino , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/toxicidade , Dinoprosta/metabolismo , Dinoprosta/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética
7.
Medicine (Baltimore) ; 103(19): e38092, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728468

RESUMO

Ultrasound therapy is a method of applying ultrasonic energy to the stimulation produced by human body to change the function and tissue state of the body in order to achieve the purpose of treating diseases. Chronic venous ulcer is a common chronic skin ulcer. GSE222503 for ultrasound therapy of chronic venous ulcers was downloaded from gene expression omnibus database, which were used to identify differentially expressed genes. Weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis and construction and analysis of protein-protein interaction network were performed. Draw gene expression heatmaps. Comparative toxicogenomics database analysis was performed. Two hundred thirty-five differentially expressed genes were obtained. According to gene ontology analysis, in biological process analysis, they were mainly enriched in positive regulation of cellular biosynthetic process, reproductive cell development, vasculogenesis, vascular morphogenesis, and inflammatory response. In cellular component analysis, they were mainly enriched in leading edge of growing cell, extracellular matrix binding organelle, F-actin capping protein complex. In molecular function analysis, they were mainly concentrated in receptor ligand activity, cytokine receptor binding. In Kyoto encyclopedia of genes and genomes analysis, they were mainly enriched in cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, HIF-1 signaling pathway, heme biosynthesis. In weighted gene co-expression network analysis, the soft threshold power was set to 9. Thirty modules were generated. PF4, NR1I2, TTC16, H3C12, KLRB1, CYP21A2 identified by 4 algorithms (MCC, EPC, closeness, stress). Heatmap of core gene expression showed that H3C12, KLRB1, PF4, NR1I2 were all underexpressed in samples of ultrasound-treated chronic venous ulcers and overexpressed in samples of untreated chronic venous ulcers. Comparative toxicogenomics database analysis showed that H3C12, KLRB1, PF4, NR1I2 are associated with thrombophlebitis, phlebitis, vascular malformations, metabolic syndrome, ulcers, and inflammation. In samples of chronic venous ulcer tissue treated with ultrasound, NR1I2 shows low expression, while in samples of chronic venous ulcer tissue without ultrasound treatment, it shows high expression. This finding suggests a potential role of NR1I2 in the process of ultrasound therapy for chronic venous ulcers, which may be related to the therapeutic effect of ultrasound therapy on chronic venous ulcers.


Assuntos
Receptor de Pregnano X , Terapia por Ultrassom , Úlcera Varicosa , Humanos , Doença Crônica , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Mapas de Interação de Proteínas , Terapia por Ultrassom/métodos , Úlcera Varicosa/terapia , Úlcera Varicosa/genética , Úlcera Varicosa/metabolismo , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo
8.
Adv Sci (Weinh) ; 11(25): e2308742, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654691

RESUMO

Deoxynivalenol (DON) is a prevalent toxin causing severe liver damage through hepatocellular oxidative stress. However, the underlying mechanisms and effective therapeutic approaches remain unknown. Here, the unique role of the xenobiotic metabolism factor pregnane X receptor (PXR) in mediating DON-induced hepatocellular oxidative stress is investigated. Treatment with the PXR agonist 3-indole-propionic acid (IPA) alleviates DON-induced oxidative stress and liver injury both in vitro and in vivo. Mechanistically, it is discovered for the first time that PXR agonist IPA directly transactivates the m6A demethylase FTO expression, leading to site-specific demethylation and decreased abundance of YTHDC1-bound Malat1 lncRNA at single-nucleotide resolution. The diminished m6A modification of Malat1 lncRNA reduces its stability and augments antioxidant pathways governed by NRF2, consequently mitigating DON-induced liver injury. Furthermore, Malat1 knockout mice exhibit decreased DON-induced liver injury, emphasizing the role of Malat1 lncRNA in oxidative stress. Collectively, the findings establish that PXR-mediated m6A-dependent Malat1 lncRNA expression determines hepatocyte oxidative stress via m6A demethylase FTO, providing valuable insights into the potential mechanisms underlying DON-induced liver injury and offers potential therapeutic strategies for its treatment.


