Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Gen Physiol ; 155(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37026993

RESUMO

Serotonin or 5-hydroxytryptamine type 3 (5-HT3) receptors belong to the family of pentameric ligand-gated ion channels (pLGICs) that are therapeutic targets for psychiatric disorders and neurological diseases. Due to structural conservation and significant sequence similarities of pLGICs' extracellular and transmembrane domains, clinical trials for drug candidates targeting these two domains have been hampered by off-subunit modulation. With the present study, we explore the interaction interface of the 5-HT3A subunit intracellular domain (ICD) with the resistance to inhibitors of choline esterase (RIC-3) protein. Previously, we have shown that RIC-3 interacts with the L1-MX segment of the ICD fused to maltose-binding protein. In the present study, synthetic L1-MX-based peptides and Ala-scanning identify positions W347, R349, and L353 as critical for binding to RIC-3. Complementary studies using full-length 5-HT3A subunits confirm that the identified Ala substitutions reduce the RIC-3-mediated modulation of functional surface expression. Additionally, we find and characterize a duplication of the binding motif, DWLR…VLDR, present in both the MX-helix and the transition between the ICD MA-helix and transmembrane segment M4. Analogous Ala substitutions at W447, R449, and L454 disrupt MAM4-peptide RIC-3 interactions and reduce modulation of functional surface expression. In summary, we identify the binding motif for RIC-3 in 5-HT3A subunits at two locations in the ICD, one in the MX-helix and one at the MAM4-helix transition.


Assuntos
Receptores 5-HT3 de Serotonina , Serotonina , Humanos , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/química , Domínios Proteicos
2.
J Chem Inf Model ; 63(4): 1196-1207, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757760

RESUMO

Pentameric ligand-gated ion channels play an important role in mediating fast neurotransmissions. As a member of this receptor family, cation-selective 5-HT3 receptors are a clinical target for treating nausea and vomiting associated with chemotherapy and radiation therapy (Thompson and Lummis, 2006). Multiple cryo-electron microscopy (cryo-EM) structures of 5-HT3 receptors have been determined in distinct functional states (e.g., open, closed, etc.) (Basak et al., 2018; Basak et al., 2018; Polovinkin et al., 2018; Zhang et al., 2015). However, recent work has shown that the transmembrane pores of the open 5-HT3 receptor structures rapidly collapse and become artificially asymmetric in molecular dynamics (MD) simulations. To avoid this hydrophobic collapse, Dämgen and Biggin developed an equilibration protocol that led to a stable open state structure of the glycine receptor in MD simulations (Dämgen and Biggin, 2020). However, the protocol failed to yield open-like structures of the 5-HT3 receptor in our simulations. Here, we present a refined equilibration protocol that involves the rearrangement of the transmembrane helices to achieve stable open state structures of the 5-HT3 receptor that allow both water and ion permeation through the channel. Notably, channel gating is mediated through collective movement of the transmembrane helices, involving not only pore lining M2 helices but also their cross-talk with the adjacent M1 and M3 helices. Thus, the successful application of our refined equilibration protocol underscores the importance of the conformational coupling between the transmembrane helices in stabilizing open-like structures of the 5-HT3 receptor.


Assuntos
Simulação de Dinâmica Molecular , Serotonina , Serotonina/química , Serotonina/metabolismo , Microscopia Crioeletrônica , Estrutura Secundária de Proteína , Transporte de Íons , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo
3.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008969

RESUMO

Monoamine serotonin is a major neurotransmitter that acts on a wide range of central nervous system and peripheral nervous system functions and is known to have a role in various processes. Recently, it has been found that 5-HT is involved in cognitive and memory functions through interaction with cholinergic pathways. The natural flavonoid kaempferol (KAE) extracted from Cudrania tricuspidata is a secondary metabolite of the plant. Recently studies have confirmed that KAE possesses a neuroprotective effect because of its strong antioxidant activity. It has been confirmed that KAE is involved in the serotonergic pathway through an in vivo test. However, these results need to be confirmed at the molecular level, because the exact mechanism that is involved in such effects of KAE has not yet been elucidated. Therefore, the objective of this study is to confirm the interaction of KAE with 5-HT3A through electrophysiological studies at the molecular level using KAE extracted from Cudrania tricuspidata. This study confirmed the interaction between 5-HT3A and KAE at the molecular level. KAE inhibited 5-HT3A receptors in a concentration-dependent and voltage-independent manner. Site-directed mutagenesis and molecular-docking studies confirmed that the binding sites D177 and F199 are the major binding sites of human 5-HT3A receptors of KAE.