Assuntos
Desmetilação , Camundongos Knockout , Estresse Oxidativo , Receptor de Pregnano X , RNA Longo não Codificante , Tricotecenos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Camundongos , Tricotecenos/toxicidade , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Humanos
9.
Adv Sci (Weinh) ; 11(19): e2308771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477509

RESUMO

Endotoxemia-related acute liver injury has a poor prognosis and high mortality, and macrophage polarization plays a central role in the pathological process. Pregnane X receptor (PXR) serves as a nuclear receptor and xenosensor, safeguarding the liver from toxic stimuli. However, the effect and underlying mechanism of PXR activation on endotoxemic liver injury remain largely unknown. Here, the expression of PXR is reported in human and murine macrophages, and PXR activation modified immunotypes of macrophages. Moreover, PXR activation significantly attenuated endotoxemic liver injury and promoted macrophage M2 polarization. Macrophage depletion by GdCl3 confirmed the essential of macrophages in the beneficial effects observed with PXR activation. The role of PXR in macrophages is further validated using AAV8-F4/80-Pxr shRNA-treated mice; the PXR-mediated hepatoprotection is impaired, and M2 polarization enhancement is blunted. Additionally, treatment with PXR agonists inhibited lipopolysaccharide (LPS)-induced M1 polarization and favored M2 polarization in BMDM, Raw264.7, and THP-1 cells. Further analyses revealed an interaction between PXR and p-STAT6 in vivo and in vitro. Moreover, blocking Pxr or Stat6 abolished the PXR-induced polarization shift. Collectively, macrophage PXR activation attenuated endotoxin-induced liver injury and regulated macrophage polarization through the STAT6 signaling pathway, which provided a potential therapeutic target for managing endotoxemic liver injury.


Assuntos
Endotoxinas , Macrófagos , Receptor de Pregnano X , Animais , Humanos , Masculino , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Modelos Animais de Doenças , Endotoxemia/metabolismo , Endotoxemia/genética , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Transdução de Sinais , Feminino
10.
Biomed Pharmacother ; 173: 116341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428309

RESUMO

Obesity is a significant risk factor for several chronic diseases. However, pre-menopausal females are protected against high-fat diet (HFD)-induced obesity and its adverse effects. The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor, promotes short-term obesity-associated liver disease only in male mice but not in females. Therefore, the current study investigated the metabolic and pathophysiological effects of a long-term 52-week HFD in female wild-type (WT) and PXR-KO mice and characterized the PXR-dependent molecular pathways involved. After 52 weeks of HFD ingestion, the body and liver weights and several markers of hepatotoxicity were significantly higher in WT mice than in their PXR-KO counterparts. The HFD-induced liver injury in WT female mice was also associated with upregulation of the hepatic mRNA levels of peroxisome proliferator-activated receptor gamma (Pparg), its target genes, fat-specific protein 27 (Fsp27), and the liver-specific Fsp27b involved in lipid accumulation, apoptosis, and inflammation. Notably, PXR-KO mice displayed elevated hepatic Cyp2a5 (anti-obesity gene), aldo-keto reductase 1b7 (Akr1b7), glutathione-S-transferase M3 (Gstm3) (antioxidant gene), and AMP-activated protein kinase (AMPK) levels, contributing to protection against long-term HFD-induced obesity and inflammation. RNA sequencing analysis revealed a general blunting of the transcriptomic response to HFD in PXR-KO compared to WT mice. Pathway enrichment analysis demonstrated enrichment by HFD for several pathways, including oxidative stress and redox pathway, cholesterol biosynthesis, and glycolysis/gluconeogenesis in WT but not PXR-KO mice. In conclusion, this study provides new insights into the molecular mechanisms by which PXR deficiency protects against long-term HFD-induced severe obesity and its adverse effects in female mice.


Assuntos
Dieta Hiperlipídica , Fígado , Masculino , Feminino , Camundongos , Animais , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Aumento de Peso , Obesidade/metabolismo , Inflamação/metabolismo , Camundongos Knockout
11.
J Acquir Immune Defic Syndr ; 95(3): 297-303, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180896

RESUMO

BACKGROUND: Dolutegravir plasma concentrations and pharmacokinetic (PK) parameters in children display considerable variability. Here, the impact of genetic variants in ABCG2 421C>A (rs2231142), NR1I2 63396 C>T (rs2472677), and UGT1A1 (rs5839491) on dolutegravir PK was examined. METHODS: Children defined by age and administered dolutegravir formulation had AUC 24 at steady state, C max and C 24h determined. Associations between genetic variants and PK parameters were assessed using the dominant inheritance model. RESULTS: The 59 children studied had a median age of 4.6 years, log 10 plasma HIV RNA of 4.79 (copies/mm 3 ), and CD4 + lymphocyte count of 1041 cells/mm 3 ; 51% were female. For ABCG2 , participants with ≥1 minor allele had lower adjusted mean AUC difference (hr*mg/L) controlling for weight at entry, cohort and sex (-15.7, 95% CI: [-32.0 to 0.6], P = 0.06), and log 10 C max adjusted mean difference (-0.15, 95% CI: [-0.25 to -0.05], P = 0.003). Participants with ≥1 minor allele had higher adjusted mean AUC difference (11.9, 95% CI: [-1.1 to 25.0], P = 0.07). For UGT1A1 , poor metabolizers had nonsignificant higher concentrations (adjusted log 10 C max mean difference 11.8; 95% CI: [-12.3 to 36.0], P = 0.34) and lower mean log 10 adjusted oral clearance -0.13 L/h (95% CI: [-0.3 to 0.06], P = 0.16). No association was identified between time-averaged AUC differences by genotype for adverse events, plasma HIV RNA, or CD4 + cell counts. CONCLUSIONS: Dolutegravir AUC 24 for genetic variants in ABCG2 , NR1l2 , and UGT1A1 varied from -25% to +33%. These findings help to explain some of the variable pharmacokinetics identified with dolutegravir in children.


Assuntos
Infecções por HIV , Oxazinas , Piperazinas , Criança , Humanos , Feminino , Pré-Escolar , Masculino , Receptor de Pregnano X/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Genótipo , Compostos Heterocíclicos com 3 Anéis , Piridonas , RNA , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética
12.
Toxicol Lett ; 387: 63-75, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778463

RESUMO

Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Esteroides , Humanos , Receptor de Pregnano X/genética , Células CACO-2 , Receptores de Hidrocarboneto Arílico/metabolismo , Indóis/farmacologia , Triptaminas/farmacologia , Receptores de Esteroides/metabolismo
13.
Biochem Pharmacol ; 215: 115733, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543347

RESUMO

Pregnane X receptor (PXR) is one of the key regulators of drug metabolism, gluconeogenesis, and lipid synthesis in the human liver. Activation of PXR by drugs such as rifampicin, simvastatin, and efavirenz causes adverse reactions such as drug-drug interaction, hyperglycemia, and dyslipidemia. The inhibition of PXR activation has merit in preventing such adverse events. Here, we demonstrated that bromodomain containing protein 9 (BRD9), a component of non-canonical brahma-related gene 1-associated factor (ncBAF), one of the chromatin remodelers, interacts with PXR. Rifampicin-mediated induction of CYP3A4 expression was attenuated by iBRD9, an inhibitor of BRD9, in human primary hepatocytes and CYP3A/PXR-humanized mice, indicating that BRD9 enhances the transcriptional activation of PXR in vitro and in vivo. Chromatin immunoprecipitation assay reveled that iBRD9 treatment resulted in attenuation of the rifampicin-mediated binding of PXR to the CYP3A4 promoter region, suggesting that ncBAF functions to facilitate the binding of PXR to its response elements. Efavirenz-induced hepatic lipid accumulation was attenuated by iBRD9 in C57BL/6J mice, suggesting that the inhibition of BRD9 would be useful to reduce the risk of efavirenz-induced hepatic steatosis. Collectively, we found that inhibitors of BRD9, a component of ncBAF that plays a role in assisting transactivation by PXR, would be useful to reduce the risk of PXR-mediated adverse reactions.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Camundongos , Animais , Receptor de Pregnano X/genética , Ativação Transcricional , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampina/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatócitos/metabolismo , Lipídeos , Fatores de Transcrição/metabolismo
14.
Cancer Chemother Pharmacol ; 92(4): 315-324, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500985