Assuntos
Quempferóis/farmacologia , Triterpenos Pentacíclicos/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Humanos , Quempferóis/química , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Triterpenos Pentacíclicos/química , Ligação Proteica , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Antagonistas do Receptor 5-HT3 de Serotonina/química , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769340

RESUMO

5-hydroxytryptamine type 3 (5-HT3) receptors are ligand gated ion channels, which clearly distinguish their mode of action from the other G-protein coupled 5-HT or serotonin receptors. 5-HT3 receptors are well established targets for emesis and gastrointestinal mobility and are used as adjunct targets in treating schizophrenia. However, the distribution of these receptors is wider than the nervous system and there is potential that these additional sites can be targeted to modulate inflammatory and/or metabolic conditions. Recent progress in structural biology and pharmacology of 5-HT3 receptors have provided profound insights into mechanisms of their action. These advances, combined with insights into clinical relevance of mutations in genes encoding 5-HT3 subunits and increasing understanding of their implications in patient's predisposition to diseases and response to the treatment, open new avenues for personalized precision medicine. In this review, we recap on the current status of 5-HT3 receptor-based therapies using a biochemical and physiological perspective. We assess the potential for targeting 5-HT3 receptors in conditions involving metabolic or inflammatory disorders based on recent findings, underscoring the challenges and limitations of this approach.


Assuntos
Imunidade/imunologia , Inflamação/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Receptores 5-HT3 de Serotonina/química , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia
5.
Int J Biochem Cell Biol ; 136: 106015, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022433

RESUMO

Evidence shows that long noncoding RNAs (lncRNAs) modulate mRNAs of multiple genes by post-transcriptional regulation. However, in esophageal squamous cell carcinoma, lncRNAs involvement in post-transcriptional regulation of mRNAs have been rarely reported. In this study, we investigated a novel mechanism of linc01305 promoting metastasis and proliferation of ESCC. The results for real-time quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization showed that linc01305 was highly expressed and predominantly located in cytoplasm of human esophageal cancer cells. Transwell and colony formation assays confirmed that linc01305 promoted migration and proliferation of esophageal cancer cells. RNA-seq, linc01305 pulldown, mass spectrometry, RNA immunoprecipitation and mRNA stability assays demonstrated that linc01305 stabilized mRNA of target gene HTR3A through interacting with IGF2BP2 and IGF2BP3. Taken together, our data unveils a novel mechanism in which cytoplasmic linc01305 stabilizes HTR3A mRNA through interacting with IGF2BP2 and IGF2BP3 and thereby promotes metastasis and proliferation of ESCC.


Assuntos
Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/secundário , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Receptores 5-HT3 de Serotonina/química , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Humanos , Prognóstico , Proteínas de Ligação a RNA/genética , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas
6.
Nat Commun ; 12(1): 1074, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594077

RESUMO

Pentameric ligand-gated ion channels (pLGICs) of the Cys-loop receptor family are key players in fast signal transduction throughout the nervous system. They have been shown to be modulated by the lipid environment, however the underlying mechanism is not well understood. We report three structures of the Cys-loop 5-HT3A serotonin receptor (5HT3R) reconstituted into saposin-based lipid bilayer discs: a symmetric and an asymmetric apo state, and an asymmetric agonist-bound state. In comparison to previously published 5HT3R conformations in detergent, the lipid bilayer stabilises the receptor in a more tightly packed, 'coupled' state, involving a cluster of highly conserved residues. In consequence, the agonist-bound receptor conformation adopts a wide-open pore capable of conducting sodium ions in unbiased molecular dynamics (MD) simulations. Taken together, we provide a structural basis for the modulation of 5HT3R by the membrane environment, and a model for asymmetric activation of the receptor.


Assuntos
Bicamadas Lipídicas/metabolismo , Multimerização Proteica , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Lipídeos/química , Camundongos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores 5-HT3 de Serotonina/ultraestrutura , Serotonina/farmacologia
7.
Biointerphases ; 15(6): 061018, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397116

RESUMO

Pentameric ligand-gated ion channels (pLGICs), embedded in the lipid membranes of nerve cells, mediate fast synaptic transmission and are major pharmaceutical targets. Because of their complexity and the limited knowledge of their structure, their working mechanisms have still to be fully unraveled at the molecular level. Over the past few years, evidence that the lipid membrane may modulate the function of membrane proteins, including pLGICs, has emerged. Here, we investigate, by means of molecular dynamics simulations, the behavior of the lipid membrane at the interface with the 5-HT3A receptor (5-HT3AR), a representative pLGIC which is the target of nausea-suppressant drugs, in a nonconductive state. Three lipid compositions are studied, spanning different concentrations of the phospholipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, and of cholesterol, hence a range of viscosities. A variety of lipid interactions and persistent binding events to different parts of the receptor are revealed in the investigated models, providing snapshots of the dynamical environment at the membrane-receptor interface. Some of these events result in lipid intercalation within the transmembrane domain, and others reach out to protein key sections for signal transmission and receptor activation, such as the Cys-loop and the M2-M3 loop. In particular, phospholipids, with their long hydrophobic tails, play an important role in these interactions, potentially providing a bridge between these two structures. A higher cholesterol content appears to promote lipid persistent binding to the receptor.


Assuntos
Membrana Celular/química , Colesterol , Lipídeos de Membrana , Receptores 5-HT3 de Serotonina , Animais , Colesterol/química , Colesterol/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo
8.
Subcell Biochem ; 96: 373-408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252737

RESUMO

5-hydroxytryptamine receptor subtype 3 (5-HT3R) is a pentameric ligand-gated ion channel (pLGIC) involved in neuronal signaling. It is best known for its prominent role in gut-CNS signaling though there is growing interest in its other functions, particularly in modulating non-serotonergic synaptic activity. Recent advances in structural biology have provided mechanistic understanding of 5-HT3R function and present new opportunities for the field. This chapter gives a broad overview of 5-HT3R from a physiological and structural perspective and then discusses the specific details of ion permeation, ligand binding and allosteric coupling between these two events. Biochemical evidence is summarized and placed within a physiological context. This perspective underscores the progress that has been made as well as outstanding challenges and opportunities for future 5-HT3R research.


Assuntos
Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Humanos
9.
Elife ; 92020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063666

RESUMO

Serotonin receptors (5-HT3AR) play a crucial role in regulating gut movement, and are the principal target of setrons, a class of high-affinity competitive antagonists, used in the management of nausea and vomiting associated with radiation and chemotherapies. Structural insights into setron-binding poses and their inhibitory mechanisms are just beginning to emerge. Here, we present high-resolution cryo-EM structures of full-length 5-HT3AR in complex with palonosetron, ondansetron, and alosetron. Molecular dynamic simulations of these structures embedded in a fully-hydrated lipid environment assessed the stability of ligand-binding poses and drug-target interactions over time. Together with simulation results of apo- and serotonin-bound 5-HT3AR, the study reveals a distinct interaction fingerprint between the various setrons and binding-pocket residues that may underlie their diverse affinities. In addition, varying degrees of conformational change in the setron-5-HT3AR structures, throughout the channel and particularly along the channel activation pathway, suggests a novel mechanism of competitive inhibition.