RESUMO

PURPOSE: Because of the large interindividual variability of afatinib pharmacokinetics and adverse events, we evaluated the effects of polymorphisms in pregnane X receptor (NR1I2) and ABC transporters (ABCB1, ABCG2, and ABCC2) on the pharmacokinetics of afatinib. METHODS: The steady-state area under the concentration-time curve (AUC)0-24 of afatinib was analyzed using blood sampling just prior to and at 1, 2, 4, 6, 8, 12, and 24 h on day 15 after administration. RESULTS: The median oral clearance (CL/F) of afatinib in patients with the NR1I2 7635A allele was significantly lower than those in patients with the 7635G/G genotype (42.0 and 60.0 L/h, respectively, P = 0.025). There were no significant differences in afatinib CL/F between genotypes for NR1I2 8055C > T, -25385C > T, ABCB1, ABCG2, and ABCC2 polymorphisms. Based on the area under the receiver-operating characteristic curve, the threshold afatinib AUC0-24 value for prediction of dose reduction or withdrawal was 689 ng·h/mL at the best sensitivity (81.0%) and specificity (72.7%). In multivariate logistic regression analysis, an afatinib AUC0-24 above 689 ng·h/mL was independently associated with increased risk of dose reduction or withdrawal (OR: 11.66, P = 0.012). CONCLUSIONS: The NR1I2 7635A allele was related to a lower afatinib CL/F. Based on the AUC of 689 ng h/mL and CL/F, the optimal doses for patients with the NR1I2 7635G/G genotype and 7635A allele were recommended to be set at 40 and 30 mg/day, respectively, and subsequent adjustment of the maintenance dose based on the plasma concentrations of afatinib may be necessary to avoid afatinib-related adverse events.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Afatinib/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Receptor de Pregnano X/genética , Farmacogenética , População do Leste Asiático , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Genótipo , Polimorfismo de Nucleotídeo Único
15.
CNS Neurosci Ther ; 29(11): 3460-3478, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37269088

RESUMO

INTRODUCTION: As a devastating neurological disease, spinal cord injury (SCI) results in severe tissue loss and neurological dysfunction. Pregnane X receptor (PXR) is a ligand-activated nuclear receptor with a major regulatory role in xenobiotic and endobiotic metabolism and recently has been implicated in the central nervous system. In the present study, we aimed to investigate the role and mechanism of PXR in SCI. METHODS: The clip-compressive SCI model was performed in male wild-type C57BL/6 (PXR+/+ ) and PXR-knockout (PXR-/- ) mice. The N2a H2 O2 -induced injury model mimicked the pathological process of SCI in vitro. Pregnenolone 16α-carbonitrile (PCN), a mouse-specific PXR agonist, was used to activate PXR in vivo and in vitro. The siRNA was applied to knock down the PXR expression in vitro. Transcriptome sequencing analysis was performed to discover the relevant mechanism, and the NRF2 inhibitor ML385 was used to validate the involvement of PXR in influencing the NRF2/HO-1 pathway in the SCI process. RESULTS: The expression of PXR decreased after SCI and reached a minimum on the third day. In vivo, PXR knockout significantly improved the motor function of mice after SCI, meanwhile, inhibited apoptosis, inflammation, and oxidative stress induced by SCI. On the contrary, activation of PXR by PCN negatively influenced the recovery of SCI. Mechanistically, transcriptome sequencing analysis revealed that PXR activation downregulated the mRNA level of heme oxygenase-1 (HO-1) after SCI. We further verified that PXR deficiency activated the NRF2/HO-1 pathway and PXR activation inhibited this pathway in vitro. CONCLUSION: PXR is involved in the recovery of motor function after SCI by regulating NRF2/HO-1 pathway.


Assuntos
Receptor de Pregnano X , Traumatismos da Medula Espinal , Animais , Masculino , Camundongos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor de Pregnano X/deficiência , Receptor de Pregnano X/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo
16.
Mol Med ; 29(1): 65, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208586

RESUMO

BACKGROUND: The morbidity and mortality of sepsis are extremely high, which is a major problem plaguing human health. However, current drugs and measures for the prevention and treatment of sepsis have little effect. Sepsis-associated acute liver injury (SALI) is an independent risk factor for sepsis, which seriously affects the prognosis of sepsis. Studies have found that gut microbiota is closely related to SALI, and indole-3-propionic Acid (IPA) can activate Pregnane X receptor (PXR). However, the role of IPA and PXR in SALI has not been reported. METHODS: This study aimed to explore the association between IPA and SALI. The clinical data of SALI patients were collected and IPA level in feces was detected. The sepsis model was established in wild-type mice and PXR knockout mice to investigate the role of IPA and PXR signaling in SALI. RESULTS: We showed that the level of IPA in patients' feces is closely related to SALI, and the level of IPA in feces has a good ability to identify and diagnose SALI. IPA pretreatment significantly attenuated septic injury and SALI in wild-type mice, but not found in knockout PXR gene mice. CONCLUSIONS: IPA alleviates SALI by activating PXR, which reveals a new mechanism of SALI, and provides potentially effective drugs and targets for the prevention of SALI.