Serotonin is perhaps best known as a chemical messenger in the brain, where it regulates mood, appetite and sleep. But as a hormone, serotonin works in other parts of the body too. Serotonin is predominantly made in the gut, where it binds receptor proteins that help to regulate the movement of substances through the gastrointestinal tract, aiding digestion. However, a surge in serotonin release in the gut induces vomiting and nausea, which commonly happens as a side effect of treating cancer with radiotherapy and chemotherapy. Anti-nausea drugs used to manage and prevent the severe nausea and vomiting experienced by cancer patients are therefore designed to target serotonin receptors in the gut. These drugs, called setrons, work by binding to serotonin receptors before serotonin does, essentially neutralising the effect of any surplus serotonin. Although they generally target serotonin receptors in the same way, some setrons are more efficient than others and can provide longer lasting relief. Clarifying exactly how each drug interacts with its target receptor might help to explain their differential effects. Basak et al. used a technique called cryo-electron microscopy to examine the interactions between three common anti-nausea drugs (palonosetron, ondansetron and alosetron) and one type of serotonin receptor, 5-HT3AR. The experiments showed that each drug changed the shape of 5-HT3AR, thereby inhibiting its activity to varying degrees. Further analysis identified a distinct 'interaction fingerprint' for the three setron drugs studied, showing which of the receptors' subunits each drug binds to. Simulations of their interactions also showed that water molecules play a crucial role in the process, exposing the binding pocket on the receptor's surface where the drugs attach. This work provides a structural blueprint of the interactions between anti-nausea drugs and serotonin receptors. The structures could guide the development of new and improved therapies to treat nausea and vomiting brought on by cancer treatments.


Assuntos
Receptores 5-HT3 de Serotonina/química , Antagonistas da Serotonina/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Microscopia Crioeletrônica , Feminino , Humanos , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Oócitos/química , Ligação Proteica , Conformação Proteica , Serotonina/química , Xenopus laevis
10.
Biomed Pharmacother ; 132: 110860, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059258

RESUMO

Five different subunits of the human serotonin 3 (5-hydroxytrptamine 3; 5-HT3) receptor exist and these are present in both central and peripheral systems. Different subunits alter the efficacy of 5-HT3 receptor antagonists used to treat diarrhoea predominant-irritable bowel syndrome, chemotherapy induced nausea and vomiting and depression. Cell surface arrangement of 5-HT3 receptor complexes and the contribution of C, D and E subunits to receptor function is poorly understood. Here, we examine interactions of A and C subunits using 5-HT3 receptor subunits containing fluorescent protein inserts between the 3rd and 4th transmembrane spanning region. HEK293T cells that do not normally express 5-HT3 receptor subunits, were transiently transfected with A or C or both subunits. Patch clamp experiments show that cells transfected with either fluorescent protein tagged A or A and C subunits generate whole cell currents in response to 5-HT. These findings correlate with the apparent distribution of fluorescent protein tagged A and C subunits at or near cell surfaces detected using TIRF microscopy. In co-transfected cells, the A and C subunits are associated forming AC heteromer complexes at or near the cell surface and a proportion can also form A or C homomers. In conclusion, it is likely that both A homomers and AC heteromers contribute to whole cell currents in response to 5-HT with minimal contribution from C homomers.


Assuntos
Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Transfecção
11.
J Chem Phys ; 153(11): 110901, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962356

RESUMO

Water is at the heart of almost all biological phenomena, without which no life that we know of would have been possible. It is a misleadingly complex liquid that exists in near coexistence with the vapor phase under ambient conditions. Confinement within a hydrophobic cavity can tip this balance enough to drive a cooperative dewetting transition. For a nanometer-scale pore, the dewetting transition leads to a stable dry state that is physically open but impermeable to ions. This phenomenon is often referred to as hydrophobic gating. Numerous transmembrane protein ion channels have now been observed to utilize hydrophobic gating in their activation and regulation. Here, we review recent theoretical, simulation, and experimental studies that together have started to establish the principles of hydrophobic gating and discuss how channels of various sizes, topologies, and biological functions can utilize these principles to control the thermodynamic properties of water within their interior pores for gating and regulation. Exciting opportunities remain in multiple areas, particularly on direct experimental detection of hydrophobic dewetting in biological channels and on understanding how the cell may control the hydrophobic gating in regulation of ion channels.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Água/química , Água/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Hidrodinâmica , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Modelos Moleculares , Nanoporos , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Molhabilidade
12.
Sci Rep ; 10(1): 13900, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807797

RESUMO

Physical stressors play a crucial role in the progression of irritable bowel syndrome (IBS). Here we report a heterogeneous physical stress induced IBS rat model which shows depression and subsequent modulation of IBS by oral treatment of thymol. Oral administration of Thymol reduces the stress induced IBS significantly altering the stress induced gastrointestinal hypermotility, prolonged the whole gut transit time, and increased abdominal withdrawal reflex suggesting gastrointestinal hypermotility and visceral discomfort caused the onset of depression. Immunohistochemical analysis in small intestine and colon of rats shows the decreased 5-HT3AR expression level while thymol treatment normalized the 5-HT3AR expression in the stressed rats. Molecular docking studies showed that thymol competes with endogenous serotonin and an antagonist, Tropisetron and all have similar binding energies to 5-HT3AR. Molecular dynamics simulations revealed that thymol and tropisetron might have similar effects on 5-HT3AR. Our study suggest that thymol improves IBS symptoms through 5-HT3AR, could be useful for the treatment of IBS.


Assuntos
Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/etiologia , Estresse Psicológico/complicações , Timol/administração & dosagem , Timol/uso terapêutico , Administração Oral , Animais , Comportamento Animal , Doença Crônica , Trânsito Gastrointestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Modelos Biológicos , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Timol/química
13.
Structure ; 28(10): 1131-1140.e4, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32726573

RESUMO

Inaccurately perceived as niche drugs, antiemetics are key elements of cancer treatment alleviating the most dreaded side effect of chemotherapy. Serotonin 5-HT3 receptor antagonists are the most commonly prescribed class of drugs to control chemotherapy-induced nausea and vomiting. These antagonists have been clinically successful drugs since the 1980s, yet our understanding of how they operate at the molecular level has been hampered by the difficulty of obtaining structures of drug-receptor complexes. Here, we report the cryoelectron microscopy structure of the palonosetron-bound 5-HT3 receptor. We investigate the binding of palonosetron, granisetron, dolasetron, ondansetron, and cilansetron using molecular dynamics, covering the whole set of antagonists used in clinical practice. The structural and computational results yield detailed atomic insight into the binding modes of the drugs. In light of our data, we establish a comprehensive framework underlying the inhibition mechanism by the -setron drug family.


Assuntos
Antieméticos/química , Antieméticos/metabolismo , Palonossetrom/metabolismo , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Ligação de Hidrogênio , Camundongos , Simulação de Dinâmica Molecular , Palonossetrom/química , Conformação Proteica , Serotonina/química , Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/química , Antagonistas do Receptor 5-HT3 de Serotonina/metabolismo
14.
Elife ; 92020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31990273

RESUMO

Pentameric ligand-gated ion channels (pLGICs) or Cys-loop receptors are involved in fast synaptic signaling in the nervous system. Allosteric modulators bind to sites that are remote from the neurotransmitter binding site, but modify coupling of ligand binding to channel opening. In this study, we developed nanobodies (single domain antibodies), which are functionally active as allosteric modulators, and solved co-crystal structures of the prokaryote (Erwinia) channel ELIC bound either to a positive or a negative allosteric modulator. The allosteric nanobody binding sites partially overlap with those of small molecule modulators, including a vestibule binding site that is not accessible in some pLGICs. Using mutagenesis, we extrapolate the functional importance of the vestibule binding site to the human 5-HT3 receptor, suggesting a common mechanism of modulation in this protein and ELIC. Thus we identify key elements of allosteric binding sites, and extend drug design possibilities in pLGICs with an accessible vestibule site.


Assuntos
Proteínas de Bactérias , Erwinia/genética , Canais Iônicos de Abertura Ativada por Ligante , Receptores 5-HT3 de Serotonina , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo
15.
Sci Rep ; 9(1): 19111, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836743

RESUMO

Drug-receptor interaction theory predicts that proportional receptor occupancy is a function of ligand concentration as defined by a ligand-receptor affinity constant, and is independent of receptor density. However, we previously observed that the EC50 of 5-HT reduced as the density of 5-HT3 receptors increased, suggesting an effect of receptor density on occupancy. The current study was designed to maximise variability in experimentally observed currents and confirm this apparent contradiction prospectively. Xenopus oocytes were injected with RNA encoding 5-HT3A receptors under conditions designed to achieve varying receptor expression levels and 5-HT-evoked currents measured using two electrode voltage clamp. Results from 99 oocytes showed that as the maximal peak current increased from 0.05 µA to 12.1 µA there was a 3.7-fold reduction in EC50. Since occupancy and conductance are directly related in this system, this indicates that for a given concentration of 5-HT, proportional occupancy increases with increased receptor density. We conclude that normalising data masks this correlation, and can result in reduced accuracy of pharmacological measurements. We propose a mechanistic explanation for our observations.