Assuntos
Fígado , Sepse , Humanos , Camundongos , Animais , Receptor de Pregnano X/genética , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos Knockout , Sepse/complicações
18.
J Biol Chem ; 299(3): 102955, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720308

RESUMO

Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.


Assuntos
Arsênio , Glucuronosiltransferase , Fator 2 Relacionado a NF-E2 , Receptor de Pregnano X , Animais , Camundongos , Animais Recém-Nascidos , Arsênio/toxicidade , Bilirrubina/sangue , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Fígado/enzimologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo
19.
Cell Death Dis ; 14(1): 64, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707511

RESUMO

The pregnane X receptor (PXR) is an important regulator of hepatocellular carcinoma cellular resistance to antitumor drugs. Activation of PXR was modulated by the co-regulators. The target protein for the Xenopus plus end-directed kinesin-like protein (Xklp2) known as TPX2 that was previously considered as a tubulin regulator, also functions as the regulator of some transcription factors and pro-oncogenes in human malignances. However, the actions of TPX2 on PXR and HCC cells are still unclear. In the present study, our results demonstrate that the high expression of endogenous mRNA level of TPX2 not only correlated with the poor prognosis of advanced HCC patients who received sorafenib treatment but also with expression of PXR's downstream genes, cyp3a4 and/or mdr-1. Results from luciferase and real-time polymerase chain reaction (qPCR) showed that TPX2 leads to enhancement of the transcription factor activation of PXR. Protein-protein interactions between PXR and TPX2 were identified using co-immunoprecipitation. Mechanically, overexpression of TPX2 led to enhancement of PXR recruitment to its downstream gene cyp3a4's promoter region (the PXRE region) or enhancer region (the XREM region). Treatment of HCC cells with paclitaxel, a microtubule promoter, led to enhancement of the effects of TPX2, whereas vincristine, a microtubule depolymerizing agent caused a decrease in TPX2-associated effects. TPX2 was found to cause acceleration of the metabolism or clearance of sorafenib, a typical tyrosine kinase inhibitor (TKI) in HCC cells and in turn led to the resistance to sorafenib by HCC cells. By establishing novel actions of TXP2 on PXR in HCC cells, the results indicate that TPX2 could be considered a promising therapeutic target to enhance HCC cells sensitivity to antitumor drugs.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Receptor de Pregnano X/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Citocromo P-450 CYP3A/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Ciclo Celular/genética
20.
Pharmacogenet Genomics ; 33(2): 35-39, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503926

RESUMO

Pregnane X receptor (PXR) gene variants rs7643645 and rs2461823 are reported to associate with clinically and histologically more severe liver injury in nonalcoholic fatty liver disease (NAFLD). It is known that the more progressive the NAFLD, the higher the hepatic and extra-hepatic mortality and morbidity. Thus, we investigated the total mortality in Finnish middle-aged ultrasonographically verified NAFLD patients with PXR rs7643645 AA/AG ( n = 217) or GG ( n = 27) variants and rs2461823 CC/CT ( n = 215) or TT ( n = 27) variants. In up to 30 years of follow-up, PXR rs7643645 GG subjects were at an increased risk of total mortality compared with AA/AG subjects, 1.676 (1.014-2.772), P = 0.044. The statistically significant difference prevailed after multiple adjustments for potentially confounding factors, RR, 2.024 (1.191-3.440), P = 0.009. In the subjects without NAFLD ( n = 731), the mortality risk was not associated with rs7643645 variants, 1.051 (0.708-1.560; P = 0.804). There was no difference in the total mortality between the PXR rs2461823 variant subgroups, 1.141 (0.663-1.962; P = 0.634). As the rs7643645 G variant disrupts a putative hepatocyte nuclear factor 4α binding site located in the PXR gene promoter and is associated with lower hepatic expression of PXR and its target genes, our result suggests that genetic disruption of xenobiotic metabolism increases mortality in subjects with NAFLD. Further studies are needed to confirm the results of the present study.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores de Esteroides , Pessoa de Meia-Idade , Humanos , Receptor de Pregnano X/genética , Hepatopatia Gordurosa não Alcoólica/genética , Receptores de Esteroides/genética , Fígado , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...