Assuntos
Receptores 5-HT3 de Serotonina/química , Serotonina/química , Animais , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Humanos , Íons , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Modelos Teóricos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Multimerização Proteica , RNA/metabolismo , Xenopus laevis
16.
Mol Pharmacol ; 96(6): 720-734, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31582575

RESUMO

The 5-hydroxytryptamine (5-HT) type 3 receptor is a member of the cysteine (Cys)-loop receptor super family of ligand-gated ion channels in the nervous system and is a clinical target in a range of diseases. The 5-HT3 receptor mediates fast serotonergic neurotransmission by undergoing a series of conformational changes initiated by ligand binding that lead to the rapid opening of an intrinsic cation-selective channel. However, despite the availability of high-resolution structures of a mouse 5-HT3 receptor, many important aspects of the mechanistic basis of 5-HT3 receptor function and modulation by drugs remain poorly understood. In particular, there is little direct evidence for the specific conformational changes predicted to occur during ligand-gated channel activation and desensitization. In the present study, we used voltage-clamp fluorometry (VCF) to measure conformational changes in regions surrounding the orthosteric binding site of the human 5-HT3A (h5-HT3A) receptor during binding of 5-HT and different classes of 5-HT3 receptor ligands. VCF utilizes parallel measurements of receptor currents with photon emission from fluorescent reporter groups covalently attached to specific positions in the receptor structure. Reporter groups that are highly sensitive to the local molecular environment can, in real time, report conformational changes as changes in fluorescence that can be correlated with changes in receptor currents reporting the functional states of the channel. Within the loop C, D, and E regions that surround the orthosteric binding site in the h5-HT3A receptor, we identify positions that are amenable to tagging with an environmentally sensitive reporter group that reports robust fluorescence changes upon 5-HT binding and receptor activation. We use these reporter positions to characterize the effect of ligand binding on the local structure of the orthosteric binding site by agonists, competitive antagonists, and allosterically acting channel activators. We observed that loop C appears to show distinct fluorescence changes for ligands of the same class, while loop D reports similar fluorescence changes for all ligands binding at the orthosteric site. In contrast, the loop E reporter position shows distinct changes for agonists, antagonists, and allosteric compounds, suggesting the conformational changes in this region are specific to ligand function. Interpretation of these results within the framework of current models of 5-HT3 and Cys-loop mechanisms are used to expand the understanding of how ligand binding in Cys-loop receptors relates to channel gating. SIGNIFICANCE STATEMENT: The 5-HT3 receptor is an important ligand-gated ion channel and drug target in the central and peripheral nervous system. Determining how ligand binding induced conformational changes in the receptor is central for understanding the structural mechanisms underlying 5-HT3 receptor function. Here, we employ voltage-gated fluorometry to characterize conformational changes in the extracellular domain of the human 5-HT3 receptor to identify intrareceptor motions during binding of a range of 5-HT3 receptor agonists and antagonists.


Assuntos
Espaço Extracelular/química , Espaço Extracelular/metabolismo , Fluorometria/métodos , Técnicas de Patch-Clamp/métodos , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Humanos , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xenopus laevis
17.
J Gen Physiol ; 151(9): 1135-1145, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31409663

RESUMO

Serotonin type 3 receptors (5-HT3Rs) are cation-conducting pentameric ligand-gated ion channels and members of the Cys-loop superfamily in eukaryotes. 5-HT3Rs are found in the peripheral and central nervous system, and they are targets for drugs used to treat anxiety, drug dependence, and schizophrenia, as well as chemotherapy-induced and postoperative nausea and emesis. Decades of research of Cys-loop receptors have identified motifs in both the extracellular and transmembrane domains that mediate pentameric assembly. Those efforts have largely ignored the most diverse domain of these channels, the intracellular domain (ICD). Here we identify molecular determinants within the ICD of serotonin type 3A (5-HT3A) subunits for pentameric assembly by first identifying the segments contributing to pentamerization using deletion constructs of, and finally by making defined amino acid substitutions within, an isolated soluble ICD. Our work provides direct experimental evidence for the contribution of three intracellular arginines, previously implicated in governing the low conductance of 5-HT3ARs, in structural features such as pentameric assembly.


Assuntos
Arginina/química , Receptores 5-HT3 de Serotonina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Escherichia coli , Regulação da Expressão Gênica , Camundongos , Conformação Proteica , Domínios Proteicos , Engenharia de Proteínas , Dobramento de Proteína
18.
Protein Expr Purif ; 153: 45-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130580

RESUMO

The main principles of higher-order protein oligomerization are elucidated by many structural and biophysical studies. An astonishing number of proteins self-associate to form dimers or higher-order quaternary structures which further interact with other biomolecules to elicit complex cellular responses. In this study, we describe a simple and convenient approach to determine the oligomeric state of purified protein complexes that combines implementation of a novel form of clear-native gel electrophoresis and size exclusion chromatography in line with multi-angle light scattering. Here, we demonstrate the accuracy of this ensemble approach by characterizing the previously established pentameric state of the intracellular domain of serotonin type 3A (5-HT3A) receptors.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Proteínas Ligantes de Maltose/química , Receptores 5-HT3 de Serotonina/química , Proteínas Recombinantes de Fusão/química , Clonagem Molecular , Densitometria , Eletroforese em Gel de Poliacrilamida/instrumentação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Luz , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação
19.
ACS Chem Neurosci ; 10(3): 1380-1389, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30375852

RESUMO

Arylguanidines, depending upon their aromatic substitution pattern, display varying actions at 5-HT3 receptors (e.g., partial agonist, agonist, superagonist). Here, we demonstrate that conformational constraint of these agents as dihydroquinazolines (such as A6CDQ; 1) results in their conversion to 5-HT3 receptor antagonists. We examined the structure-activity relationships of 1. Replacement/removal of any of the guanidinium nitrogen atoms of 1 resulted in decreased affinity. All three nitrogen atoms of 1 are necessary for optimal binding affinity at 5-HT3 receptors. Introduction of substituents as small as an N2-methyl group abolishes affinity. The results are consistent with homology modeling/docking studies and binding data from site-directed mutagenesis studies. Introducing a "methylene bridge" to the arylguanidine structure, regardless of its functional activity, results in a 5-HT3 receptor antagonist.


Assuntos
Guanidinas/metabolismo , Metano/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Guanidinas/química , Células HEK293 , Humanos , Metano/química , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores 5-HT3 de Serotonina/química , Antagonistas do Receptor 5-HT3 de Serotonina/química , Xenopus
20.
Nature ; 563(7730): 270-274, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401837

RESUMO

The 5-HT3A serotonin receptor1, a cationic pentameric ligand-gated ion channel (pLGIC), is the clinical target for management of nausea and vomiting associated with radiation and chemotherapies2. Upon binding, serotonin induces a global conformational change that encompasses the ligand-binding extracellular domain (ECD), the transmembrane domain (TMD) and the intracellular domain (ICD), the molecular details of which are unclear. Here we present two serotonin-bound structures of the full-length 5-HT3A receptor in distinct conformations at 3.32 Å and 3.89 Å resolution that reveal the mechanism underlying channel activation. In comparison to the apo 5-HT3A receptor, serotonin-bound states underwent a large twisting motion in the ECD and TMD, leading to the opening of a 165 Å permeation pathway. Notably, this motion results in the creation of lateral portals for ion permeation at the interface of the TMD and ICD. Combined with molecular dynamics simulations, these structures provide novel insights into conformational coupling across domains and functional modulation.


Assuntos
Microscopia Crioeletrônica , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/ultraestrutura , Serotonina/química , Serotonina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Condutividade Elétrica , Feminino , Ativação do Canal Iônico , Transporte de Íons , Camundongos , Simulação de Dinâmica Molecular , Movimento , Conformação Proteica , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...